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in graphics processing units (GPUs) or 
central processing units (CPU) remains 
extremely challenging. On the contrary, 
the brain promises very high cognitive 
capacity while preserving exceptional 
energy efficiency. One of the main differ-
ences between GPUs or CPUs and the 
brain is memory management. On the 
one hand, a physical separation exists in 
GPUs and CPUs between arithmetic and 
storage units, which is at the origin of 
enormous energy consumption associated 
with data transfer between both units.[1] 
This trend is particularly exacerbated for 
Artificial Neural Networks (ANNs), which 
require a very large amount of memory 
access. On the other hand, the biological 
neurons and synapses are close to each 
other in the brain. Accordingly, developing 
non-von-Neumann architectures to per-
form in or near-memory computing with 
non-volatile memory (NVM) technologies 
is one of the most promising strategies to 
improve the energetic efficiency of artifi-
cial intelligence.[2] Another relevant dif-

ference between artificial processors and the brain is the way 
information is coded. On the one hand, GPUs and CPUs rely 
on high-precision floating-point outputs. On the other hand, 
binarized sparse and asynchronous spikes are used to com-
municate in the brain. In particular, a neuron receives through 
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1. Introduction

Deep learning accelerators have attained impressive perfor-
mance on various cognitive tasks, such as image or audio 
recognition. However, its enormous electrical consumption 
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a synapse an input spike, which flows through the dendrite 
until reaching the soma. This input spike is integrated into 
the soma of the neuron and contributes to increasing its mem-
brane potential. When the neuron membrane potential reaches 
a certain threshold, it generates a spike that is transmitted to 
other neurons (post-neurons) through the axon. As a conse-
quence, the neuron returns to its resting state (Figure 1A). The 
emerging bio-inspired spiking neural networks (SNNs) provide 
the opportunity to emulate these characteristics in artificial sys-
tems. Indeed, while classical ANNs rely on layer-by-layer mul-
tiply-and-accumulate operations between input activations and 
weights, SNNs computation is mostly based on the accumula-
tion of spikes weighted by synaptic connections.

Therefore, only Accumulate operations are required in SNNs. 
In addition, SNNs can be processed in an event-based manner 
to benefit from their natural sparsity. Indeed, synaptic weight 
readings are triggered by the spikes received by a neuron. One 

should notice that the synaptic weights are not read in the 
absence of input spikes. Therefore, a low spiking activity on the 
SNN results in very low energy consumption compared to an 
ANN where all synaptic weights are read at each inference.

Various NVM devices have been considered for NN syn-
aptic weight hardware implementation in crossbar arrays.[3–8] 
Nevertheless, at the moment, there is no ideal candidate due 
to NVM technologies imperfection, which can strongly limit 
the overall accelerator inference accuracy.[9] Accordingly, con-
siderable efforts have been invested in the precedent years 
to develop innovative techniques to deal with memory non-
idealities.[10] Among others, resistive random-access memory 
(RRAM) devices are one of the most promising technologies 
proposed for NN hardware implementation.[10–12] However, the 
RRAM intrinsic operating variability remains challenging. In 
this context, innovative bit-error correcting codes and adaptive 
programming schemes have been developed.[13,14] In addition, 
innovative and aggressive programming patterns have been 
considered to reduce device variability. Nevertheless, an impor-
tant degradation of the device operating endurance capabilities 
appears as a counter-part.[15,16]

In this work, we focus on low-precision Binarized Spiking 
Neural Networks (BSNNs), which benefit from very high energy 
efficiency while promising satisfactory tolerance to RRAM non-
idealities.[17] In this type of network, the synaptic weights are 
implemented by binarized values (−1 and +1) after the training 
process. Moreover, the standard 1T1R (1 Transistor 1 Resistor) 
architectures used to implement synaptic weights with memory 
devices are replaced by a denser 1S1R (1 Selector 1 Resistor) 
stack, where the memory (1R) is co-integrated in series with a 
back-end selector (1S). About one order of magnitude improve-
ment in terms of memory density can be achieved with 1S1R 
with respect to conventional 1T1R architectures.[18] However, 
RRAM co-integration with a back-end selector implies several 
challenges. First, the process integration complexity increases. 
Second, achieving high memory capacity while preserving 
reduced electrical consumption becomes challenging due to 
a trade-off between programming voltages and leakage cur-
rents. Third, to achieve high precision on device resistive states 
implies a degradation of its programming endurance capabili-
ties due to a trade-off between memory window and endurance 
capabilities. To deal with those challenges, a specific design of 
both memory stack and applied programming conditions for 
the application of interest is required.[19–22]

