

actiFind

Traces d'émetteurs α dans les réseaux d'eau publics

De la détection directe en phase liquide à l'identification

(16 avril 2012 - 15 avril 2015)

Mais aussi...M. POMORSKI, Ph. BERGONZO (CEA-LIST), Q.T. TRAN (Post-Doc CEA-LIST), N. MENAA (Canberra), K. AMGAROU (Canberra), O. EVRARD (Canberra), Ch. NEBEL (IAF), Ch. GIESE (IAF), G. LEWES-MALANDRAKIS (IAF), A. DIENER (Post Doc KIT), P. RABENECKER (ICT), Ch. WILHELM (KIT), U. HOEPPENER-KRAMAR (KIT), S. LUDE (KIT) ... + Quelques anonymes

Scénario 2

Incident ou accident dans l'industrie nucléaire

Scénario 3

10 ET 11 FÉVRIER 2016 UNIVERSITÉ DE TECHNOLOGIE DE TROYES

Contexte du projet

Nécessité d'une information rapide sur le terrain pour adapter une réponse sanitaire immédiate

Scénario 1

Radioactivité naturelle

Les partenaires CANBERRA Belgique Site industriel **CANBERRA** France Industriel Ceatech lint 🗾 Fraunhofer Radiochimie Détecteurs IAF 🗾 Fraunhofer Détecteurs Mesures Matériaux ICT Electrochimie *Radiochimie, mesures* Analyses

Objectifs cibles

- 1 Développement d'un capteur immergé réutilisable donc décontaminable
- 2 Diamant dopé au bore (BDD) à la surface d'un détecteur de rayonnement de qualité spectrométrique
- 3 Concentrer les actinides sur le BDD (fenêtre d'entrée du détecteur) et optimiser le rendement de cette étape
- 4 Obtention de la signature du radioélément directement en solution (spectrométrie α)
- 6 Identifier puis séparer les potentiels interférents à la technique
- 6 Montage et test d'un démonstrateur opérationnel

Croissance du BDD sur PIPS*

Croissance d'une couche (e = 100-300) nm de BDD par dépôt chimique en phase vapeur assisté par plasma Gaz: CH_4 , H_2 et triméthylbore (TMB) Température : 740°C puis 500°C Dopage au bore: > 10²¹ atomes/cm³

Détecteur PIPS brut

Détecteur PIPS avec BDD

Vue de dessus

Vue en coupe

*Passivated Implanted Planar Silicon

Electroprécipitation des actinides

1. Formation d'une couche basique sur la fenêtre du détecteur (BDD)

Soit par réduction électrochimique de l'eau $H_2O + H^+ + 2e \longrightarrow H_2 + OH^- \longleftarrow$

Soit par réduction électrochimique d'un anion présent dans l'eau (NO_3)

$$NO_3^- + H_2O + 2e \longrightarrow NO_2^- + 2 OH^- \longleftarrow$$

 $NO_3^- + 3H_2O + 5e \longrightarrow N_2 + 6 OH^- \longleftarrow$

 $NO_3^- + 7 H_2O + 8e \longrightarrow NH_4OH + 9 OH^- \longleftarrow$

2. Précipitation des actinides sur la fenêtre du détecteur (BDD)

Prototype de cellule @ctiFind

Quelques spectres d'actinides (1)

 FWHM* / Sign.amp.peak
 12

 (0.099/4.014) X 100
 8

 Résolution = 2.47 %
 9

 *full width at half maximum
 5

 ga a
 9

Activité dans l'électrolyte: 1.04 Bq Activité déposée: 0.40 Bq Rendement de déposition: 38.46 % Résolution : 4.2 %

Quelques spectres d'actinides (2)

Décontamination des capteurs

Procédé d'électro-décontamination

 $[Na_2SO_4] = 0.3 \text{ M} \text{ à } \text{ pH } 1.5$ BDD (+) et CE. Pt (-) et J = + 3 mA/cm² Durée: 15 minutes

Sensor	²⁴¹ Am deposé sur le détecteur (Bq)	²⁴¹ Am résiduel sur le détecteur (Bq)	Rendement de décontamination (%)
309610102	0,43	0,0004	99,91
	0,67	0,0009	99,87
	0,97	0,0006	99,94
	1,25	0,0010	99,91
	1,60	0,0010	99,93
		1	
114547	0,36	0,0006	99,85
	0,53	n.a	n.a
	0,80	0,0050	99,37
	1,37	0,0030	99,78
	1,56	0,0083	99,47

Ca²⁺, Mg²⁺, Fe²⁺, Fe³⁺

Spectres ²³⁹Pu, ²⁴¹Am et ²⁴⁴Cm obtenus après électroprécipitation

- (a) Spectre sans ajout de matrice minérale
- (b) Spectre **avec** matrice minérale à **faible** concentration *(moins de 15 mg/L de résidu sec)*
- (c) Spectre **avec** matrice minérale à **forte** concentration (*plus de 1.5 g/L de résidu sec*)

ANR

Présentation du démonstrateur

Etape	Procédure standard	Procédure ActiFind
Purification	24 h - 72 h	5 min - 5 h
Déposition	2 h	2 h
Comptage/spectrométrie	2 h - 24 h	2 h - 24 h avec une possibilité de mesure pendant le dépôt pour les situations d'urgence
Durée totale	28 h - 76 h	4 h - 31 h
Limite de détection	0,01 Bq/L	0,5 Bq/L

Conclusions et perspectives

- Dépôt de diamant sur des détecteurs à l'origine non prévus pour ça
- Réalisation d'un démonstrateur opérationnel

TRL2 (concept) en début de projet à TRL4 (validation en laboratoire) en fin de projet

Méthodes traditionnelles gardent cependant l'avantage en matière de L.D. mais en situation accidentelle **@ctiFind** prend l'avantage

Potentiels gains de parts de marché pour notre partenaire industriel

Impact scientifique

Publications dans revues avec comité de lecture: 3

Conférences: 4

Workshops: 5

Publications Franco-allemandes: 2

Merci pour votre attention

Quelques membres de l'équipe franco-allemande « ActiFind »

