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Abstract 

This paper deals with the interdiffusion phenomena, which take place during the solid state sintering of nuclear fuel mixed 

oxides. Interdiffusion occurs on both sides of neighboring grains (or crystallites of the starting powders) with different initial 

chemical composition (either UO2 or PuO2): it occurs because one or more grain boundaries separate grains with different 

initial chemical compositions. The objective of this work is to study numerically the interdiffusion in two grains in one 

dimension. The numerical method used is the finite difference method applied to the Fick’s laws for multicomponent systems. 

The concentration profiles of uranium and plutonium are plotted versus time to analyze and understand the evolution of each 

element in the single-crystals. Neumann boundary conditions better represent the physical reality of interdiffusion of mixed 

oxides due to the limited spatial extent of the initial crystallites. In the simulations, pure UO2 and PuO2 crystallites are brought 

into contact at the initial time. After four hours (typical duration of sintering), each diffusing element is distributed over the full 

length formed by the two interdiffusion half-couples. Moreover, the phenomenon of homogenization has been also analyzed 

within two kinds of microstructures: first, a unimodal size distribution of single-crystals, second, a non-unimodal size 

distribution of single-crystals. In order to carry out the numerical study of the homogenization phenomenon within these two 

microstructures, the standard deviation of the concentration of U or Pu criterion is used, which makes it possible to analyze the 

homogeneity degree of the system after a certain period of time, as well as the time necessary to reach a given homogeneity. 

This time is longer when the crystals are the largest. 
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1. Introduction 

 

Sintering is a process frequently encountered in the manufacturing process of ceramics materials. The sintering of ceramics 

constituted by only one chemical element is a non-reactive sintering. However, very often, ceramics are constituted by more 

than one chemical element and are therefore heterogeneous from a chemical point of view. Reactive sintering has long  been 

successfully experimentally used in the field of traditional ceramics and has been developed for technical ceramics since the 

last quarter of the last century. Mullite-zirconia is often used as a model system [1-5]. Sintering is a key step in the 

manufacturing process of mixed oxides used as fuels in nuclear reactors. Since Pu has been reprocessed as MOX fuel, the 

sintering stage has become a reactive sintering in which a chemical reaction between the initial constituents of the green 

compact (made of UO2 and PuO2 powders) and its densification occurs during the same thermal treatment. So far, in order to 

construct a sintering model, all numerical studies have supposed that the ceramics are homogeneous [6–10]. Unlike these latter, 

the sintering of mixed oxides is reactive, due to the number of chemical elements in presence, precisely uranium, plutonium 

and oxygen. A sub-granular model for solid state free sintering of mixed oxides has been developed in order to follow the 

evolution of two grains in references [11–13]. This model, named SALAMMBO, describes the behavior of two grains by 

solving Fick’s laws with fluxes arising from different diffusion mechanisms (grain boundary, surface and volume). In addition 

to the chemical origin of diffusion, a mechanical part leading to shrinkage is considered. In fact, the flux is written 𝑗 = −𝐿�⃗⃗�
µ

𝑇
. 

The chemical potential in this equation consists of a mechanical and a chemical part. This means µ= µmecha + µchem with µmecha 

= −
Ω

𝟐
(𝜎: ℇ̅̅) where 𝜎 stands for the stress field whereas ℇ̅̅  stands for the strain field and µchem is constant (taken as zero) when 

the material is homogeneous (current SALAMMBO consideration) and varying when the material is heterogeneous (MOX 

case). The Navier-Lame equations are solved at each time step in the bulk of each grain, providing the 3D-displacement field 

and hence the density of the elastic mechanical energy. The gradient of energy is the driving force of diffusion phenomena 

occurring during densification. As any other sintering model, this model was first developed for the simplified case of a 

chemically homogeneous material. As (U,Pu)O2 ceramics are initially heterogeneous and homogeneity of nuclear is required 

to avoid localized high burnup areas during irradiation, it is necessary to take into account the bulk diffusion of each of the 

three chemical elements in order to construct a reactive sintering model of (U,Pu)O2. The understanding of this reactive 

sintering can help to improve cationic homogenization experimental conditions. To do so, the interdiffusion mechanism which 

is one of the physical phenomena involved and which conditions the formation of the (U,Pu)O2 solid solution requires attention. 



This reactive sintering supposes to solve Fick’s laws not only for each diffusion mechanism, but also for each chemical element. 

Some studies in the literature deal with the resolution of Fick’s laws in the binary or ternary systems depending on their aims. 

In a binary system, only one diffusion coefficient comes into play. In contrast, in a ternary system in which two or more cations 

are being transported, new complications arise : a single interdiffusion coefficient is no longer appropriate to describe the 

diffusion process [14,15]. This makes the use of a diffusion matrix necessary [16]. The diffusion matrix contains four diffusion 

coefficients namely the “main-term” diffusion coefficients (for diagonal ones) and “cross-term” diffusion coefficients (for off-

diagonal ones). In general, the cross-terms are not symmetric. Some works reported in the literature neglect the cross-terms 

[17,18]. Such an approximation cannot be made for U-Pu interdiffusion because these cations diffuse on the same cationic sites 

of the fluorine structure with a trace amount of cationic vacancies. A non-zero value of a cross-term gives a measure of a flux 

of one component generated by the concentration gradient of a second component. That means the multicomponent diffusion 

is a non-linear problem and the interactions between components are significant.  