In this context, the co-integration of an HfO2-based OxRAM 
device with an ovonic threshold switch (OTS) selector on 
single memristor crossbar arrays to implement the BSNN syn-
aptic weights (Figure  1B)) is proposed. OTS co-integration with 
HfO2-based OxRAM has been satisfactorily demonstrated in the 
previous years.[18,20–23] Through stack design and applied pro-
gramming conditions adaptation, the 1S1R dynamic switching 
capabilities have been elucidated, the 1S1R binarized window 
margin optimized, and its programming endurance capabili-
ties enlarged.[22] In particular, the 1S1R pertinence for standard 
low-precision synaptic weight encoding during network training 
on-chip has been demonstrated.[18] However, beyond 1S1R-based 
crossbar arrays pertinence for low-precision neural network 
training, it remains essential to elucidate the 1S1R ability to per-
form reliable high-frequency inference on-chip. Inference in 
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Figure 1.  A) Biological neuron dynamics. An input spike flows through 
the neuronal dendrite until it is integrated into the soma and contributes 
to increase the membrane potential. When the neuron membrane poten-
tial reaches a certain threshold, an output spike is generated and trans-
mitted to other neurons. Then, the neuron returns to its resting state. 
B) A 1S1R-based single memristor crossbar array is proposed in this work 
to implement the binarized spiking neural network synaptic weights.
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SNNs requires a huge amount of repeated and frequent reading 
operation of 1S1R devices to sense the network synaptic weights. 
While reading is expected to be nondestructive, it can induce 
erratic switching of the selector and memory devices and affect 
network performance. This reliability issue has never been 
addressed in the literature, and the link between device physics 
and circuit accuracy has not been studied and clarified so far.

In this work, we first present an experimental statistical study 
on OTS switching probability when repeated sub-threshold volt-
ages are applied and propose to reduce its variability through 
device lifetime by optimizing the applied voltage on the devices. 
To gain insight into the OTS switching operation microscopic 
mechanisms, a Monte Carlo statistical model based on Bernoulli’s 
conduction point is implemented. The overall 1S1R reading reli-
ability being directly linked to the OTS switching variability, and 
general guidelines on 1S1R reading conditions (applied voltages, 
reading frequency) optimization for low reading bit error rate 
(BER) are provided based on this experimental and theoretical sta-
tistical study. To evaluate the 1S1R pertinence for BSNN inference 
hardware implementation, training simulations are performed on 
one hidden layer fully connected BSNN for an image classification 
task on the MNIST dataset. By introducing errors in the synaptic 
weights during training, an optimized BSNN tolerance to synaptic 
errors for the devices of interest is demonstrated. Based on this 
analysis, guidelines for an optimized system footprint, a reduced 
electrical consumption, maximized inference frequency, and max-
imized BSNN accuracy for the MNIST task are provided.

2. Technological Details

OxRAM is co-integrated with an OTS back-end selector in 
a 4kb  1S1R array configuration, where a transistor is used to 
limit the current on the devices. The OTS is composed of a 
10  nm-thick Ge-Se-Sb-N (GSSN) alloy, sandwiched between 
two Carbon electrodes, and is used as a selector device. Then, 
a 10 nm-thick HfO2-based OxRAM deposited by Atomic Layer 
Deposition (ALD) is used as the memory device. This HfO2 is 
deposited on a TiN inter-layer that separates the selector and 
the memory elements. A 10  nm  Physical Vapor Deposition 
(PVD) Ti top layer acts as an oxygen scavenging layer for the 
memory. A TiN additional layer completes the top electrode. 
After the etching process, the memory dot is capped with a SiN 
layer for passivation. Afterward, the top contact and top metal 
line end the overall integration process. The 1S1R memory 
array is thus integrated into the Back-End-Of-Line (BEOL) of 
a 130  nm  CMOS process between the fourth and fifth metal 
layers. Figure 2A provides an SEM image of the 1S1R devices 
integrated into the Back-End-Of-Line (BEOL), as well as a TEM 
cross-section for the stack of interest, which demonstrates a 
consistent co-integration of all the deposited layers.

