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What is self-discharge?

Self-discharge is a set of processes that decreases the performance of electrochemical power sources without ow of current through an external circuit.
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What is self-discharge?

Self-discharge is a set of processes that decreases the performance of electrochemical power sources without ow of current through an external circuit.

Batteries that are prone to self-discharge exhibit a short shelf life and are thus disfavored in most applications. Self-discharge is more critical for primary batteries than secondary batteries:

It may have dramatic consequences for systems that cannot be powered.

It requires excessive charging that may be detrimental to the batteries. It demonstrates that batteries remain active even though they are unused:

∀ δt > 0, di dt ≤ 0, i = 0 ⇒ u (t + δt) < u (t)
It may have dramatic consequences for systems that cannot be powered.

It requires excessive charging that may be detrimental to the batteries. It demonstrates that batteries remain active even though they are unused:

∀ δt > 0, di dt ≤ 0, i = 0 ⇒ u (t + δt) < u (t)
This feature is neglected in most battery models for simplicity! Anodic: Anodic:

H 2 O ⇌ 1 2 O 2 + 2 H + + 2 e -(oxygen evolution) Pb + H 2 O ⇌ PbO + 2 H + + 2 e -(grid corrosion)
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Redox shuttle process

Insuciently puried water or leaching impurities from cell components

Impurities, e.g. Fe 2+ /Fe 3+ , lead to discharging of the cell by means of a so-called redox shuttle process:

Positive electrode

PbO2 + H2SO4 + 2 H + + 2 Fe 2+ ⇌ PbSO4 + 2 H2O + 2 Fe 3+
Negative electrode

Pb + H2SO4 + 2 Fe 3+ ⇌ PbSO4 + 2 H + + 2 Fe 2+
This process continues as long as the electrode potentials allow the oxidation and reduction of ions.

The redox shuttle ions themselves are not consumed. Impurities, e.g. Fe 2+ /Fe 3+ , lead to discharging of the cell by means of a so-called redox shuttle process:

Positive electrode

PbO2 + H2SO4 + 2 H + + 2 Fe 2+ ⇌ PbSO4 + 2 H2O + 2 Fe 3+
Negative electrode

Pb + H2SO4 + 2 Fe 3+ ⇌ PbSO4 + 2 H + + 2 Fe 2+
This process continues as long as the electrode potentials allow the oxidation and reduction of ions.

The redox shuttle ions themselves are not consumed. The degradation of the separator must be avoided by proper choice of materials and designs. The degradation of the separator must be avoided by proper choice of materials and designs. Positive electrode as working electrode Positive electrode as working electrode The current density of charge transfer is described by the Butler-Volmer equation:

PbO 2 + H 2 SO 4 + 2 H + + 2 e -⇌ PbSO 4 + 2 H 2 O 2 Ag + H 2 SO 4 ⇌ Ag 2 SO 4 + 2 H + + 2 e -
i = i 0 exp (1 -α) 2 F R T • ∆ϕ -∆ϕ 0 -exp -α 2 F R T • ∆ϕ -∆ϕ 0
with the exchange current density

i 0 = n F k 0 γ ‡ a 1-α H 2 SO 4 ,ref a α H 2 SO 4
and the equilibrium potential at the reference temperature from the Nernst equation: The Arrhenius equation gives the dependence of the rate constant on

∆ϕ 0 Pb (T • ) = µ 0 PbSO 4 -µ 0 Ag 2 SO 4 2 F - R T • 2 F ln a H 2 SO 4 a H 2 SO 4 ,ref
T k 0 = k • 0 exp - ∆ Ḡ ‡ R T
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Working electrode

Impact of temperature on current density and equilibrium voltage

The Arrhenius equation gives the dependence of the rate constant on

T k 0 = k • 0 exp - ∆ Ḡ ‡ R T
The Taylor polynomial of degree 2 for the equilibrium potential according to