The 

The 

 

2. Methodology 

2.1. Multicomponent flux equations: the ternary system (U,Pu,O) 

 

Fick’s laws expressing the fluxes of species account for diffusion phenomena. In the context of interdiffusion, the process 

consists in bringing two single-crystals into contact. Each single-crystal has its own initial chemical composition. In the context 

of MOX sintering, UO2 and PuO2 are brought into contact, so that there are three chemical elements U, Pu and O and 
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𝑱𝒌 = − ∑ 𝑫𝒌𝒋
𝒏 𝜵𝒄𝒋

𝒏−𝟏

𝒋=𝟏
 (1) 

𝝏𝒄𝒌

𝝏𝒕
= −𝜵. 𝑱𝒌 (2) 

where Jk represents the diffusional flux of the chemical element k; n stands for the number of chemical element in the system; 

ck is the concentration of the chemical element k; and 𝑫𝒌𝒋
𝒏  is the diffusivity that can be expressed as [30]: 

 𝐷𝑘𝑗
𝑛  = 𝐷𝑘𝑗  - 𝐷𝑘𝑛(

𝑉𝑗

𝑉𝑛
) (3) 

where Vj represents the partial volume of chemical element j and Vn is the total volume of the pattern (i.e one mole of U1-

xPuxO2).  

In addition, 

    𝐷𝑘𝑗 = ∑ (𝛿𝑖𝑘 − 𝑥𝑘)𝑥𝑖𝑀𝑖
𝜕𝞵𝑖

𝜕𝑥𝑗

𝑛

𝑖=1

 (4) 

Here 𝑥𝑘 is the mole fraction of chemical element k, 𝛿𝑖𝑘 represents the Kronecker symbol, equal to 1 if i=k, and 0 to otherwise. 
𝜕𝞵𝑖

𝜕𝑥𝑗
 is the partial derivative of the chemical potential of the species i with respect to the mole fraction xi  and corresponds to the 

thermodynamic factor of Darken. This quantity can therefore be evaluated from the thermodynamic description of the system. 

The expressions for the chemical potentials must be given in the form µ𝑘(𝑥1, 𝑥2, … , 𝑥𝑛). Mi represents the mobility of element 

i. In this framework, there is no question of determining diffusion coefficients from mobilities and the thermodynamic model 

of the solid solution; these values will be obtained by interpolating experimental data.  

𝑱𝒌= − ∑ 𝑫𝒌𝒋
𝒏 𝜵𝒄𝒋

𝒏−𝟏

𝒋=𝟏
 , which gives the expression of flux, has a limit: one of the elements is not taken into account into the 

summation. The choice of the last element that is excluded in the computation of interdiffusion flux depends on the type and 

the characteristics of the system. Generally, in the systems build up of solute and solvent, the flux of solvent is neglected. So, 

we will determine in the n-component system, (n-1) interdiffusion fluxes and (n-1) interdiffusion coefficients. In addition, in 

the volume center frame, the fluxes are related to each other and we can numerically deduce the flux of the last element (n-

component) as ∑ 𝑽𝒊𝑱𝒊
𝟑
𝒊=𝟏 =𝟎 [16]. Therefore, as explained in the introduction, Fick’s laws will apply on U and Pu and the flux 

of O could be deduced if necessary from this relation. 

In order to simulate 1D interdiffusion, the two Fick’s laws are combined to determine the concentrations, leading to:  

𝜕𝑐𝑘

𝜕𝑡
= ∑ 𝐷𝑘𝑗

𝑛 𝜕2𝑐𝑗

𝜕𝑥2

𝑛−1

𝑗=1
  (5) 



 

2.2. Physical model 
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𝜕𝑐𝑘

𝜕𝑡
= ∑ 𝐷𝑘𝑗

𝑛 𝜕2𝑐𝑗

𝜕𝑥2

𝑛−1

𝑗=1
  ⇒  {

𝜕𝑐𝑈

𝜕𝑡
= 𝐷𝑈𝑈

𝑂 𝜕𝑐𝑈

𝜕𝑥2 + 𝐷𝑈𝑃𝑢
𝑂 𝜕𝑐𝑃𝑢

𝜕𝑥2

𝜕𝑐𝑃𝑢

𝜕𝑡
= 𝐷𝑃𝑢𝑈

𝑂 𝜕𝑐𝑈

𝜕𝑥2 + 𝐷𝑃𝑢𝑃𝑢
𝑂 𝜕𝑐𝑃𝑢

𝜕𝑥2

   ⇒  
𝜕𝑐

𝜕𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2     ( 6) 

with D= (
𝐷𝑈𝑈

𝑂 𝐷𝑈𝑃𝑢
𝑂

𝐷𝑃𝑢𝑈
𝑂 𝐷𝑃𝑢𝑃𝑢

𝑂 )     and c = (
𝑐𝑈

𝑐𝑃𝑢
) ; thus, the matrix D is diagonalized, using the eigenvector matrix B and the 

eigenvalue diagonal matrix 𝜆. The relations between the matrices B, D, c, c’ and 𝜆 are:     