3. Results and Discussion

3.1. 1S1R Programming and Reading Operation

Figure 2B provides typical 1S1R current-voltage characteristics 
after the device firing operation, which is required for both 

OTS and OxRAM initialization. The 1S1R switching voltages 
are strongly impacted by the resistive state of the OxRAM. 
If the OxRAM is in the Low Resistive State (LRS) (resp. 
High Resistive State (HRS)), Vth-LRS (resp. Vth-HRS  >  Vth-LRS) 
is required for the 1S1R switching. The 1S1R read window 
margin is defined by (Vth-HRS – Vth-LRS). Figure  2C pro-
vides experimental programming endurance characteristics 
for the stack of interest for eight 1S1R devices. No error is 
observed until 104 programming cycles, demonstrating the 
ability to encode binarized weights on the memory. Since 
only inference is targeted on chip, weights have only to be 
programmed once per application, and thus 104 cycles are 
sufficient. Nevertheless, 1S1R stack adjustments and opti-
mized programming patterns as well as OTS material engi-
neering are paths of improvement to enhance endurance for 
more cycling demanding applications.[22,23] In this context, 
the OxRAM resistive state can be read by applying a certain 
reading voltage (Vread) caught between Vth-HRS and Vth-LRS. If 
the OxRAM is in LRS, the OTS switching occurs, and ILRS is 
read. If the OxRAM is in HRS, the OTS device remains at the 
OFF state, and IHRS is read. For a 200 ns  long standard trap-
ezoidal reading pulse, Figure  2D shows experimental 1S1R 
reading disturb characteristics for a given relaxation time 
trelax ≈100 µs between the applied pulses. No error is observed 
up to 109 cycles. However, provided the same reading pat-
tern and Vread, Figure  2E presents experimental 1S1R HRS 
reading disturb characteristics when trelax ≈1 µs. Through the 
cycles, the read HRS current progressively increases until 
an erratic OTS switching occurs after 107 cycles, which cor-
responds to the first failing cycle noted Cycle1st-fail. IHRS is read 
on the subsequent cycles, which suggests that the OTS can 
nonetheless relax back to the OFF state and that this phenom-
enon is reversible. The apparition of reading fails on 1S1R 
devices being linked to the OTS switching reliability at Vread, 
and the main goal of the following sections is to explore the 
OTS dynamic switching behavior. The reading pulses charac-
teristics provided in Figure  2D,E are used for the following 
sections.

3.2. 2D Monte Carlo Model for OTS Switching Operation

To study the OTS reading reliability from a phenomenological 
point of view, a novel 2D OTS reading endurance model is 
presented in this section. The main goal here is to statistically 
quantify the OTS switching statistics leading to the apparition 
of reading errors during device lifetime, which hence suggests 
a Monte Carlo simulation approach.

Conceptually, we focus on an OTS filamentary field-driven 
switching theory, where the OTS switching operation is 
described by the nucleation of metastable domains within the 
chalcogenide layer.[24] In particular, after the initialization of 
the device, the application of a certain electrical field at the 
OTS terminals leads to the random nucleation of conductive 
GSSN dots in the chalcogenide layer. At a microscopic scale, 
it can be foreseen that these local conductive dots correspond 
to metastable metavalent bonding formations, resulting from 
a change in the local order and GSSN bond alignment.[25] The 
alignment of these conductive dots implies the appearance 

Adv. Electron. Mater. 2022, 2200323
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of a conductive filament and leads to OTS switching to the 
ON state. This approach is schematically summarized in 
Figure 3A.

Figure 3B schematically illustrates the OTS 2D Monte Carlo 
reading endurance model deployment, which remains compat-
ible with the conceptual switching approach introduced previ-
ously. A homogeneous OTS bulk is considered at the beginning 
of each reading disturb simulation. Through the application 
of a virtual pulse, conductive dots can randomly appear in the 
GSSN matrix for every reading cycle. Between two successive 
cycles, a certain relaxation time is allowed for the device. On the 

one hand, the nucleation of a conductive defect on the constric-
tion layer is driven by a Bernouilli probability (Pn) for each bin 
of the GSSN matrix. On the other hand, the disappearance of a 
conductive defect in one bin is assumed to follow an exponen-
tial probabilistic distribution characterized by a time τd. Thus, 
conductive dots on the constriction zone are considered revers-
ible and can thus switch back to a nonconductive state at every 
reading cycle. The vertical alignment of a column of conductive 
bins forms a conductive path, which is the condition chosen 
for reading endurance failure. To emulate the read cycling pro-
cess, each position on the constriction zone is scanned at each 

