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INTEGRAL MEANS SPECTRUM OF WHOLE-PLANE SLE

DMITRY BELIAEV, BERTRAND DUPLANTIER, AND MICHEL ZINSMEISTER

ABSTRACT. We complete the mathematical analysis of the fine structure of harmonic
measure on SLE curves that was initiated in Ref. [2], as described by the averaged integral
means spectrum. For the unbounded version of whole-plane SLE as studied in Refs. [7,
16], a phase transition has been shown to occur for high enough moments from the bulk
spectrum towards a novel spectrum related to the point at infinity. For the bounded version
of whole-plane SLE of Ref. [2], a similar transition phenomenon, now associated with the
SLE origin, is proved to exist for low enough moments, but we show that it is superseded
by the earlier occurrence of the transition to the SLE tip spectrum.

1. INTRODUCTION

Harmonic measure is one of the fundamental objects in geometric function theory and
its fine structure provides much information about the underlying geometry. We refer the
reader to the survey by Makarov [17] or to the recent monograph [8]. In this article, we
focus on the integral means spectrum of the harmonic measure (see definition below).

Schramm-Loewner Evolution (SLE) curves are (in part conjecturally) the conformally
invariant scaling limits of interfaces in critical lattice models of statistical physics. Since
its introduction by the late Oded Schramm [23] fifteen years ago, the SLE process has
sparked intense interest both in mathematical and physical communities. (See Ref. [12] for
a detailed study of SLE.) One direction of research is the study of geometrical properties
of these curves, one approach to which is precisely to compute the multifractal spectra for
the harmonic measure.

The first result in this direction is due to the second author who computed the SLE bulk
spectrum by means of quantum gravity methods [3, 4], followed by Hastings who also
computed a spectrum associated with the neighborhood of the SLE tip [10]. In Ref. [2],
the first author and Smirnov provided a rigorous approach to the average integral means
spectrum for whole-plane SLE, and showed that in a certain range of parameters (i.e., large
enough negative moment orders), the tip spectrum dominates.

An unbounded version of whole-plane SLE was also studied in Refs. [6, 7] and [14, 15,
16] for which it was shown that for a large enough positive moment order, the (average)
bulk integral mean spectrum undergoes a phase transition towards a novel form, which
was argued to be related to the point at infinity. For the bounded version of whole-plane
SLE as studied in Ref. [2], which is related by inversion to the unbounded one, a similar
transition phenomenon may thus occur near the origin, which can be interpreted as the
starting point of the random curve (see Definition 1.1 below). Indeed, it was observed in
Refs. [16, 7] that the analysis provided in Ref. [2] is incomplete, and that the integral
means spectrum could a priori be dominated by a novel spectrum, thought of as arising
from the neighborhood of the starting point, and to be distinguished from that brought in
by the vicinity of the tip.

The purpose of this work is to complete the analysis undertaken in Ref. [2], so as to
rigorously establish, for the bounded version of whole-plane SLE as studied there, the
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form of the averaged integral means spectrum for all moment orders. In particular, we
show that for large enough negative moments, the new spectrum dominates the bulk one,
but that both are still dominated by the tip spectrum in the same range of parameters. The
results are summarized in Theorem 1.2. The existence of the new spectrum is established
starting in Section 3.4. Following Ref. [7], the last Section 5.2 briefly discusses the
relation of this spectrum to the derivative exponents of Ref. [13] for standard radial SLE,
or, equivalently, to the non-standard tip exponents of Ref. [4]; it further heuristically
suggests why the new spectrum should be associated with the ‘second tip’ of bounded
whole-plane SLE, the image by inversion of the point at infinity in the unbounded version.

Before we proceed with the details of the analysis, let us also mention the work by
Johansson Viklund and Lawler [11], who established the almost sure version of the SLE
tip multifractal spectrum, that by Alberts, Binder and Viklund [1] on the almost sure di-
mension spectrum for SLE boundary collisions, as well as the recent preprint by Gwynne,
Miller, and Sun [9], who used the so-called “Imaginary Geometry” of Miller and Sheffield
[18, 19, 20, 21] to compute the a.s. value of the SLE bulk multifractal spectrum.

1.1. Definitions and Statements. Let Ω = C \K where K is a simply-connected com-
pact set and let φ be a Riemann mapping from D− (i.e., the complement of the unit disk
D) onto Ω such that φ(∞) =∞. The integral means spectrum of φ (or Ω) is defined as

βφ(t) = βΩ(t) = lim sup
r→1+

log
∫ 2π

0
|φ′(reiθ)|tdθ

− log(r − 1)
.

