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ABSTRACT

Swelling of metals under irradiation is commonly assessed by calculating the volume fraction of voids, which appear at temperatures where
vacancies are mobile. However, other clusters are formed, which may also have an impact on swelling. In particular, interstitial loops have
recently been considered to give a significant contribution to swelling owing to their large relaxation volume. In this work, we perform
calculations in nickel, based on interatomic potentials, to estimate the contributions of the various point defect clusters. We show that voids
produce much more swelling than loops and stacking fault tetrahedra, whose contribution is essentially due to the dislocation core field,
inducing a dilatation per unit length of around 1b2, where b is the Burgers vector. Evaluation of swelling should indeed be done by
summing formation volumes, not relaxation volumes, the latter being related to lattice parameter change as measured by x-ray diffraction.
We also discuss the case of “lattice swelling” occurring when vacancies are immobile. When self-interstitial atoms cluster as dislocation
loops, this swelling mode turns out to be nothing but “void” swelling in a regime where vacancy mobility is so low that vacancies do not
cluster appreciably, leaving only interstitial loops visible in transmission electron microscopy.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0094189

I. INTRODUCTION

Swelling of pure metals under irradiation is due to the forma-
tion of point defects and point defect clusters. In addition, in
metallic alloys, secondary phases can form, modifying the overall
density and changing the volume of the material. Above the tem-
perature corresponding to stage III of point defect recovery, at
which vacancies become mobile, voids can grow to large sizes by
absorption of vacancies. They are considered to have the largest
contribution to swelling. That is why swelling is generally estimated
from transmission electron microscopy (TEM) observations by
counting voids.1 However, other types of clusters are produced
under irradiation and “void swelling” may only be a part of the
total swelling. In some recent works, it has been argued that dislo-
cation loops produce significant swelling2,3 due to their large relax-
ation volume,4 and that they should be considered to estimate
swelling, instead of voids.5 Using the example of pure nickel, we
determine the contribution of the different point defect clusters
(voids, interstitial Frank loops, and stacking fault tetrahedra) to
macroscopic swelling. Formulas are given to evaluate the macro-
scopic swelling of a microstructure containing point defect clusters.

Finally, the evaluation of swelling in metallic alloys is briefly
discussed.

II. METHODS

The change in volume upon introduction of a defect in a
finite crystal is the relaxation volume V r. For cubic crystals, it is
related to the trace of the dipole tensor P of this defect through6

V r ¼ TrP
3K

, (1)

where K ¼ (C11 þ 2C12)=3 is the bulk modulus and Cij are the
elastic constants. The elastic dipole is conveniently calculated from
the average residual stress in an unstrained simulation box of
volume V , where the defect is introduced7,8

σ ij ¼ � 1
V
Pij: (2)

Since experimentally the number of atoms remains constant when
a defect is formed (except under ion irradiations where atoms are
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injected in the material), the formation of clusters made of self-
interstitial atoms (SIAs), such as dislocation loops, requires the
removal of atoms somewhere else in the material. Likewise, the for-
mation of vacancy clusters is only possible if atoms which are
removed are placed at another location in the material. It is conve-
nient to remove or to put these atoms at the surface of the sample
where they occupy an atomic volume Ω, so the formation volume
of a defect is simply related to the relaxation volume through

V f ¼ V r � nΩ for a cluster containing n SIAs, (3)

V f ¼ V r þ nΩ for a cluster containing n vacancies: (4)

This relation is quite general and can also be applied to non-cubic
materials.

In the following, we calculate the relaxation and formation
volumes of defects in nickel using the interatomic potential of
Angelo et al.9 The potential of Foiles et al.10 is also used to simulate
SIA Frank loops and investigate the effect of potential. Energy min-
imization is performed with the conjugate gradient algorithm as
implemented in the LAMMPS code.11 Initial configurations of the
various defects considered are generated as follows. Voids are
created by simply removing atoms within a spherical domain. The
radius of a spherical void containing n vacancies is such that
4πr3=3 ¼ nΩ, where Ω ¼ a3=4 and a is the lattice parameter
(a ¼ 3:52 Å). Interstitial Frank loops are generated by adding a
disk of atoms in a {111} plane, leading to an extrinsic stacking fault
surrounded by a circular Frank partial dislocation. To accelerate
convergence, we displace the atoms of the surrounding matrix
according to the displacement field generated by a prismatic loop
in an elastically isotropic material.12 The relation between the
radius r and the number of SIAs in the loop is πr2b ¼ nΩ, with b
being the magnitude of the Burgers vector (b ¼ a=