Adv. Electron. Mater. 2022, 2200323

Figure 2.  A) Technological details. SEM top view of the 1S1R devices integrated into the BEOL, together with a TEM cross-section of the 1S1R devices 
studied in this work. B) 1S1R typical current-voltage characteristics after the firing process. The 1S1R switching voltages are function of the OxRAM 
resistive state. If OxRAM is in low resistive state (LRS) (rep. high resistive state (HRS)), Vth-LRS (resp. Vth-HRS > Vth-LRS) is required for 1S1R switching 
operation. In this context, the application of a reading voltage Vread between Vth-HRS and Vth-LRS allows to identify the OxRAM resistive state. C) 1S1R 
programming endurance capabilities. Up to 104 programming cycles are demonstrated without errors. D) Experimental 1S1R reading disturb charac-
teristics at Vread = 2.25V. A 100 µs relaxation time between pulses is allowed to the device. No error is observed up to 109 cycles. E) Experimental 1S1R 
high resistive state current reading disturb characteristics at Vread = 2.25 V. A short 1µs relaxation time between pulses is allowed to the device, which 
increases the probability of OTS erratic switching with respect to longer relaxation times. In this case, the OTS switches after 107 reading cycles, leading 
to the appearance of a reading fail.
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reading cycle, and its resistive state is updated based on Pn and 
τd simulation parameters. The first cycle at which a failure is 
detected corresponds to Cycle1st-fail, whereas the number of 
failures over a given amount of cycles is used to estimate the 
switching probability.

3.3. OTS Switching Reliability Optimization

Figure  4A presents the Cycle1st-fail dependence with relaxation 
times and applied reading voltages on OTS devices. The box-
plots represent the (25%; 75%) percentiles. Increasing Vread 
closer to the OTS intrinsic switching voltage lowers the median 
of Cycle1st-fail. In addition, as the relaxation time between reading 
cycles increases, Cycle1st-fail median is shifted to higher values for 
a given Vread. This suggests a more robust OTS OFF state when a 
longer relaxation time between applied pulses is achieved. More-
over, Figure  4B presents experimental OTS Cycle1st-fail distribu-
tions for two distinct applied voltages for a corresponding trelax 
of ≈1 µs. One unique device is considered per distribution. Each 
point on the distribution corresponds to a unique sub-threshold 
reading disturb test until 108 reading cycles. In this context, the 

Adv. Electron. Mater. 2022, 2200323

Figure 3.  A) Conceptual description of the OTS switching operation considered in this work. The OTS switching operation is driven by an applied electrical 
field at the device terminals, which induces the nucleation of randomly spaced conductive dots on the bulk of the OTS.[24] If the conductive defects are aligned, 
a conductive filament appears on the device and leads to the OTS switching. B) OTS Monte Carlo reading endurance model deployment. The nucleation of a 
conductive defect on the constriction layer is driven by a certain probability (Pn). The disappearance of a conductive dot on the constriction zone is driven by a 
certain recovery time (τd). The alignment of several defects implies the apparition of a conductive filament on the constriction zone and leads to a reading fail.

Figure 4.  A) First measured cycle when the OTS switches under repeated 
applied pulses under threshold (called Cycle1st-fail) as function as applied 
voltage. Two various relaxation times between reading cycles are con-
sidered. The higher Vread, the lower the median and maximal Cycle1st-fail. 
For a given Vread, the larger the relaxation time between reading pulses 
and the higher appears Cycle1st-fail. B) OTS Cycle1st-fail experimental and 
simulated distributions for Vread = 2.25 V and Vread = 2.4 V. A fixed relaxa-
tion time of 1  µs between reading cycles is considered. High disper-
sion Cycle1st-fail experimental distributions are satisfactorily captured by 
adjusting the OTS global probability to switch on the Monte Carlo model.
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Monte Carlo model for OTS switching operation is used to pro-
vide physical insights on Cycle1st-fail distributions. To capture the 
experimental data, the following dual behavior of the switching 
probability Pn along cycling is considered:

•	 Under mild reading conditions (either low reading voltage Vread 
or long rest time between subsequent reading cycles), the OTS 
is assumed to have sufficient time to relax between reading 
cycles so that the switching probability remains constant and the 
OTS state is unaltered. This is supported by the flat behavior of 
the OTS sub-threshold current, as provided in Figure 2D.

•	 Under aggressive reading conditions (either high reading 
voltage Vread or short rest time between subsequent reading 
cycles), gradual aging of the OTS is assumed and leads to a 
gradual increase of the switching probability. This is support-
ed by the drift of the OTS sub-threshold current, as observed 
in Figure 2E.