For random fractals, it is natural to study the average integral means spectrum, which
is defined as

β̄(t) = lim sup
r→1+

log
∫ 2π

0
E
[
|φ′(reiθ)|t

]
dθ

− log |r − 1|
.

In this work, we are interested in the average integral means spectrum of whole-plane SLE
curves.

Definition 1.1. Let ξ(t) = exp(i
√
κBt) be a two-sided Brownian motion on the unit

circle with t ∈ R and κ > 0. The whole-plane SLEκ is the family of conformal maps gt
satisfying

∂tgt(z) = gt(z)
ξ(t) + gt(z)

ξ(t)− gt(z)
, (1.1)

with initial condition
lim
t→−∞

etgt(z) = z, z ∈ C \ {0}.

This map gt is a conformal map from C \Kt onto D−, where the compact set Kt is the
so-called hull of the SLE process, and it describes a family of hulls that grow from the
origin towards infinity. This is the so-called exterior version of whole-plane SLE, as the
map g0 may be seen as the limit of a rescaled version of a radial SLE process growing from
the unit disc towards infinity [2]. The integral means spectrum of whole-plane SLE is then
defined as that of the inverse map φ = g−1

0 . Another version describes hulls growing from
infinity towards the origin, and is called interior whole-plane SLE. The integral means
spectrum of this unbounded process is studied in Ref. [7].

Remark. The interior and exterior versions of whole-plane SLE are conjugate under the
map z 7→ 1/z, and their integral means spectra can be unified in a single formalism by
considering mixed moments, involving powers of the moduli of the conformal map and of
its derivative, as studied in Ref. [5].
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The main result of this paper is (Fig. 1)

Theorem 1.2. i) The average integral means spectrum of the exterior whole-plane SLEκ
is given by

βtip(t) = −t− 1 +
1

4

(
4 + κ−

√
(4 + κ)2 − 8κt

)
, t ≤ t2,

β0(t) = −t+
4 + κ

4κ

(
4 + κ−

√
(4 + κ)2 − 8κt

)
, t2 ≤ t ≤ t3,

βlin(t) = t− (4 + κ)2

16κ
, t3 ≤ t.

ii) If in the definition of the spectrum we integrate over any set that excludes the neigh-
bourhood of θ = 0, which corresponds to excluding the influence of the tip of the curve,
then the average spectrum is given by

β1(t) = −t− 1

2

(
1 +
√

1− 2κt
)
, t ≤ t1,

β0(t) = −t+
4 + κ

4κ

(
4 + κ−

√
(4 + κ)2 − 8κt

)
, t1 ≤ t ≤ t3,

βlin(t) = t− (4 + κ)2

16κ
, t3 ≤ t.

In the above, the transition values for the moment order t are given by

t1 := − 1

128
(4 + κ)2(8 + κ), t2 := −1− 3κ

8
, t3 :=

3(4 + κ)2

32κ
,

and such that t1 < t2 < t3.

FIGURE 1. Plot showing the relative positions of the various forms taken
by the integral means spectrum in Theorem 1.2: tip spectrum βtip, novel
spectrum β1, bulk spectrum β0 and linear spectrum βlin. The β1 spectrum
is the analogue for the exterior whole-plane SLE of the spectrum at infinity
of Refs. [7, 16] for the interior case (see also Ref. [5]). Note that β1

supersedes the bulk spectrum below t1, but stays below the tip spectrum.

Remark. Point i) in Theorem 1.2 agrees with Ref. [2], while Statement ii) pertains to this
work.
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2. DIFFERENTIAL OPERATOR

As seen above, the integral means spectrum is defined for a map from D− onto some
domain, i.e., in terms of the inverse of the SLE map. The Loewner equation for g−1

t

is a PDE instead of an ODE and is much harder to work with. Instead, we study the
backward evolution. It is well-known that for a standard radial [exterior] SLE process ĝt
(i.e., obeying Eq. (1.1) for t ≥ 0 with ĝ0(z) = z), reversing time, i.e., changing sign in
front of Eq. (1.1), leads to solutions ft := ĝ−t, t ≥ 0, also called [backward] radial SLE,
that have, up to conjugation by rotation, the same distribution as ĝ−1

t (see Ref. [2], Lemma
1, which is an analog of Lemma 3.1 in Ref. [22]).