ffiffiffi
3

p
). Only

perfect stacking fault tetrahedra (SFTs) are considered in this study.
The starting configuration consists of a triangular vacancy loop in a
{111} plane. The Frank partial dislocations surrounding the intrin-
sic stacking fault dissociate into 1=6[110] stair-rod dislocations and
1=6[112] Shockley partial dislocations. The latter “propagate”
during energy minimization and interact with each other, leaving
only stair-rod dislocations surrounding stacking faults on each side
of a perfect tetrahedron (Silcox–Hirsch mechanism13). The radius
of the SFT is defined as the radius of its circumscribed sphere,
related to the area of the initial triangular loop S (a face of the SFT)
through S ¼ 2r2=

ffiffiffi
3

p
. Using the same kind of formula as for the

interstitial loop Sb ¼ nΩ leads to the relation between the radius
and the number of vacancies in the SFT. For all simulations, the
convergence of dipole tensors is checked by varying the size of the
box. The retained values of dipole tensors are the ones calculated
in a box of size at least equal to ten times the radius of defects.

III. RELAXATION AND FORMATION VOLUMES OF
POINT DEFECT CLUSTERS IN NICKEL

Relaxation and formation volumes for the different point
defect clusters considered here are shown in Figs. 1 and 2, respec-
tively. The relaxation volume of voids is very small,5,14 while the
relaxation volume of SIA loops essentially corresponds to nΩ,5,15,16

as predicted by linear elasticity.17 Small differences appear when
the interatomic potential is changed, as can be seen with the results
obtained with Foiles’s potential. Relaxation volumes of vacancy
loops are expected to be very similar but of opposite sign. Results
are not reported here since with the potential used, Frank partial
dislocations tend to dissociate in this case, which may not be

FIG. 2. Normalized formation volumes of voids, Frank dislocation loops, and
SFTs in nickel, computed with Angelo’s interatomic potential. The formation
volume of loops is also given for Foiles’ interatomic potential. Index n represents
the number of vacancies (for voids and SFTs) or SIAs (for loops) in clusters,
while rX represents the radius of cluster type X.

FIG. 1. Normalized relaxation volumes of voids, Frank dislocation loops, and
SFTs in nickel, computed with Angelo’s interatomic potential. The relaxation
volume of loops is also given for Foiles’s interatomic potential. Index n repre-
sents the number of vacancies (for voids and SFTs) or SIAs (for loops) in clus-
ters, while rX represents the radius of cluster type X.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 131, 225103 (2022); doi: 10.1063/5.0094189 131, 225103-2

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/jap


representative of the real behavior of vacancy loops. Finally, as all
vacancy clusters, SFTs exhibit negative relaxation volumes, which
in magnitude are slightly smaller than SIA loops.

Formation volumes are obtained from relaxation volumes
using Eqs. (3) and (4). As shown in Fig. 2, the formation volume of
voids is very close to the total volume of atoms removed from the
matrix (V f � nΩ), which are now placed at other sinks (surfaces,
dislocations, etc.). This is due to the small relaxation of the void
surface.

On the contrary, SIA loops generate only a small increase in
the volume of the material, since the increase in volume due to the
loop itself (relaxation volume) is nearly compensated by a decrease
in volume resulting from the removal of atoms somewhere else.
Loop swelling is due to two elements: the stacking fault, corre-
sponding to a local hexagonal close packed stacking (..ABCAB..
! ..ABACAB..), and the dislocation.18 The stacking fault is
expected to induce a variation of volume equal to πr2δl, where δl is
the expansion per unit area of stacking fault. The contribution of
the dislocation is 2πrδA, where δA is the dilatation per unit length
of dislocation. Since πr2b ¼ nΩ, a convenient fit of the formation
volume in this case is