T • ∆ϕ 0 (T ) = ∆ϕ 0 (T • ) + (T -T • ) ∂∆ϕ 0 ∂T p (T • ) + 1 2 (T -T • ) 2 ∂ 2 ∆ϕ 0 ∂T 2 p (T • )
allows to estimate the equilibrium potential for any temperature value T ̸ = T • from the entropy and heat capacity at constant pressure (isobaric process) The porous electrodes of lead-acid batteries are made of two phases: a solid phase (Pb at the negative electrode and PbO 2 at the positive electrode), a liquid phase (electrolyte). This approach is simplistic as the electrodes are also made of binders (electrical insulators) and conductive additives, but allows to consider that the whole volume of the electrode is conductive with two dierent types of conduction according to the phases: electronic in the solid phase (exclusively metallic), symbolized by the current i s , ionic in the liquid phase (electrolyte), symbolized by the current i l .

∆ϕ 0 (T ) = ∆ Ḡ 0 (T • ) n F -(T -T • ) ∆ S0 (T • ) n F -(T -T • ) 2 ∆ C 0 p (T • ) Introduction Self-discharge
The porous electrodes of lead-acid batteries are made of two phases: a solid phase (Pb at the negative electrode and PbO 2 at the positive electrode), a liquid phase (electrolyte). This approach is simplistic as the electrodes are also made of binders (electrical insulators) and conductive additives, but allows to consider that the whole volume of the electrode is conductive with two dierent types of conduction according to the phases: electronic in the solid phase (exclusively metallic), symbolized by the current i s , ionic in the liquid phase (electrolyte), symbolized by the current i l .

Electroneutrality (the double layer being negligible in volume)

Charges leaving the porous matrix of the electrode must pass into the solution and reciprocally:

∇ • i s + ∇ • i l = 0
The current per unit volume of the electrode ∇ • i l , transferred from the matrix to the solution, is involved either in faradaic reactions

∇ • i l = A n j=1 i j
where A is the specic interfacial area (m -1 ), n j=1 i j the sum of the current densities of all faradaic processes j involved (A m -2 ) Introduction Self-discharge of lead-acid cells Modeling self-discharge of a lead-acid cell Conclusion

Working porous electrode Kinetics and electrostatics are two sides of the same coin

The current per unit volume of the electrode ∇ • i l , transferred from the matrix to the solution, is involved either in faradaic reactions or in double-layer charging:

∇ • i l = A n j=1 i j + d dt (A q dl )
where A is the specic interfacial area (m -1 ), n j=1 i j the sum of the current densities of all faradaic processes j involved (A m -2 ) and q dl the surface charge density on the electrode side of the double layer (C m -2 ). In open circuit, no current ows, neither electronically (∇ • i s = 0), nor ionically:

Introduction

∇ • i l = A n j=1 i j + d dt (A q dl ) = 0
Assuming two faradaic processes: discharge of the electrode active material with the primary current i p hydrolysis of water contained in electrolyte with the gassing current i g Reducing self-discharge to sulfuric acid consumption works for the negative:

Negative electrode Anodic: Pb + H 2 SO 4 ⇌ PbSO 4 + 2 H + + 2 e -(discharge) Cathodic: 2 H + + 2 e -⇌ H 2 (hydrogen evolution)
but is not sucient for the positive, producing and consuming water:

Positive electrode Cathodic: PbO 2 + H 2 SO 4 + 2 H + + 2 e -⇌ PbSO 4 + 2 H 2 O (discharge) Anodic: H 2 O ⇌ 1
Self-discharge means sulfuric acid consumption and dilution

Reducing self-discharge to sulfuric acid consumption works for the negative:

Negative electrode Anodic: Pb + H 2 SO 4 ⇌ PbSO 4 + 2 H + + 2 e -(discharge) Cathodic: 2 H + + 2 e -⇌ H 2 (hydrogen evolution)
but is not sucient for the positive, producing and consuming water: A system of 7 ordinary dierential equations (2 for each electrode and 3 for the electrolytes)