To compute the average integral means spectrum, let us then introduce the function
F̃ (z; τ) := E [|f ′τ (z)|t], where fτ (z), τ ≥ 0, is such a backward radial SLEκ process.
(Actually, this function depends also on the moment order t and on κ, but these are fixed
throughout the proof and we will no longer mention the dependence thereof.) The function
F̃ isC∞,1 in z, τ , since f ′τ (z) is by Loewner theory, and this remains true under expectation
by standard dominated convergence and distortion theorems. As was shown in Ref. [2], it
satisfies a parabolic PDE:

Lemma 2.1. The function F̃ (z; τ) is a solution to the PDE in variables r, θ, τ ,

t
r4 + 4r2(1− r cos θ)− 1

(r2 − 2r cos θ + 1)2
F̃ +

r(r2 − 1)

r2 − 2r cos θ + 1
F̃r

− 2r sin θ

r2 − 2r cos θ + 1
F̃θ +

κ

2
F̃θ,θ − F̃τ = 0,

(2.1)

where z = reiθ.

Lemma 3 in Ref. [2] further shows that there exists a limit to e−τfτ (z) as τ → +∞,
which has the same distribution as g−1

0 (z), where gt is a whole-plane SLE process as in
Definition 1.1; hence we introduce

F (z) := lim
τ→+∞

e−τtF̃ (z; τ),

where limit and expectation commute by the same arguments as above. The average inte-
gral means spectrum of the exterior whole-plane SLE is thus associated with the singular
behavior of

∫ 2π

0
F (reiθ)dθ as r → 1+.

Multiplying Eq. (2.1) by e−τt, and passing to the limit, shows that F is a solution to the
PDE in r, θ,

t

(
r4 + 4r2(1− r cos θ)− 1

(r2 − 2r cos θ + 1)2
− 1

)
F +

r(r2 − 1)

r2 − 2r cos θ + 1
Fr

− 2r sin θ

r2 − 2r cos θ + 1
Fθ +

κ

2
Fθ,θ = 0.

(2.2)

The exchange above, of the τ → +∞ limit and of partial derivativation of F̃ (z; τ)
with respect to r and θ, is justified by the fact that the τ -family, e−τf ′τ (z), and all its
z-derivatives are normal, i.e., uniformly bounded in any compact of D−, so that the spatial
derivatives of e−τtF̃ (z; τ) form an equicontinuous family. A further requirement is that
limτ→+∞

∂
∂τ

(
e−τtF̃

)
= 0. Use of the Schramm-Loewner equation (1.1) for fτ shows that

∂

∂τ
|e−τf ′τ (z)|t = 2t|e−τf ′τ (z)|tRe

ξ(τ)2

(fτ (z)− ξ(τ))2
.
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Classical Koebe distortion theorems then show that the right-hand side is bounded by
C(z)e−2τ , with C defined on D−; this insures both the validity of the exchange of expec-
tation and τ -derivation, and the vanishing limit above.

It is easy to see that after a change of variables, this equation is still of parabolic type,
where θ plays the rôle of a spatial variable, and r → 1+ corresponds to time going to
infinity [2].

Instead of polar coordinates, it turns out to be more convenient to work with (z, z̄)
coordinates, where F = F (z, z̄) now formally depends on both complex variables, and
where Eq. (2.2) becomes,

ΛF (z, z̄) = 0, (2.3)

Λ := −κ
2

(
z∂ − z̄∂̄

)2
+
z + 1

z − 1
z∂ +

z̄ + 1

z̄ − 1
z̄∂̄ − t

(
1

(z − 1)2
+

1

(z̄ − 1)2

)
.

(See Ref. [7] for details.)
We wish to study how the solutions to Eq. (2.3) behave when z approaches the unit

circle. In contradistinction to the interior case [7], it seems difficult to construct explicit
solutions, so we are left with constructing sub- and super-solutions with same boundary
behaviors [2].