V f

Ω
¼ a0 þ a1n

1=2 þ a2n, (5)

where the second term corresponds to the dislocation line and the
third term to the stacking fault. A better fit for small sizes, down to
the minimum value r ¼ 1 nm (n ¼ 59) considered here, was
obtained by introducing an additional constant term a0. We obtain
for Angelo’s potential a0 ¼ �13:22, a1 ¼ 3:54, and a2 ¼ 0:049 and
for Foiles’s potential a0 ¼ �7:46, a1 ¼ 3:16, and a2 ¼ 0:005. Since
we are mostly interested in clusters which are visible in TEM, we
did not explore the validity of these fits for smaller SIA clusters.
Equation (5) is not expected to be valid for single SIAs and clusters
containing only a few SIAs, which cannot be considered as disloca-
tion loops.

From the values of a1, we obtain δA ¼ 1:14b2 and δA
¼ 1:01b2 for Angelo’s and Foiles’s potentials, respectively
(b ¼ 2:03 Å). These values are in line with early estimates given by
nonlinear elasticity models19 (δA � 2b2 in nickel). More quantita-
tive results are provided by interatomic potential calculations of the
core field contribution.20–24 The typical value given by such calcu-
lations, usually performed in an infinite system using flexible boun-
dary conditions,20 is δA � 0:5b2. In the present study, the
calculation of relaxation and formation volumes from dipole
tensors includes the contribution of image fields due to free surface
boundary conditions.25 Only a few calculations were performed
with flexible boundary conditions and surface relaxation.21 They
typically lead to δA � 1b2, in excellent agreement with the present
results. It should be kept in mind, however, that interatomic poten-
tials may not correctly capture core effects26,27 so that these results
should be only viewed as estimates.

The expansion per unit area of stacking fault deduced from
the fit is δl ¼ 0:10 Å for Angelo’s potential and δl ¼ 0:01 Å for
Foiles’s potential. An independent calculation of the expansion due
to an infinite extrinsic stacking fault with these two potentials leads
to δl ¼ 0:107 Å and δl ¼ �0:015 Å, respectively, in reasonable

agreement with values deduced from the fits. We also note that the
trends are consistent with the higher value of c lattice parameter in
the hexagonal phase for Angelo’s potential (c ¼ 4:18 Å) than for
Foiles’s potential (c ¼ 4:06 Å).

The formation volume of SFTs can also be fitted with Eq. (5),
leading to a0 ¼ �2:40, a1 ¼ 1:46, and a2 ¼ 0:17. The minimum
size considered for SFTs is r ¼ 1:4 nm (n ¼ 45), so the fit cannot
be guaranteed to be valid for smaller clusters. For an SFT of edge
length d, the contribution of the dislocation to the formation
volume is 6dδA. Since d ¼ an1=2, we have δA ¼ 1:09b2

(b ¼ 0:83 Å), which is consistent with values obtained for Frank
loops, although the magnitudes of Burgers vectors are very differ-
ent. The intrinsic stacking fault (..ABCABC.. ! ..ABkABC..) pro-
duces an expansion of 4Sδl ¼ ffiffiffi

3
p

d2δl so that δl ¼ 0:09 Å. This is
in agreement with the expansion per unit area calculated for an
infinite intrinsic stacking fault (δl ¼ 0:107 Å), which is the same as
for an extrinsic stacking fault. The rather large contribution of the
stacking fault with this potential leads to an overall formation
volume larger than the one of Frank loops and to a nearly linear
variation with n over the range investigated. This should not be
considered as a general result, though. If δl is small, as with Foiles’s
potential, the contribution of the dislocation will become domi-
nant. In this case, a Frank loop will have a larger formation
volume, as can be checked by comparing values of parameter a1.