Once the statistic of first switching is clarified, the next step 
consists in extending the study to subsequent OTS switching 
events through the device lifetime. Thus, OTS cycle-to-cycle 
switching probability has to be extracted. In this aim, the OTS 
current is measured ten times per decade when sub-threshold 
voltages are applied. The experience is repeated multiple times, 
and OTS switches are detected. Then, the OTS switching prob-
ability is calculated by quantifying the percentiles of switching 
events among all the experiments at a fixed reading cycle 
(Figure  5A)). The main goal here is to quantify the evolution 
of the OTS switching probability in the sub-threshold regime 
regarding the applied reading conditions (reading voltages and 
reading frequency). Figure 5B presents the evolution with the 
cycling of OTS switching probability at Vread = 2.35V, as a func-
tion of the relaxation time between reading operations. ≈110 
tests are considered per condition. Again, shorter OTS relaxa-
tion time leads to a larger OTS switching probability.

Adv. Electron. Mater. 2022, 2200323

Figure 5.  A) OTS switching probability description over cycling. Multiple pulses are applied in sub-threshold regime. By extracting the switching events 
at every cycle, the OTS switching probability is calculated. B) Evolution of the OTS switching probability with cycling at Vread = 2.35 V, as a function 
of the relaxation time between reading operations. More frequent OTS switching is evidenced for shorter relaxation times between reading pulses. 
C) Experimental and simulated OTS switching probability after 106 reading cycles (PSwitchOTS @ 106 cycle) evolution with the median Cycle1st-fail. Cycle1st-fail 
appears to be a direct image of the device POTS @ 106 cycle. D) Experimental and simulated PSwitchOTS @ 106 cycle evolution with the reading frequency. Three 
different reading voltages (Vread = 2.15V; 2.25V; 2.35V) are considered. The higher the reading frequency, the larger the resulting switching probability 
on the devices for a certain Vread.
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Moreover, the experimental and simulated OTS switching 
probabilities after 106 reading cycles (PSwitchOTS @ 10

6 cycle) as 
function as the median Cycle1st-fail is presented in Figure  5C. 
Cycle1st-fail appears to be a direct image of PSwitchOTS @ 10

6 cycle. 
In addition, the experimental and simulated PSwitchOTS @ 10

6 cycle 
evolution with the reading frequency is illustrated in Figure 5D, 
together with its dependence with Vread. In agreement with 
precedent results, the higher the reading frequency, the larger 
the resulting OTS switching probability for a certain reading 
voltage. Thus, the lower Vread, the farther to the OTS intrinsic 
switching voltages, and so the minor the resulting switching 
probability for a given reading frequency. In this context, a sim-
ilar drift in the probability Pn is required for the simulation to 
reproduce the experimental results. All in all, successful agree-
ment between experimental and simulated data is evidenced.

3.4. 1S1R Reading Reliability Optimization

Based on the previous experimental and simulated OTS read 
operation reliability analysis, OTS switching statistics, under 
applied pulses in the sub-threshold regime, have been elu-
cidated. In this section, we propose to estimate the overall 
1S1R reading BER, which is directly impacted by OTS erratic 
switching events during the reading operation. Figure 6A illus-
trates the influence of the OTS reading voltages and reading 
frequency on the OTS switching probability after 106 reading 
cycles. The symbol size represents the resulting switching 
probability. This figure generalizes the trends described in the 
previous section and shows that a trade-off between reading 
frequency and voltage amplitude is required to prevent OTS 
erratic switching.

During 1S1R reading operation, the OTS behavior depends 
on the state of the OxRAM memory device: when the OxRAM 
is in LRS (resp. HRS), the OTS is expected to switch (resp. to 
remain in the OFF state) at Vread. On the one hand, 1S1R HRS 
BER is governed by the OTS probability to switch from OFF-
to-ON state at Vread, which corresponds to the OTS switching 
probability studied in the previous sections. On the other hand, 
LRS BER represents the OTS probability to remain in the OFF 
state at Vread. Practically, LRS BER is obtained by flipping HRS 
BER (POTS-ON = 1−POTS-OFF) and shifting it by the 1S1R window 
margin. Indeed, this shift corresponds to the read window 
margin (WM) and is equal to the voltage that drops on the 
memory in the HRS. The higher the memory resistance, the 
larger the threshold voltage shift (WM = Vth-HRS – Vth-LRS). It 
should be noticed that, for a first-order approximation, only the 
mean value for both OxRAM LRS and HRS resistive states is 
considered. The variability in the 1S1R memory window, which 
could be at the origin of a dissymmetrical behavior between 
LRS and HRS, is not taken into account here. In this context, 
high reading voltage increases the OTS switching probability 
and so degrades HRS BER while improving the LRS BER. 
Figure 6B,C) identify the optimal Vread allowing minimizing the 
overall 1S1R reading BER for both 10 and 4 MHz reading fre-
quencies. A standard 1S1R read window margin of 700 mV is 
considered for the analysis.[18] The lower the 1S1R reading fre-
quency, the lower the optimal reading BER. Altogether, a 1S1R 
reading BER of ≈10–1 (resp. ≈4.5  ×  10–2) is estimated after 106 

reading operations at 10 MHz (resp. 4 MHz) reading frequency. 
Improved performances could be expected for a larger window 
margin or lower reading frequency.