 
𝑐′ = 𝐵−1𝑐
𝐷𝐵 = 𝐵𝜆

 ⇒  
𝜕𝑐′

𝜕𝑡
= 𝜆

𝜕2𝑐′

𝜕𝑥2  (7) 

with     𝑐′ = (
𝑐𝑈

′

𝑐𝑃𝑢
′ ) . Let us express the components of matrices B and λ: 

B= (
𝑏𝑈𝑈 𝑏𝑈𝑃𝑢

𝑏𝑃𝑢𝑈 𝑏𝑃𝑢𝑃𝑢
)   and λ = (

𝜆𝑈 0
0 𝜆𝑃𝑢

)  

with 𝑏𝑈𝑈  = 1, 𝑏𝑈𝑃𝑢 = 
𝐷𝑈𝑈 −𝜆𝑈 

𝐷𝑃𝑢𝑈
, 𝑏𝑃𝑢𝑈 = 

𝐷𝑃𝑢𝑈  

𝐷𝑈𝑈−𝜆𝑃𝑢
, bPuPu = 1,  

𝜆𝑈 =
1

2
(𝐷𝑈𝑈 + 𝐷𝑃𝑢𝑃𝑢 − √(𝐷𝑈𝑈 − 𝐷𝑃𝑢𝑃𝑢 )

2 + 4𝐷𝑃𝑢𝑈 𝐷𝑈𝑃𝑢  

𝜆𝑃𝑢 =
1

2
(𝐷𝑈𝑈 + 𝐷𝑃𝑢𝑃𝑢 + √(𝐷𝑈𝑈 − 𝐷𝑃𝑢𝑃𝑢 )

2 + 4𝐷𝑃𝑢𝑈 𝐷𝑈𝑃𝑢  

The values of interdiffusion coefficients are obtained by interpolating Matzke graph [31] that gives the representation of 

interdiffusion coefficient at T=1600°C with an oxygen potential of ~90 kcal/mol (~ -375kJ/mol). The magnitude order is around 

10-4cm²/s. Thus, for the modeling of the interdiffusion between the couple UO2/PuO2, the following diffusion coefficients will 

be used: 𝐷UU
O  = 6*10−14 𝑐𝑚2/𝑠, 𝐷PuPu

O = 12*10−14 𝑐𝑚2/𝑠, 𝐷UPu
O =10−14 𝑐𝑚2/𝑠, 𝐷PuU

O = 2*10−14 𝑐𝑚2/𝑠.   

Furthermore, for the modeling of the interdiffusion between the couple of two pellets UO2/U0.55Pu0.45O2, the magnitude order 

provided by the plot of Noyau [28], for a value of oxygen potential of -395 kJ.mol-1, will be used. The values that will be 

considered to reproduce the concentration profile of UO2 are: DUU
O  = 10−15 𝑐𝑚2/𝑠, DUPu

O =3*10−16 𝑐𝑚2/𝑠, DPuU
O =5*10−16 

𝑐𝑚2/𝑠, DPuPu
O =10−16 𝑐𝑚2/𝑠 whereas those that will reproduce the concentration profile of U0.55Pu0.45O2 are: DUU

O  = 10−14 

𝑐𝑚2/𝑠, DUPu
O =10−15 𝑐𝑚2/𝑠, DPuU

O =8*10−15 𝑐𝑚2/𝑠, DPuPu
O =12 ∗ 10−15 𝑐𝑚2. 

2.3. Initial Conditions 

Like every time-dependent problem, the first step is the definition of initial conditions, which define the composition of each 

single-crystal (each diffusion half-couple).  

 Case of UO2/PuO2 

The first half-couple is uranium dioxide. In the fluorine structure (case of UO2), the expression of concentration is: 

 c= 
𝑛

𝑉
 = 

𝑧

𝑁𝑎∗𝑎3 

c is the concentration of U in the fluorine structure, z is the number of formula units in the conventional cell and its value is 4 

for the UO2 system, Na is the Avogadro number. The lattice parameter a is 5.47Å at sintering temperature (around 1600 or 

1700°C) [30]. The corresponding concentration of U is 0.04 mol/cm3. By analogy, the lattice parameter of PuO2 is 5.396Å and 

the concentration of Pu is 0.042 mol/cm3. Those initial conditions are applied to solve the previous equations. 

 Case of UO2/U0.55Pu0.45O2 

The initial conditions of this couple are also required because they will be used at the step of validation of our model based on 

Dirichlet boundary conditions. The values of the initial concentrations of the first half-couple UO2 at the left-hand side are 



identical to those shown above: cU = 0.04mol/cm3 and cPu = 0. Concerning the half-couple U0.55Pu0.45O2 on the right-hand side, 

the concentrations of U and Pu are respectively:  𝑐𝑈 =
1−𝑦

𝑉𝑚
   and 𝑐𝑃𝑢 =

𝑦

𝑉𝑚
, where y is the Pu content, Vm  the molar partial 

volume, Vm = 𝑎3(1 + 𝛼𝑇)3𝑁𝑎. The lattice parameter a is given by a = 5.470 – 0.074y +(0.301 + 0.11y)x Å [32], with x the 

deviation from oxygen stoichiometry.   