IV. DISCUSSION

As mentioned in Sec. II, one should consider formation
volumes to evaluate swelling, since the number of atoms is kept
constant during the formation process of a point defect cluster. It is
common to say that atoms are put on the surface (for the creation
of a vacancy defect) or removed from it (for an SIA defect),28

although it does not necessarily represent the physical process by
which the defect is created. In the bulk, a more realistic picture is
to move atoms to or from dislocation jogs, which also corresponds
to the creation or removal of lattice sites. Under irradiation, if the
temperature is low enough to ignore generation of point defects at
sinks (dislocations, surfaces, etc.), the main creation mechanism of
point defects is by Frenkel pair formation. Although sinks do not
play any role in this case, summing formation volumes of defects
leads to the correct estimation of swelling (Fig. 3).

The relative contributions of the different point defect clusters
to swelling depend on their size and concentration. The very large
formation volume of voids make them the overwhelming contribu-
tor to swelling at the swelling peak temperature of metals. It is
interesting to investigate the less obvious case of lower tempera-
tures. This kind of conditions typically corresponds to irradiations
of austenitic steels in pressurized water reactors (PWRs). Results
from microstructural observations are reviewed in Ref. 29, and
typical values are given in Table I. The loop properties are roughly
independent of temperature between 260 and 380 �C, at least in the
quasi-steady state arising after a few dpa. This is also the case for
the dislocation network,30 but not for voids, which are very sensi-
tive to temperature. That is why two sets of values are reported.
Swelling is estimated the following way. For loops, given their small
size, the stacking fault is not expected to give a significant contribu-
tion, so only volume expansion due to the dislocation is taken into
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account,

ΔV
V

����
loops

¼ cl2πrlδA ¼ cl2πrlb
2, (6)

where rl and cl are the loop average radius and concentration,
respectively. Likewise, the contribution of a density ρd of network
dislocations, with Burgers vector 1=2[110], is

ΔV
V

����
dislocations

¼ ρdb
2: (7)

They typically induce slightly more swelling per unit length than
loops, owing to their larger Burgers vector. Finally, void swelling is
estimated through

ΔV
V

����
voids

¼ 4
3
πr3vcv, (8)

where rv is the average radius of voids and cv is their concentration.
From Table I, one sees that at 300 �C, swelling produced by the dif-
ferent defects in the microstructure is of the same order of magni-
tude, so it is important to take all of them into account. At
T � 350 �C, the contribution of voids is one order of magnitude
larger than the other defects, so swelling may be estimated by con-
sidering only voids. We note that values of swelling reported here
are very small. The contribution of voids to swelling increases with
temperature so that at temperatures where swelling is a potential
technological problem, it is safe to calculate swelling values with
voids.

In some works, relaxation volumes instead of formation
volumes were used to estimate swelling.2,31–33 They may indeed be
used in a very particular case. Let us assume for simplicity that
only SIA loops and voids are present in a material of volume V ,
and let cX,n be the concentration of a loop (X ¼ l) or a void
(X ¼ v) containing n self-defects, of relaxation and formation
volumes V r

X,n and V f
X,n respectively. Swelling can be written as34

ΔV
V

¼
X

n

cl,nV
f
l,n þ

X

n

cv,nV
f
v,n: (9)

Using Eqs. (3) and (4), it also reads

ΔV
V

¼
X

n

cl,nV
r
l,n þ

X

n

cv,nV
r
v,n þ

X

n

(cv,n � cl,n)nΩ: (10)

TABLE I. Contribution to swelling of various elements of the microstructure in PWR
conditions. Experimental data are extracted from the review in Ref. 29. Between 260
and 380 °C, the loop and dislocation microstructures are roughly independent of
temperature, whereas the void microstructure is very sensitive to it. Therefore, two
sets of values, at T = 300 °C and T = 350 °C, are given for voids. The contribution
of stacking fault is neglected for dislocation loops. The volume expansion per unit
length of dislocation is assumed to be 1 b2. The relaxation of void surface is not
taken into account. The lattice parameter is a = 3.6 Å.