3.5. Binarized Spiking Neural Network Figures of Merit

To explore the benefit of a BSNN inference hardware imple-
mentation with 1S1R-based crossbar arrays, training simu-
lations on a fully-connected BSNN with one hidden layer for 
an image classification task on the MNIST dataset are per-
formed in this section. Figure  7A presents the considered 
BSNN topology, where the amount of neurons on the hidden 
layer is a variable of the study. Neurons of SNNs integrate 
spike inputs over time and thus are simulated with temporal 
dynamics. However, in our case, no significant network per-
formance improvement is observed using several simulation 
timesteps (Figure  7B). Therefore, aiming to keep energy effi-
ciency as high as possible, we chose to simulate our BSNN 
with a unique timestep. To perform the classification with our 
BSNN, the MNIST images are converted into spikes by using 
a pixel intensity threshold. If the pixel intensity is above (resp. 
below) the threshold, the input is set to +1 (a spike) (resp. 0). 
In this context, input sparsity is engineered by adapting the 
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Figure 6.  A) OTS reading voltages and reading frequency influence on 
the resulting OTS switching probability after 106 sub-threshold reading 
cycles. The BER is represented by the symbol size. B) Identification of 
the optimal reading voltages for 1S1R reading BER minimization for the 
devices of interest. The reading frequency is fixed at 10 MHz. A 1S1R read 
window margin of 700 mV is considered. C) Identification of the optimal 
reading voltages for 1S1R reading BER minimization for the devices of 
interest. The reading frequency is fixed at 4 MHz. A  1S1R read window 
margin of 700 mV is considered.
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global pixel intensity threshold on the input images. The loca-
tion of the pixel in the image is not considered for sparsity 
engineering. The BSNN is trained with standard deep learning 
techniques on the MNIST training dataset and evaluated on 
the validation dataset. The resulting maximal attainable BSNN 
accuracy evolution with memory BER is provided in Figure 7C. 
The number of neurons on the hidden layer is demonstrated 
to have an important influence on the network performance.[18] 
The higher the number of neurons, the bigger the number 
of learnable parameters of the network (binarized weights), 
and so the higher the accuracy, up to some extent. Indeed, by 
increasing too much the number of neurons on the hidden 
layer, the network may be subject to the overfitting phenom-
enon. Unfortunately, the reading BER on the devices of interest 
is demonstrated to degrade the network performance. In this 
context, we propose to improve the BSNN tolerance to parasitic 
bit errors by adapting the network training strategy.[26] To this 
aim, the BSNNs of interest are retrained, including bit errors 
in the weights during the training process, which allows antici-
pating the apparition of reading errors during the network 
inference. In particular, at each training iteration, the weights 
are randomly switched to their opposite with a probability equal 
to the target BER. Figure  7D presents the resulting maximal 

attainable BSNN accuracy evolution with memory BER during 
testing for different target BER during training. The network 
performance improves for the BER introduced during network 
training. However, the network becomes less performant for 
smaller BERs than the one used for training. This trend is gen-
eralized in Figure  7E, which presents the optimized inference 
accuracy evolution with BER with a training strategy adapted 
to each case. The 1S1R experimental optimized BER character-
istics in this work are now demonstrated to be perfectly toler-
ated by the networks and not to induce any important accuracy 
degradation.