Taking into account a 45at%Pu content, the lattice parameter becomes 5.436Å. The thermal expansion coefficient αT, for this 

non-stoichiometric component is: αT = 1.1833 × 10−5-5.013 × 10−9𝑇 + 3.756 × 10−12𝑇2-6.125×10−17𝑇3 for 923≤T≤3120 

K, leading to 𝑐𝑈 = 0.02273 mol/cm3 𝑐𝑃𝑢= 0.0186 mol/cm3. 

 

2.4. Boundary conditions 

Boundary conditions are required to close previous system of equations. The choice of the type of boundary conditions depends 

on the type of problem to be solved. 

 Dirichlet boundary conditions 

For the sintering of large single-crystals, because interdiffusion zone is smaller than the sample, Dirichlet boundary conditions 

will be first used. Note that the finite difference scheme that will be used later does not define the concentration values at the 

two external nodes, corresponding to k=1 and k=n. The Dirichlet boundary conditions considered here assume that the 

concentration in U and Pu does not change at the boundaries of spatial domain.

 Neumann boundary conditions 

 

The Neumann boundary conditions consists in imposing the normal flux of the species at the boundary of the domain. Here, a 

flux equal to zero is considered, which means, in a 1D-situation, that no matter moves through the ends of the sample.  

 

2.5. Numerical resolution of the problem: the finite difference discretization 

This section describes the numerical method used for solving multicomponent diffusion partial differential equations. Diffpack 

library [29] is used in order to solve the resulting linear system of equations. The purpose is to analyze the evolution of 

concentration profiles of U and Pu chemical elements.  

A finite difference scheme is applied to Equation 8, in order to approximate the unknown c’ and then rebuild c. More precisely, 

the time domain [0, T] is discretized by a set of ordered points, t0=0, t1,…,tn, equally spaced. The time step is then defined by 

𝛥𝑡 = 𝑡𝑙 − 𝑡𝑙−1    for any l> 0. Similarly, the space domain is discretized by a set of equidistributed points x1 = 0, x2, …,,xn, with 

xk+1 > xk  for any k > 0, spaced by 𝛥𝑥 = 𝑥𝑘+1 − 𝑥𝑘. With these notations, c’(xk,tl) is approximated by c’k,l.. These coefficients 
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𝑐𝑘,𝑙+1

′ (𝑈) = 𝜆𝑈 ×
𝛥𝑡

𝛥𝑥2 𝑐𝑘−1,𝑙
′ (𝑈) + (1 − 2𝜆𝑈 ×

𝛥𝑡

𝛥𝑥2)𝑐𝑘,𝑙
′ (𝑈)  +  𝜆𝑈 ×

𝛥𝑡

𝛥𝑥2 𝑐𝑘+1,𝑙
′ (𝑈)

𝑐𝑘,𝑙+1
′ (𝑃𝑢) = 𝜆𝑃𝑢 ×

𝛥𝑡

𝛥𝑥2 𝑐𝑘−1,𝑙
′ (𝑃𝑢) + (1 − 2𝜆𝑃𝑢 ×

𝛥𝑡

𝛥𝑥2)𝑐𝑘,𝑙
′ (𝑃𝑢)  +  𝜆𝑃𝑢 ×

𝛥𝑡

𝛥𝑥2 𝑐𝑘+1,𝑙
′ (𝑃𝑢)

   2≤k≤n-1 (8) 

{
𝑐𝑈 = 𝑏𝑈𝑈𝑐𝑈

′ + 𝑏𝑈𝑃𝑢𝑐𝑃𝑢
′

𝑐𝑃𝑢 = 𝑏𝑃𝑢𝑈𝑐𝑈
′ +  𝑏𝑃𝑢𝑃𝑢𝑐𝑃𝑢

′   (9) 

 

One of the most important steps of the resolution of time-dependent problem is the choice of the time step. In the explicit 

schemes, the Courant-Friedrichs-Lewy (CFL) condition requires that the number of Courant be less than 0.5. This number is 

defined for a one-dimensional system by: C = 𝜆𝑈 ×
𝛥𝑡

𝛥𝑥2 or C=𝜆𝑃𝑢 ×
𝛥𝑡

𝛥𝑥2. Thus, the value assigned to C is 0.3. Knowing the 

value of 𝜆𝑈 and 𝜆𝑃𝑢, the value of time step is deduced, which is the minimum between 
𝐶×𝛥𝑥2

𝜆𝑈
 and 

𝐶×𝛥𝑥2

𝜆𝑃𝑢
. The value of space 

step is 𝛥x = L/(n-1), with L the length throughout the two half-couples and n is the total number of discretization points. This 

finite difference scheme is associated with the Dirichlet boundary conditions, which can be written in terms of the finite 

difference scheme as follows: 

𝑐1,𝑙+1
′ (U)= 𝑐1,𝑙

′ (U)         𝑐1,𝑙+1
′ (Pu)= 𝑐1,𝑙

′ (Pu)                                              