Following Refs. [2, 7], we consider the action of Λ on functions of the peculiar form,

ψ(z, z̄) := (zz̄ − 1)−βg(u) = (|z|2 − 1)−βg(u), (2.4)

where g is a C2 function of u := (1−z)(1− z̄) = |1−z|2. By looking at the leading terms
in Eq. (2.3) for ψ as r → 1+, one obtains a ‘boundary equation’ for g (see Refs [2, 7] for
details),

(t(2− u)− 2β) g(u) +
(κ

2
(2− u)− (4− u)

)
ug′(u) +

κ

2
(4− u)u2g′′(u) = 0; (2.5)

from now on, we assume that g in (2.4) satisfies this equation.
Let us then consider the action of the differential operator (2.3) on ψ (2.4) in D− and

follow Ref. [7, Section 4.2.]. Making use of Eq. (2.5) to eliminate the second derivative
of g, one obtains after some computation,

Λψ

ψ
= (zz̄ − 1)

[
1

u
(t− β) +

1

4− u
(β + t)−

(
κ

2
− 1− 2κ

4− u

)
g′(u)

g(u)

]
+

(zz̄ − 1)2

u2

[
1

4− u

(
−2t− 2β − κug

′(u)

g(u)

)
+
(κ

2
+ 1
)(

u
g′(u)

g(u)

)]
.

(2.6)

We are also interested in the action of Λ on ψ functions with logarithmic corrections
[2]. Let us introduce

`δ = `δ(z, z̄) := (− log(zz̄ − 1))δ .

It is then easy to see that,

Λ(ψ`δ)

ψ`δ
=

Λ(ψ)

ψ
− 2δzz̄

u(− log(zz̄ − 1))
. (2.7)

For certain choices of exponent β and of g, some leading terms in (2.6) may cancel out so
that the second term on the r.h.s. of Eq. (2.7) dominates. The latter has a sign opposite to
the arbitrary sign of δ, which means that if ψ is positive, we shall be able construct sub-
and super-solutions ψ`δ with growth rate arbitrary close to that of ψ.
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3. BOUNDARY SOLUTIONS AND THEIR EXTENSION TO D−
3.1. Hypergeometric equation. We shall be interested in functions g of the form g(u) =
uγg0(u), γ ∈ R, and such that Eq. (2.5) may reduce to a hypergeometric-type equation on
g0 [2]. Upon substituting this into (2.5) and factoring out uγ , we obtain,

(2β(γ)− 2β + A(γ)u) g0(u) (3.1)

+
(κ

2
(2− u) + (κγ − 1)(4− u)

)
ug′0(u) +

κ

2
(4− u)u2g′′0(u) = 0,

in terms of the quadratic polynomials,

β(γ) := κγ2 −
(κ

2
+ 2
)
γ + t, (3.2)

A(γ) := −κ
2
γ2 + γ − t. (3.3)

For the choice of parameter β = β(γ), Eq. (3.1) then reduces to an hypergeometric
equation,

A(γ)g0(u) +
[κ

2
(2− u) + (κγ − 1)(4− u)

]
g′0(u) +

κ

2
(4− u)ug′′0(u) = 0, (3.4)

which is the same as Eqs. [7, (184)] or [2, (17)]. Following either of these papers, we see
that the general solution is,

g0(u) = C0 2F1(a, b, c, u/4)− C ′0 (u/4)1/2−a−b
2F1(a′, b′, c′, u/4), (3.5)

where

a = a(γ) = γ − γ+, b = b(γ) = γ − γ−, c =
1

2
+ a+ b, (3.6)

a′ =
1

2
− a, b′ =

1

2
− b, c′ =

1

2
+ a′ + b′,

and where γ± := (1±
√

1− 2κt)/κ are the two roots in A(γ) = −κ
2
(γ − γ+)(γ − γ−).

Hypergeometric functions are singular at u = 4, but the solution should be smooth at
z = −1, which means that the coefficients C0 and C ′0 should be chosen in such a way that
the singular parts cancel out [2]. This precisely happens, up to a constant factor, for

g0(0) = C0 =
Γ(3/2− a− b)

Γ(1/2− a)Γ(1/2− b)
, C ′0 =

Γ(c)

Γ(a)Γ(b)
, (3.7)

such that near u = 4 (see Ref. [2]),

g0(u) =
1√
π

(
1

2
− a− b

)
+O(4− u). (3.8)

3.2. Action of Λ on trial functions ψ. Following Ref. [7, Section 4.2.3], let us now
return to the action (2.6), this time for ψ(z, z̄) = (zz̄ − 1)−βuγg0(u), and for the choice
β = β(γ) (3.2). Using ug′/g = ug′0/g0 + γ, we finally obtain,

Λψ

ψ
=(zz̄ − 1)

[
1

u

[
t+ γ − β(γ)

]
− 2A(γ)

4− u
−
(
κ

2
− 1− 2κ

4− u

)
g′0(u)

g0(u)

]
+

(zz̄ − 1)2

u2

[
1

4− u

(
4A(γ)− κug

′
0(u)

g0(u)

)
+
(

1 +
κ

2

)(
γ + u

g′0(u)

g0(u)

)]
.