Density Radius (nm) Swelling (%)

Loops 1022 m−3 6 2 × 10−3

Dislocations 1015 m−2 … 6 × 10−3

Voids T∼ 300 °C 1023 m−3 0.5 5 × 10−3

T∼ 350 °C 1021 m−3 5 5 × 10−2

FIG. 3. Estimation of swelling of irradiation microstructures, using artificial steps
to highlight the contribution of each defect type. Swelling due to dislocation core
effects, stacking faults and relaxation of void surfaces is neglected. The average
position of the surface, which is related to macroscopic swelling, is shown with
dashed lines. (a) Pristine material, before irradiation. (b) Material with SIA loops;
to first order, the relaxation volume of loops is equal to the volume removed
from the surface (or dislocations for bulk materials), so loops do not contribute
appreciably to swelling. (c) Material with voids: swelling occurs due to the crea-
tion of atomic sites. In this very specific case, where equal numbers of vacan-
cies and SIAs are present in clusters, swelling may also be evaluated by
summing relaxation volumes. (d) Pristine material, containing some network dis-
locations. (e) Material after climb of dislocations due to SIAs, which induces no
volume change and (f ) material with voids. In this case, often seen experimen-
tally, where a defect imbalance exists in clusters, relaxation volumes cannot be
used to estimate swelling.
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The last term of this equation is the difference between the total
atomic fraction of vacancies and the total atomic fraction of SIAs.
If they are equal, the last term is zero, so relaxation volumes and
formation volumes can be used indifferently to calculate swelling.
This is the case shown in Figs. 3(a)–3(c). It arises, for example, in
low temperature irradiations, where defect migration is not suffi-
ciently activated to enable defect elimination at sinks. Swelling pro-
duced by displacement cascades generated in molecular dynamics
simulations, where no sinks are present, can also be estimated by
summing relaxation volumes.5

In the general case, relaxation volumes are not related to mac-
roscopic swelling but to lattice parameter change Δa as measured
by x-ray diffraction.35 For cubic crystals, if defects are uniformly
distributed,35,36 we have28

3
Δa
a

¼
X

n

cl,nV
r
l,n þ

X

n

cv,nV
r
v,n, (11)

so the change in macroscopic length ΔL, related to swelling, can be
written as

3
ΔL
L

¼
X

n

cl,nV
f
l,n þ

X

n

cv,nV
f
v,n (12)

¼ 3
Δa
a

þ
X

n

(cv,n � cl,n)nΩ: (13)

If the total atomic fraction of vacancies and SIAs are equal, the last
term of Eq. (13) is zero and the change in length is equal to the
change in lattice parameter. That is why swelling at low tempera-
ture or very low dose [when last term of Eq. (10) or Eq. (13) is neg-
ligible] is sometimes referred to as “lattice parameter swelling” or
simply “lattice swelling.”31,37–39 This naming suggests that this
swelling mode is different from void swelling observed at higher
temperatures or higher doses, because swelling would be induced
by lattice parameter change.40 If this were true, a microstructure
containing only interstitial loops would give rise to macroscopic
swelling, since loops have large positive relaxation volumes and
thus induce significant lattice parameter change.41 However, their
relaxation volume is almost compensated by the removal of atoms
from some sinks, so swelling due to interstitial loops is nearly zero
[Fig. 3(b)]. In other words, in a system without vacancies, the first
and third terms of Eq. (10), or equivalently the first and second
terms of Eq. (13), approximately balance each other out. So the
specific case where the change in length is equal to the change in
lattice parameter requires vacancies or vacancy clusters, with the
same total amount of vacancies and interstitials in the system.
Vacancies and voids have low relaxation volumes but contribute to
swelling due to the necessary creation of atomic sites when they are
generated, as evidenced in differential dilatometry measurements42

[cv,nnΩ term in Eq. (13)]. The reasoning is still valid if some vacan-
cies cluster as loops or SFTs. These clusters do not contribute
appreciably to swelling, so the overall swelling is lower than if all
vacancies cluster as voids. They also induce a decrease in lattice
parameter due to their negative relaxation volume, so the equality
between the change in length and change in lattice parameter still

holds. Therefore, it appears that “lattice swelling” in pure metals is
nothing but vacancy and void swelling in a regime where vacancy
clusters are so small that they are invisible in TEM, while SIA loops
are in general visible.39 If the temperature is so low that SIAs do
not cluster appreciably, SIAs and small SIA clusters also contribute
to swelling, since V r