𝑐1,𝑙+1(U)= 𝑏𝑈𝑈×𝑐1,𝑙+1
′ (U)+ 𝑏𝑈𝑃𝑢×𝑐1,𝑙+1

′ (Pu) 

𝑐1,𝑙+1(Pu) =𝑏𝑃𝑢𝑈×𝑐1,𝑙+1
′ (U)+𝑏𝑃𝑢𝑃𝑢×𝑐1,𝑙+1

′ (Pu) 

𝑐𝑛,𝑙+1
′ (U)= 𝑐𝑛,𝑙

′ (U)         

𝑐𝑛,𝑙+1
′ (Pu)= 𝑐1,𝑙

′ (Pu)         

𝑐𝑛,𝑙+1(U)= 𝑏𝑈𝑈×𝑐𝑛,𝑙+1
′ (U)+ 𝑏𝑈𝑃𝑢×𝑐𝑛,𝑙+1

′ (Pu) 

𝑐1,𝑙+1(Pu) =𝑏𝑃𝑢𝑈×𝑐𝑛,𝑙+1
′ (U)+𝑏𝑃𝑢𝑃𝑢×𝑐𝑛,𝑙+1

′ (Pu)

Therefore, the system is solved numerically and the unknown concentrations are then deduced. 

Concerning the numerical implementation based on Neumann boundary conditions, the mathematical equations can be written: 

𝛁𝑐 = 0 at k=1 and k=n . This leads to 𝛁𝑐′ = 0 at k=1 and k=n.  Assuming that at the end point at k = 1, the incoming flux is 

equal to the outgoing flux:  𝑐1,𝑙+1
′ (U) = 𝜆𝑈 ×

𝛥𝑡

𝛥𝑥2 (𝑐0,𝑙
′ (U) - 2×c’1,l(U) + c’2,l(U) ) + 𝜆𝑈 ×

𝛥𝑡

𝛥𝑥2 𝑐1,𝑙
′ (𝑈). The condition of flux null 

is applied between the point k=1 and a point out of the domain k=0. Assuming that the difference between the flux at k=1 and 

at the other outer points on the left is zero at all times. This means that c’1,l(U) – c’0,l(U) = 0. The concentration 𝑐0,𝑙
′  is the 

concentration at a point out of the domain. By replacing c’0,l(U) = c’1,l(U) in the previous relation, the deduction appears 

𝑐1,𝑙+1
′ (U) = (1 - 𝜆𝑈 ×

𝛥𝑡

𝛥𝑥2) 𝑐1,𝑙
′ (U) + 𝜆𝑈 ×

𝛥𝑡

𝛥𝑥2 𝑐2,𝑙
′ (U). The process is the same for point k = n.  

Thus, at the first point corresponding to k=1, 𝑐1,𝑙+1
′ (U) = (1 - 𝜆𝑈 ×

𝛥𝑡

𝛥𝑥2) 𝑐1,𝑙
′ (U) + 𝜆𝑈 ×

𝛥𝑡

𝛥𝑥2 𝑐2,𝑙
′ (U) 

At the last one corresponding to k=n, 𝑐𝑛,𝑙+1
′ (U) = 𝜆𝑈 ×

𝛥𝑡

𝛥𝑥2 𝑐𝑛−1,𝑙
′ (U) + (1 −  𝜆𝑈 ×

𝛥𝑡

𝛥𝑥2)𝑐𝑛,𝑙
′ (U) 

By analogy, 𝑐1,𝑙+1
′ (Pu) = (1 - 𝜆𝑃𝑢 ×

𝛥𝑡

𝛥𝑥2) 𝑐1,𝑙
′ (Pu) + 𝜆𝑃𝑢 ×

𝛥𝑡

𝛥𝑥2 𝑐2,𝑙
′ (Pu) 

𝑐𝑛,𝑙+1
′ (Pu) = 𝜆𝑃𝑢 ×

𝛥𝑡

𝛥𝑥2 𝑐𝑛−1,𝑙
′ (Pu) + (1 −  𝜆𝑃𝑢 ×

𝛥𝑡

𝛥𝑥2)𝑐𝑛,𝑙
′ (Pu) 

These resulting equations associated with the finite difference scheme lead to a numerical system that is solved using the 

functionalities of the Diffpack library for the finite difference method. 

 

3. Results and discussion 

3.1. simulation of two single-crystals of UO2 and PuO2 

So far, the physical model and the numerical method necessary to solve the interdiffusion phenomenon between two single-

crystals in contact were presented. The purpose is to find the unknown concentrations of U and Pu as a function of time. As 

mentioned at the beginning of this paper, we aim at analyzing the change in concentration of each chemical element during 

interdiffusion in a system constituted by two half-couples of single-crystals. One made of UO2 and the other PuO2. Based on 

the fact that the size of these crystallites as shown by scanning electron microscope or deduced from X-Rays peak width in 

diffraction patterns, lies between 100 and 300nm, we have simulated the interdiffusion using the size of 100nm. Thus, the entire 

length of the two half-couples is 200nm. The initial interface separating the two half-couples is located in the center of the 

domain. Figure 1 shows the evolution of the concentration of each chemical element when two single-crystals (assumed as 

being crystallites) of UO2 and PuO2 are brought into contact. Dirichlet boundary conditions were first used. 