Therefore, the ability to apply the optimal Vread on the 
devices in a Crossbar environment remains a key condi-
tion not to degrade the overall network accuracy. Based on 
28  nm technological node resistive rules in metal lines, and 
while the optimal Vread is applied on the word-line extremity, 
Figure  8A provides the applied reading voltages on the 1S1R 
devices as a function of the device position on the word-line 
(column index n). The higher the number of devices per word-
line on the Crossbar, the stronger the applied reading volt-
ages degradation within the Crossbar due to IR voltage drop 
phenomenon. In this context, Figure  8B) provides the 1S1R 
reading BER evolution with the device position on the word- 
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Figure 7.  A) Binarized Spiking Neural Network (BSNN) considered in this work. Fully connected neural network with one hidden layer of X neurons 
for MNIST handwritten recognition. X values belong to [512, 1024, 2048, 4096]. B) BSNN network accuracy evolution with the number of inference 
timesteps, focusing on MNIST handwritten recognition task. No significant network performance improvement is observed using several simulation 
timesteps. C) Maximal attainable BSNN accuracy for a traditional training method as a function of the memory BER for the topologies of interest, 
considering one inference timestep. The 1S1R BERs are demonstrated to induce an important degradation in accuracy. D) An adapted BSNN training 
strategy is considered, where the memory BERs are included during the training process. 1024 neurons on the hidden layer are considered for this 
analysis. Again, one inference timestep is considered. The network accuracy strongly improves for the bit error of interest. However, the network 
becomes less performant for smaller BERs than the one used for training. E) Inference accuracy evolution with BER. Each point is obtained with a 
training strategy adapted to the considered BER. Again, one inference timestep is considered. No considerable accuracy degradation is observed for 
the 1S1R devices of interest (BER ≈10–1 at 10 MHz read frequency and BER ≈4.5 × 10–2 at 4 MHz read frequency).



www.advancedsciencenews.com

© 2022 Wiley-VCH GmbH2200323  (9 of 11)

www.advelectronicmat.de

line. Both 10 MHz and 4 MHz reading frequencies are consid-
ered for the analysis. In order to preserve acceptable reading 
BER on the devices (Figure 7B), the maximal readable number 
of devices per word-line (nlimit) can be identified. Therefore, 
a trade-off exists between the 1S1R reading frequency and 
the maximal readable Crossbar size due to IR voltage drop 

phenomenon on metal lines. In particular, the lower the 1S1R 
reading frequency, the lower the optimal reading BER, and 
so the larger the readable Crossbar arrays due to better toler-
ance to IR drop phenomenon. First, an adapted computation 
partitioning into smaller Crossbar arrays can be considered to 
prevent network performance degradation due to IR voltage 
drop on large Crossbar structures. Second, adapted network 
training strategies, including Crossbar IR drop phenomenon, 
allow preventing network accuracy degradation during infer-
ence.[27–29] Third, including the IR voltage drop constraint when 
designing the circuit architecture, enhances its robustness to 
the phenomenon.[29–31]

In this context, Figure  9A quantifies the trade-off between 
crossbar area and system accuracy. A 1S1R reading frequency 
of 4  MHz is considered for the analysis. The provided area is 
calculated by adding the respective area contributions from 
both input-hidden weights and hidden-output weights. First, 
assuming one driver transistor height per bit-line and word-
line, the overall periphery area is calculated for 28  nm  high-
voltage CMOS for the network topologies of interest. The area 
contribution of the circuit dedicated to BSNN neuron imple-
mentation is not considered for the analysis. Second, assuming 
a CDmin metal width and space between metal lines, the 1S1R 
crossbar area is quantified for the various network topologies. 
Increasing linearly the number of neurons on the hidden layer 
leads to a quadratic increase in the number of synaptic weights 
and so of the overall crossbar area. Third, the equivalent 1T1R 
array area is estimated for the various network topologies.

In this context, the peripherals’ footprint is demonstrated to 
be negligible compared to the actual crossbar area. In addition, 
one decade of area reduction is demonstrated for 1S1R-based 
Crossbar in comparison with 1T1R arrays. Moreover, network 
topologies with a large number of neurons on the hidden layer 
present degraded accuracy due to IR voltage drop phenomenon 
in the arrays. Altogether, the amount of neurons on the hidden 
layer of 1024 is observed to optimize the area-accuracy trade-
off, promising high tolerance to BER while strongly reducing 
the overall system footprint. Given this topology, we propose to 
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Figure 8.  A) IR voltage drop on metal lines influence on the applied 
reading voltages on 1S1R devices as a function of their position on a 
Crossbar word-line (n value). 28 nm technological node resistive rules in 
metal lines are used for the analysis. The via resistivity is supposed to be 
negligible compared to metal line resistivity. The optimal Vread voltages 
identified in the previous section are applied in the word-line extremity. 
B) 1S1R reading BER evolution with the device position on the Crossbar 
word-line. Both 10 MHz and 4 MHz reading frequencies are considered 
for the analysis. The lower the 1S1R reading frequency, the lower the 
optimal reading BER and so the larger the readable Crossbar arrays due 
to better tolerance to IR drop phenomenon. Crossbar array sizes required 
to accommodate the input-hidden synaptic weights are indicated. The 
higher the amount of neurons on the hidden layer, the higher the required 
amount of columns on the Crossbar, and so the more the IR voltage drop 
phenomenon is important within the array. The Crossbar arrays required 
for hidden-output weights accommodation are not susceptible to lead 
to a significant IR voltage drop phenomenon, given a very low amount 
of columns on the array that corresponds to the amount of neurons on 
the output layer.