(3.9)
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In Eq. (3.9), there seems to be an unexpected singularity at u = 4 (z = −1), but in fact the
choice of constants C0 and C ′0 in Eq. (3.7), made to ensure that g0(u) is regular at u = 4,
further yields

g′0(u)

g0(u)
= −1

2
ab+O(4− u) =

1

κ
A(γ) +O(4− u),

so that the singularity at u = 4 cancels out in the action (3.9).
In the u→ 0 limit, Eq. (3.5) shows that (up to a non-vanishing coefficient)

u
g′0(u)

g0(u)
∼ uα, α := min

{
1

2
− a− b, 1

}
, (3.10)

Remark. In the case where C0 vanishes, α = 1/2− a− b.

The second line in Eq. (3.9) is in this limit,

(zz̄ − 1)2

u2
[C(γ) +O(uα)] , (3.11)

with

C(γ) := A(γ) +
(

1 +
κ

2

)
γ = −κ

2
γ2 +

(
2 +

κ

2

)
γ − t. (3.12)

3.3. Beliaev-Smirnov solution. The first pair of exponents β and γ that we are interested
in have been introduced in Ref. [2], so as to cancel the leading singularity in (3.11). For a
given t, there are two solutions to C(γ0) = 0, and we consider the particular values,{

γ0 = 1
2κ

(4 + κ−
√

(4 + κ)2 − 8κt),

β0 = β(γ0) = κ
2
γ2

0 = −t+ (2 + κ
2
)γ0 = −t+ 4+κ

4κ
(4 + κ−

√
(4 + κ)2 − 8κt).

(3.13)
The first condition is for the boundary solution g0 (3.5) to be bounded (i.e., uγ0 should

be the only singular term in g), which means that 1/2 − a − b ≥ 0, where now a =
a(γ0), b = b(γ0) as in Eqs. (3.6). Simple algebra shows that this is equivalent to t ≤ t3.

The second condition is that g0(u) should be positive for the whole range u ∈ [0, 4]
when z describes the unit circle. It was observed in Ref. [2] that this happens when
1/2 − b > 0. It was erroneously stated there that this is always true, while in fact this
holds only for t1 < t. (See Proposition 5.1 below.)

For t ∈ (t1, t3) we thus have that g0 is bounded and positive, and the arguments in Ref.
[2], which we detail and refine here, stay valid. To study the spectrum, one has to analyze
the behavior of Λψ0, where ψ0(z, z̄) = (zz̄ − 1)−β0uγ0g0(u) for values β0, γ0 as in Eq.
(3.13), and the associated hypergeometric function g0 (3.5). This is provided by Eq. (3.9),
where (3.12) and (3.13) give the explicit coefficients, t + γ0 − β(γ0) = 2t −

(
1 + κ

2

)
γ0,

and A(γ0) = −
(
1 + κ

2

)
γ0.

As a preparation also for a complete analysis below, let us detail various radial limits as
|z| → 1 in action (3.9), while recalling the geometrical constraint, |z|−1 ≤ |z−1| = u1/2.
Generic case: zz̄ − 1 → 0, but u is bounded away from 0. In this case, Λψ0/ψ0 =
O(zz̄ − 1).
Special case: z approaches 1, u → 0, so that zz̄ − 1 = O(u1/2). In this case g′0/g0 =
O(uα/u) in (3.10) is dominated by 1/u, as we have shown before that 1/2 − a − b > 0
for t < t3, so that α > 0. Thus the first line in (3.9) is of order O(u−1/2). The second
line, as given by Eq. (3.11), seems to be of order O(u−1), but because of the very choice
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of γ = γ0 such that C(γ0) = 0, it is of order O(uα−1), with α > 0 for t < t3.
The results of this discussion can simply be recast as,

Λψ0

ψ0

=
zz̄ − 1

u
O(u0) +

(zz̄ − 1)2

u2
O(uα), |z| − 1 ≤ u1/2. (3.14)

To complete the proof of Theorem 1.2 in the range t ∈ (t1, t3), one then considers as in
Ref. [2], the set of logarithmic modifications of ψ0 for all δ,

`δψ0(z, z̄) = (− log(zz̄ − 1))δ(zz̄ − 1)−β0uγ0g0(u).