 

  

a) During the first 100 seconds                                     b) During the first four hours 



Figure 1 : Concentration profiles of U and Pu as a function of distance between the two half-couples of interdiffusion 

using Dirichlet boundary conditions  

This Figure shows the interdiffusion phenomenon. Initially, UO2 occupies only the left half-couple, and PuO2 occupies the 

right hand half (Figure 1.a). These sharp concentrations are quickly smoothed out, due to the diffusion regularization effect, or 

mathematically, the Laplacian term in Fick’s law (Figure 1.a). The mole number of each species, i.e. the area under each curve, 

is conserved over time. Since the concentration of Pu and U is imposed at both domain boundaries, the steady state is reached 

with the straight profiles shown in Figure 1.b: the time derivative is equal to zero, and consequently the spatial second-order 

derivative of the concentration is also equal to zero. 

This computation allows to highlight the manifestations of diffusion phenomena at any points of the single-crystals, except at 

the ends points. The other observation is that the complete diffusion takes less than 4 hours: the interdiffusion totally occurs 

during the sintering. However, the values of concentration at the ends, which remain fixed during the interdiffusion, do not 

represent the physical reality of interdiffusion within crystallites. An alternative would be to use another type of boundary 

condition based on the zero flux of each element at the ends of the domain: the Neumann boundary conditions described above 

(paragraph 2.4). 

The numerical implementation of Neumann boundary conditions as described above allows us to plot the concentration profiles 

of U and Pu shown in Figure 2 : 

 

a) During the first 500 seconds      b) During the first 30 minutes 

c) During the first four hours      

Figure 2 : Concentration profiles of U and Pu as a function of distance between the two half-couples of interdiffusion 

using Neumann boundary conditions  

The same remarks as previously mentionned apply: the diffusion effect appears clearly, while the mole number of each species 

is well preserved. Since the space derivative of both concentrations are set to zero at the boundaries of the domain, the steady 

state is a state of constant concentration. The Neumann boundary conditions give a good description of the physical reality of 

interdiffusion at the crystallite scale during sintering when the interdiffusion zone is significant in comparison to the total 

interdiffusion couple length. 

 

3.2.  Validation of the model based on Dirichlet boundary conditions 



The Dirichlet boundary conditions used to simulate the interdiffusion between two single-crystals do not represent the reality 

of phenomena because the size of single-crystals and the interdiffusion zone are of the same order of magnitude. In contrast, 

we can use this type of boundary conditions when the interdiffusion zone is smaller than the entire length constituted by the 

two half-couples, for example the case of the single-crystals with bigger size. Therefore, in order to validate our model, we will 

try to reproduce the results acquired during an experiment based on two interdiffusion half-couples, one consisting of a pure 

UO2 half pellet, the other one consisting of a half-pellet of the mixed oxide U0.55Pu0.45O2. In this aim, the initial conditions as 

described at Section 2.3 are used. The required interdiffusion coefficients were presented with the physical model (see Section 

2.2).  

So far, the only work in the literature dealing with the concentration profiles of UO2 and U0.55Pu0.45O2 is that of Noyau [28]. He 

plotted the evolution of concentration as a function of distance along the interdiffusion couple. To cope with the very limited 

interdiffusion zone which extends from 2 up to 5 µm, the author selected an acquisition line for concentration measurements 

by means of a Castaing EPMA (Electron Probe Micro Analyzer) making a very small 𝛼 angle with the bonding interface of the 

two half-pellets. He managed in this way to obtain a large number of points with varying concentrations within the interdiffusion 

zone. The total distance between extreme acquisition points measured perpendicular to the bonding interface remains very 

small compared to the total length of the half-couples. Therefore, Dirichlet boundary conditions can be applied to these two 

half-couples to simulate U-Pu interdiffusion. 

For a temperature of 1700°C and 50 hours of interdiffusion, the inclination angle is 𝛼=2,048 × 10−2rad. In the second case 

where the duration of interdiffusion is 143 hours, the inclination angle is 3,175 × 10-2 rad. Figure 3 shows the two half-couples 

as well as the position of the acquisition line in relation to the bonding interface separating the two half-couples as described 

by Noyau [28]. 

 

 

Figure 3 : Position of the acquisition line in relation to the bonding interface separating the two half-couples 

UO2/U0.55Pu0.45O2 

The interdiffusion between UO2 and U0.55Pu0.45O2 has been simulated for two durations of interdiffusion: 50 and 143 hours. 

The interdiffusion profiles are then compared to the experimental results of Noyau as shown on Figure 4. 

 

 

Figure 4 : Concentration profiles of elements U and Pu at 1700°C after 50 hours and after 143 hours 

 

In each figure, a good agreement can be observed between experiments and simulation, although some peaks can be observed 

on experimental results, probably due to grains boundary diffusion in the polycrystalline materials used. Such an agreement 



with experimental results validates the numerical model based on Dirichlet boundary conditions used for pellets or very large 

single-crystals in which interdiffusion zone is smaller than the total sample size.   