Positive electrode Cathodic: PbO 2 + H 2 SO 4 + 2 H + + 2 e -⇌ PbSO 4 + 2 H 2 O (discharge) Anodic: H 2 O ⇌ 1 2 O 2 + 2 H + + 2 e -(oxygen evolution) ∀ i ∈ {H 2 O, H 2 SO 4 } , j ∈ {p, g} , k ∈ {pos, neg} , dn i dt = - j,k s i,j,k N k S k n j,k F i j,k
Electrode k

d∆ϕ k dt = - 1 C dl,k j i j,k dQ k dt = -s p,k N k S k i p,k SOC k = Q k max (Q k ) Electrode k d∆ϕ k dt = - 1 C dl,k j i j,k dQ k dt = -s p,k N k S k i p,k SOC k = Q k max (Q k )
The cell SOC corresponds to the minimum value of each electrode SOC k :

SOC = min max min (SOC k ) , 0 , 1 Introduction Self-discharge of lead-acid cells
Modeling self-discharge of a lead-acid cell Conclusion

Model equations

A system of 7 ordinary dierential equations (2 for each electrode and 3 for the electrolytes)

Electrode k

d∆ϕ k dt = - 1 C dl,k j i j,k dQ k dt = -s p,k N k S k i p,k SOC k = Q k max (Q k )
The cell SOC corresponds to the minimum value of each electrode SOC k :

SOC = min max min (SOC k ) , 0 , 1 Bulk electrolyte dn H 2 O dt = - j,k s H 2 O,j,k N k S k n j,k F i j,k dn H 2 SO 4 dt = - j,k s H 2 SO 4 ,j,k N k S k n j,k F i j,k m = 1 000 n H 2 SO 4 M H 2 O n H 2 O
A system of 7 ordinary dierential equations (2 for each electrode and 3 for the electrolytes)

Electrode k

d∆ϕ k dt = - 1 C dl,k j i j,k dQ k dt = -s p,k N k S k i p,k SOC k = Q k max (Q k )
The cell SOC corresponds to the minimum value of each electrode SOC k :

SOC = min max min (SOC k ) , 0 , 1 Bulk electrolyte dn H 2 O dt = - j,k s H 2 O,j,k N k S k n j,k F i j,k dn H 2 SO 4 dt = - j,k s H 2 SO 4 ,j,k N k S k n j,k F i j,k m = 1 000 n H 2 SO 4 M H 2 O n H 2 O
Reference electrolyte

dm ref dt = D ref S ref (m -m ref )
Positive electrode voltage Negative electrode voltage The positive electrode polarization is much higher than the negative one. Relative errors of density and voltages are very low (±0.3 %).

Diusion of species from the bulk is very slow but non negligible.

The model shows how the acid is diluted by water production.

Electrolyte density Cell voltage
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Model extrapolation

Simulating the impact of a one-year selfdischarge at 25 • C on electrolyte density, cell voltage and SOC

Electrolyte density Cell voltage

Cell SOC Thermodynamics and kinetics make the electrolyte density, cell voltage, and SOC decrease exponentially, showing that the lower the SOC, the lower the selfdischarge phenomenon.

Measurements from the electrolyte reserve located above the electrodes may lead to lower density values than the actual ones inside the pores. (19151998) 
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O 2 + 2 H + + 2 e -(oxygen evolution)

Self-discharge has an obvious impact on operational performance and safety.
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Kinetics and electrostatics are two sides of the same coin

The current per unit volume of the electrode ∇ • i l , transferred from the matrix to the solution, is involved either in faradaic reactions or in double-layer charging:

where A is the specic interfacial area (m -1 ), n j=1 i j the sum of the current densities of all faradaic processes j involved (A m -2 ) and q dl the surface charge density on the electrode side of the double layer (C m -2 ).

where C dl is the double layer capacity per unit area of the electrode (F m -2 ). The positive electrode polarization is much higher than the negative one.

The positive electrode voltage decreases faster than the negative one.

The positive electrode SOC decreases slower than the negative one.