n=nΩ is larger than one (see Fig. 5 in Ref. 15)
and so V f

n . 0. For example, in nickel, the relaxation volumes of
SIAs and vacancies are 1:8 and �0:2Ω, respectively,6 so in a sample
containing an equal concentration of vacancies and SIAs, the con-
tribution of these two species to swelling is roughly the same
(V f ¼ 0:8Ω for both species). To conclude, to avoid any confusion
between the strain created by defects and macroscopic swelling, we
think a good practice is to use the term “lattice swelling” only when
swelling does not imply the creation of new atomic sites through
vacancies, such as swelling due to atomic disordering.43 Otherwise,
as there is no general link between strain and macroscopic swelling,
“lattice strain” is more appropriate to refer to change in lattice
parameter.44

Let us consider the case where the amounts of SIAs and
vacancies in clusters are different. Under irradiation, such a defect
imbalance arises if point defects migrate to sinks, such as grain
boundaries, surfaces and dislocations, as shown in Figs. 3(d)
and 3(f ). Figure 3(f ) represents the system after dislocation climb
due to a preferential absorption of SIAs and agglomeration of the
remaining vacancies as voids. It is clear from the thought experi-
ment (d) to (f ) that dislocation climb alone does not produce
volume change; it is because some sites are left vacant in the matrix
that additional atomic planes are created and that the material
swells. Incidentally, we note that dislocations are not necessary to
explain swelling; SIAs may be absorbed by other sinks, such as
grain boundaries and surfaces. When point defects reach sinks, one
typically observes a decoupling between the change in lattice
parameter, given by relaxation volumes of defects, and the change
in length, given by formation volumes.45 In systems without sinks,
this decoupling can also occur by coalescence of loops, which form
a dislocation network, as seen in simulations of Frenkel pair accu-
mulation.46 The transformation of loops into a dislocation network
does not modify swelling, but leads to a decrease in lattice parame-
ter change. The evolution of swelling has been explained by the fact
that coalescence of loops create new atomic planes, which “pre-
serves the increase in volume due to interstitial defects.”46 If we
now admit that swelling is due to vacancies and that dislocation
loops have nearly zero formation volume, it appears quite natural
that swelling is unaffected by transformation of loops into a dislo-
cation network. The lattice parameter decreases because SIA loops,
which have large relaxation volume, disappear from the system.
The change in lattice parameter can even become negative, which
is ascribed to the negative relaxation volume of vacancies and
vacancy clusters (especially, vacancy loops and SFTs).45,46

Although in general swelling is only correctly described by
formation volumes of defects, there is one case where relaxation
volumes may be useful from an experimental point of view. At low
dose, vacancy clusters are hardly resolvable with TEM, so an esti-
mation of swelling by formation volumes of voids is difficult. Due
to the larger mobility of SIAs and the two-dimensional character of
their clustering process, SIA loops are larger and more easily
observed. If one assumes that the sinks do not absorb or generate
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point defects, swelling can advantageously be evaluated by
summing the relaxation volume of loops.5 As soon as the numbers
of SIAs and vacancies in clusters are not the same, using relaxation
volumes would in addition require to track the loss of defects at
sinks [last term of Eq. (10)], which is unfeasible experimentally.
The more physical and general method based on the formation
volumes of defects, especially voids, should be preferred1,47–51 (note
that in some sources, formation volumes are used but they are
named relaxation volumes47,48).

So far, we have only considered point defect clusters. In metal-
lic alloys, precipitates can appear and lead to either swelling or den-
sification,52,53 following complex precipitation sequences, where
point defects may play a crucial role.54 In addition, point defect
cluster microstructures are known to be altered if secondary phases
precipitate. The approach consisting in summing formation
volumes remains valid in alloys, provided formation volumes of
precipitates are taken into account and only precipitates which
appear under irradiation are considered. For a given precipitate, the
formation volume is given by (Fig. 4)

V f
p ¼ V r

p þ
X

α

nαV
f
α �

X

α0
nα0V

f
α0 , (14)

where nα is the number of species α removed to create the void
containing the precipitate, nα0 is the number of species α0 inserted
as a secondary phase inside the void, and V r

p the relaxation volume

of the precipitate. The formation volume is

V f
α ¼ V r

α þ Ω for a substitutional atom, (15)