 

3.3. Numerical study of homogenization within two microstructures 

The second part of the results obtained in this paper is the evolution and the achievement of the homogenization in two different 

microstructures. The realistic simulation of sintering can be extended to more than two single-crystals or grains; it is a question 

of analyzing the homogenization phenomenon upon a set of grains consisting initially of UO2 and PuO2. The aim of this part is 

firstly, to better qualify this phenomenon with a given criterion of homogeneity and secondly, to compare the time of 

homogenization in different types of microstructures. Because of small size of single-crystals and in order to solve correctly 

the numerical problem, the Neumann boundary conditions will be used. Neumann conditions result in the nullity of flux in the 

center of each ending single-crystals, which are symmetry planes. Two types of microstructures will be studied: a unimodal 

distribution microstructure and a non-unimodal distribution microstructure of UO2 and PuO2. 

 

 A unimodal distribution of UO2 and unimodal distribution of PuO2 

 

During the step of grinding (step prior to sintering), the mechanical properties playing a role for UO2 crystallites are different 

from those of PuO2. As a consequence, UO2 crystallites are generally larger in size than those of PuO2. The first microstructure 

under consideration that appears is a set of single-crystals with various sizes: 300nm for UO2 single-crystals and 100nm for 

PuO2. Each type of assembly consists of four single-crystals. The size of the single-crystals at the ends is half of that of the 

corresponding crystal in order to represent a periodic infinite microstructure. For this microstructure, the concentration profiles 

are shown in  

Figure 5: 

 

 

 

 

 

 

 a) During the first five minutes     b)During the first hour 

 

  c) During the first four hours      

 



Figure 5 : concentration profiles at different times 

 

After 5 minutes, the concentration, which was initially discontinuous at the grain boundary and constant in each grain, becomes 

smooth and remains periodic. This behavior highlights the effect of the diffusion phenomenon. A distribution of the 

concentration of each element upon the entire sample length is observed over time. After 1 hour, the profiles present a repartition 

of each chemical element, which can indicate that homogenization takes place. After 4 hours, a “steady state” seems to be 

reached. However, the time of the exact achievment of a satisfactory homogeneous mixing cannot be stated with certainty. To 

reach this goal, a homogeneity criterion will be used. 

The homogeneity criterion depends on the scale of observation. In the 1D-representation of this work, this scale, hk, can simply 

be specified with respect to the space step ∆x: hk = 2k × ∆x, with 0 ≤ k ≤ 
𝑙𝑛(𝑛) 

𝑙𝑛(2)
 – 1, n is the number of points of the spatial 

discretization. In the following, the scale of observation will be the scale given by the spatial discretization, i.e. h0 = ∆x. At this 

scale, the standard deviation , i.e. the deviation from the average of concentration, is proposed as criterion. It has the same 

unity as the concentration, and its meaning is easy to interpret. For a ∆x scale, the standard deviation is written as: 

𝜎(∆𝑥) = √
1

𝑛
∑ (𝑐𝑈(ⅈ) − 𝑐�̅�)2𝑛

𝑖=1  (10) 

The plot of  on a logarithm scale versus time on a linear scale leads to the graphs presented over the first four hours in Figure 

6: 

 

 

Figure 6 : Evolution of standard deviation  on a ∆x observation scale as a function of time 

 

The standard deviation decreases. This decrease is continuous and sigma becomes constant from 1.5 hour on, 

which corresponds to the smallest value of  (2.93*10-5mol/cm3). The plateau at this value of sigma starting at 1.5 hour 

can lead to conclude to a satisfactory homogeneity of the system after 4 hours of interdiffusion. The red squares on the 

curve stand for the values of sigma at each time corresponding to the different curve of concentration represented in 

Erreur ! Source du renvoi introuvable.. The plateau tends towards a horizontal asymptote close to 0 and not 0 due to 

the local truncation error of the numerical scheme [33]. This kind of error is frequently encountered in the numerical 



resolutions. If the spatial discretization step increases (2∆x for example), the value of   will increase. The curve of   

quickly becomes flat and the plateau corresponds to a  value (4.31*10-3mol/cm3) greater than the scaled value ∆x. The 

representations of sigma versus time for a discretization of 2∆x ( 

Figure 7) can be used to assert that there is no consistency error. It emerges from these analyses that for this specific size and 

unimodal distribution of UO2 as well as unimodal distribution of PuO2, a significant homogenization occurs and ends within 

the duration of sintering. 

 

Figure 7 : Evolution of standard deviation  on a 2∆x discretization scale as a function of time 

 

 A unimodal distribution of UO2 and PuO2 

Before dealing with the second microstructure, we analyze the time to achieve a satisfactory homogenization time in the case 

in which the two single-crystals have the same size. The size of PuO2 crystallite becomes 300nm like UO2 size. As previously, 

UO2 is presented in blue and PuO2 in green. The results are plotted in Figure 8: 

 

 

 

 

a) During the first hour       b) During the first four hours 

 

Figure 8: Concentration profiles at different times  

As previously, we note the same change except that they occur later on. Moreover, the repartition of concentration of each 

chemical element along the entire length takes place at the same value of concentration, which is a consequence of the initial 

choice of single-crystals relative sizes. The representations of standard deviation on a logarithm scale versus time on a linear 

scale during the first 4 hours is shown in Figure 9: 



 

Figure 9 : Evolution of standard deviation  on a ∆x observation scale as a function of time  

Homogeneity is achieved later than in the previous case. It comes from the fact that the mean crystallite size has increased 

whereas the diffusion coefficient remains the same. The value of sigma at the plateau is 2.35*10-5mol/cm3, i.e. smaller than its 

value for a unimodal distribution of UO2 and unimodal distribution of PuO2. One of the interesting remarks is that this 

significant homogenization occurs during the duration of the sintering process. Therefore, the increase of the size of a type of 

single-crystal (PuO2 in this case) delays the time to reach a significant homogenization. 