Figure 9.  A) Evaluation of the trade-off between crossbar area and system accuracy for the 1S1R BER of interest, considering a 1S1R reading frequency 
of 4 MHz. Assuming one driver transistor height per bit-line and word-line, the overall periphery area is calculated for 28 nm high-voltage CMOS. The 
1S1R crossbar area is provided (CDmin metal width and space between metal lines). The equivalent 1T1R area is estimated, demonstrating on order of 
magnitude improvement on system area for 1S1R crossbar architecture. An amount of neurons on the hidden layer of 1024 is observed to optimize 
the area-accuracy trade-off, showing high tolerance to BER while strongly reducing the overall system footprint. B) Optimal BSNN activations sparsity 
identification, preventing any network accuracy degradation on the MNIST recognition task. C) BSNN electrical consumption per read bit estimation. 
One order of magnitude improvement in comparison with standard BNN is estimated.
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optimize the overall BSNN electrical consumption by tuning 
the network activations sparsity. In particular, the activations 
sparsity is defined by the average number of spikes received 
by a synapse per image classification. Therefore, the sparsity 
corresponds here to the average number of weights that are 
read per inference. Thus, the lower the sparsity, the lower the 
number of weight readings per inference, and so the lower the 
overall electrical consumption. In our fully connected network, 
there are two contributions to the overall sparsity: the input-
hidden synapses contribution and the hidden-output synapses 
contribution. Since the number of input-hidden weights is 
almost two orders of magnitude higher than the number of 
hidden-output weights in the given topology, the contribution 
of the hidden-output synapses to the overall sparsity is negli-
gible. Particularly, the sparsity in the input-hidden synapses 
is the number of spikes fired by neurons in the input layer 
(previous layer in the network). In this context, the sparsity of 
our network is determined by the sparsity of the input layer, 
meaning the sparsity of the input image. To engineer the latter, 
the threshold that is used for the image binarization is modi-
fied. Figure  9B identifies the minimal BSNN sparsity, pre-
venting the network performance degradation. The electrical 
consumption per reading bit evolution with the network spar-
sity is presented in Figure  9C). Approximately 1.4pJ electrical 
consumption per reading bit is estimated for this work. In 
comparison with standard Binarized Neural Networks (BNN), 
where all the weights are read at each inference, about one 
order of magnitude of energy consumption improvement is 
demonstrated for BSNN for an equivalent network accuracy on 
the task of interest.[18]

Finally, general guidelines for BSNN figures of merit (area, 
operating frequency, and accuracy) optimization are provided 
in Figure  10. Assuming an adapted computation partitioning 
into smaller Crossbar arrays, IR voltage drop issues are not con-
sidered here. When the reading frequency is high, the erratic 
OTS switching probability (Section  3.3) increases due to the 
creation of a conductive path in the OTS, leading to degraded 

1S1R BER (Section 3.4) what is detrimental for the neural net-
work accuracy (Section 3.5). Adapted training and a larger cir-
cuit area (by  increasing the number of neurons in the hidden 
layer) make the circuit more robust to failure.

4. Conclusion

1S1R capabilities for synaptic weight storage for Binarized 
Spiking Neural Network high-frequency inference hardware 
implementation are demonstrated. By crossing statistical 
experimental data on memory arrays with Monte Carlo simu-
lations, the OTS switching dynamics are elucidated. Stochastic 
formation of local conductive dots in the selector leading to 
the formation of a conductive path allows catching the OTS 
switching probability distribution when repeated sub-threshold 
pulses are applied. Based on this analysis, 1S1R reading condi-
tions are optimized for low reading BER during high-frequency 
inference. Focusing on the MNIST handwritten digit recogni-
tion task, general guidelines for system footprint and electrical 
consumption reduction and inference frequency and accuracy 
maximization network are provided. Overall, the 1S1R array of 
interest is demonstrated to perfectly sustain a 1 MHz inference 
with 97% accuracy, with an estimated circuit area lower than 
0.01  mm2. This opens the path to 1S1R exploitation for real-
time image inference tasks.
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