V f
α ¼ V r

α for an interstitial atom: (16)

For example, precipitates which lead to densification, such as
carbides in austenitic steels, will exhibit a negative formation
volume and will have the opposite behaviour from voids. For suffi-
ciently large precipitates, V r

p is expected to be negligible compared
to the second and third terms in Eq. (14). These two terms reflect
the difference in density between the matrix and the secondary
phase. For a phase denser than the matrix, one typically adds more
substitutional species in the precipitate region than one removes
from it, so the overall contribution of the two terms is negative and
one expects densification of the material.54 The reverse trend, i.e.,
swelling, is expected for the precipitation of a less dense phase.
However, if a large atomic fraction of interstitial atoms, such as
carbon, must be taken from the matrix to form the secondary
phase, the last term of Eq. (14) will give a significant contribution
to the formation volume, which can even become negative. This is
precisely what occurs with carbides in austenitic steels: although
this phase is less dense than the austenite, its formation results in
densification due to the contraction of the matrix as carbon con-
centration decreases.55 Therefore, within the present simple model,
the negative formation volume of carbides would be mostly due to
the positive relaxation volume of carbon atoms in the matrix. This
case is particularly important, since the volume change associated
with carbides can be comparable to the one associated with voids
at low doses. So, austenitic steels containing voids and carbides can
either swell or densify, depending on the relative volume fractions
of voids and carbides, and to obtain the precise overall volume
change, it is necessary to sum the formation volumes of both voids
and precipitates.

In this approach, we consider that the composition of the
matrix remains roughly constant during the precipitation process.
Actually variations in chemical composition of the matrix can
affect its density. This has been shown, for example, in Fe–Ni Invar
alloys56,57 and in Fe–Cr–Mn alloys.58 If the density of each phase is
known as a function of its composition, a simple rule of mixture
can also be used advantageously instead of the previous model.55

V. CONCLUSIONS

Using interatomic potentials in nickel, we have calculated the
relaxation and formation volume of voids, dislocation loops, and
SFTs and discussed the estimation of swelling due to these defects.
The following conclusions are drawn:

† Swelling should be estimated by summing the formation
volumes of all defects in the microstructure, not relaxation
volumes. Relaxation volumes are related to lattice parameter
change and only give a good estimation of swelling if the
number of SIAs and vacancies in clusters are the same, which is
rarely seen in practice. In particular, as soon as point defects are
lost to sinks, using formation volumes is the only relevant
method to estimate swelling.

FIG. 4. Calculation of the formation volume of a precipitate. (a) Pristine mate-
rial, without precipitate. Interstitial atoms are represented by black dots.
(b) Removal of the atoms in the precipitate region, thus creating a void, whose
surface is not relaxed. (c) Insertion of atoms in the void as a new phase,
without relaxation. (d) Relaxation of the system.
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† Formation volume of voids is far larger than the formation volume
of SIA loops, vacancy loops, and SFTs. It is essentially given by
nΩ, where n is the number of vacancies in the void and Ω the
atomic volume. The formation volume of SIA or vacancy loops
and SFTs is due to the dislocations, which induce a dilatation per
unit length of around 1b2, whatever the dislocation type (Frank or
stair-rod dislocations for loops and SFTs, respectively). The stack-
ing fault can also contribute for large clusters. If a precise evalua-
tion of swelling by dislocation loops and SFTs is required, the
volume changes due to dislocations and stacking faults can be eval-
uated separately through dedicated first principles calculations.26

† Except for low dose irradiation conditions, the contribution of
vacancy clusters is, therefore, much more important than the
contribution of dislocation loops and SFTs. Even at low tempera-
ture, in the so-called “lattice swelling” regime, we have shown
that swelling is not due to lattice parameter change mostly
induced by dislocation loops but to the creation of new atomic
sites, which is only possible because mono-vacancies or small
voids are present in the matrix.

† In metallic alloys, although swelling mechanisms also involve
precipitation, we have shown that in many cases, the same
concept of formation volume can be applied.
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