 

 A non-unimodal distribution of UO2 and PuO2   

The second microstructure consists of single-crystals with various sizes. The study will be divided into two parts: one consist 

of non-unimodal distribution with 25%Pu content and the other with 45% Pu content. Here, the Pu content stands for the 

proportion of PuO2 within the entire length. The aim is to compare the time to reach a significant homogenization within these 

two microstructures. 

That of 25% consists of six single-crystals of UO2 and three of PuO2. Two of UO2 measure 300nm in size and while the two 

others measure 600nm in size. The two single-crystals of UO2 with 600nm are represented at the ends. On the other hand, all 

PuO2 crystallites measure 100nm in size. The numerical method (finite difference scheme), the initial conditions (cU = 0.04mol/l 

and cPu = 0.042mol/l) and the boundary conditions (Neumann boundary conditions) are identical as in the previous section. 

The plots are presented on Figure 10: 

 

   a) During the first ten minutes    b) During the first four hours 

Figure 10 : Concentration profiles at different time  

In this case, achieving the homogenization seems to take longer than in previous cases due to the larger mean size. After four 

hours, the concentration profile is not yet constant as it was in the case of unimodal distribution. This representation can 

demonstrate a lot in the non-achievement of homogenization, but is not sufficient to analyze it quantitatively.  

On the other hand, the plot of concentration profile for the other of 45% Pu content is shown in Figure 11. Its consists of four 

single-crystals of UO2 (300nm, 250nm, 200nm and 100nm) and four of Puo2 (250nm, 200nm, 150nm and 100nm).  



 

 

a) During the first fifteen minutes    b) During the first four hours  

Figure 11 : Concentration profiles at different time 

Figure 10 and Figure 11 confirm the idea of the presence of heterogeneity after the first four hours in those two non-unimodal 

distribution. Figure 12 shows the standard deviation of these two non-unimodal microstructures in order to compare them 

quantitatively.  

 

Figure 12 : Standard deviation of non-unimodal distribution microstructure with 45%Pu and 25%Pu content 

 

The behavior of the concentration standard deviation curve of the two microstructures are identical. However, the 

microstructure with 25%Pu content decreases more quickly compared to that with a 45% Pu content. The value of standard 

deviation of microstructure with 25%Pu content is 7.68*10-4mol/cm3 whereas the other one is 2,66 * 10-3mol/cm3. Note that, at 

these two values, a significant homogenization is not yet achieved. Using the relation x = √𝐷𝑡  which relates the characteristic 

distance and interdiffusion time, the time necessary to achieve interdiffusion can be calculated. In this study, x =√𝜆𝑡, where 𝜆 

is the smallest value between 𝜆U and 𝜆Pu. Thus, for the size of 300nm, the time is: t = (300 × 10-7)2 / 5.68338 × 10-14
  ≈ 4.4 

hours. Microstructures showing several single-crystals with large size increases the achieving homogenization time. From these 

analyses, the influence of the grain size can be one of the cause of this later achievement of a significant homogeneity.  

 

 

4. Conclusion 

The paper has dealt with the interdiffusion phenomena observed during mixed oxides sintering. The multicomponent diffusion 

principle and the numerical method used to simulate U and Pu diffusion in (U,Pu)O2 were presented. We first noted a good 

agreement between our work using Dirichlet boundary conditions and the experimental work by Noyau with half-pellets used 

as interdiffusion couples, which allows us to validate the simulation of interdiffusion for large size samples. From a 

mathematical point of view, we have shown that taking into account the zero-flux Neumann boundary conditions is a good 

representation of the reality of interdiffusion (mass conservation) at the scale of crystallites. The numerical resolution was 

carried out using a finite difference scheme. Then, the second part of this study of homogenization within different types of 

microstructures allowed to highlight and use a homogeneity criterion which is the standard deviation of one of the diffusing 



species. The standard deviation of concentration was useful to quantify the achievement of the homogeneity within a 

microstructure. Finally, in this entire framework, only volume diffusion coefficients were used, since the simulations were 

carried out in one dimension. In a future 2D and 3D-work, we will also take into account grain-boundary diffusion, which is 

not negligible at lower temperatures and contributes strongly to diffusion phenomena. This part will constitute the next goals 

in the development of our reactive sintering model. This scheme of simulation of interdiffusion will be implemented together 

with the mechanical model into the sintering model (SALAMMBO) developed in our laboratory in order to able to simulate 

the reactive sintering of MOX fuel. 
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