Recalling the action (2.7), one sees that for |z| close enough to 1 and for all u, both terms
in Λψ0/ψ0 (3.14) are dominated by the logarithmic second term on the r.h.s. of (2.7):∣∣∣∣Λψ0

ψ0

∣∣∣∣ ≤ 2|δ|zz̄
u(− log(zz̄ − 1))

. (3.15)

The positive function ψ0`δ is thus a sub-solution for δ > 0 or a super-solution for δ < 0,
so that the integral means spectrum is β0(t) for t ∈ [t2, t3), or βtip(t) = β0(t)−2γ0(t)−1,
for t ∈ (t1, t2) where 2γ0(t) + 1 < 0.

By Hölder’s inequality, the spectrum is convex, and by standard distortion theorems,
bounded by t for t > 0. This, together with the fact that ∂tβ0(t3) = 1, establishes Theorem
1.2 for t ≥ t3.

3.4. Below t1. At t1, b = 1/2, and g0(0) = C0 = 0 in Eq. (3.7). Actually, this vanishing
also happens for higher half-integer values b = n+ 1/2. Proposition 5.2 below shows that
there indeed exist a finite set of integers Jκ, and a finite discrete set Tκ of moment orders,

Jκ := {n ∈ N, 0 ≤ n ≤ bκ−1c} (3.16)

Tκ := {t1−n, n ∈ Jκ} (3.17)

t1−n = t1−n(κ) := −(1 + 2n)(8 + κ− 2nκ)(4 + κ+ 2nκ)(4 + κ− 2nκ)

128(1− nκ)2
, (3.18)

such that,

b = b(γ0(t1−n)) = n+
1

2
, n ∈ Jκ, g0(0) = C0 = 0, t ∈ Tκ. (3.19)

The n = 0 case corresponds, for any value of κ, to the point t1 as above; note also that for
κ > 1, Tκ = {t1}, whereas strictly positive values of n exist in Jκ only for 0 < κ ≤ 1.

In Eq. (3.7), observe now that 1/2 − a > 0, because a = a(γ0) < 0 in Eq. (3.6), and
recall that 1/2− a− b > 0 for t < t3. Therefore, the sign of g0(0) (3.7) is given by that of
Γ(1/2 − b), and by the very property of analytical continuation of the Γ-function, is thus
alternating in the successive intervals t ∈ (t−n, t1−n), being positive or negative for n odd
or even, respectively. For later convenience, let us then introduce,

σ = σ(t) := sgn g0(0) = (−1)n−1, t ∈ (t−n, t1−n), n ∈ Jκ. (3.20)

Notice that owing to Eq. (3.8), g0(4) is always positive for t < t3. Then, in the interval of
moment orders, t ∈ (t−n, t1−n), with n ∈ Jκ, the graph of g0(u) possesses exactly n + 1
simple zeroes over the interval u ∈ (0, 4).
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3.5. Power-law solution. Note that the hypergeometric equation (3.4) becomes degener-
ate when A(γ) = 0, with g0 a constant solution and g of the form uγ . As before, there are
two solutions, γ±, to this system, which correspond to the degenerate cases a = 0 or b = 0
in Eqs. (3.5) and (3.6), and to C0 = 0 in Eq. (3.7). As in the case of interior whole-plane
SLE [7], we are especially interested in the pair,{

γ1 := γ+ = 1
κ
(1 +

√
1− 2κt),

β1 = β(γ1) = −t− κ
2
γ1 = −t− 1

2
(1 +

√
1− 2κt).

(3.21)

Remark. Both β0 (3.13) and β1 (3.21) are given by the same quadratic function β(γ) (3.2),
in terms of γ0 and γ1, respectively.

When plugging ψ1 = ψ1(z, z̄) := (zz̄ − 1)−β1uγ1 into Eq. (3.9), because A(γ1) = 0
and g′0 = 0, many terms disappear, and the result is simply,

Λψ1

ψ1

=
zz̄ − 1

u

(
2t+

(
1 +

κ

2

)
γ1

)
+

(zz̄ − 1)2

u2

(
1 +

κ

2

)
γ1. (3.22)

As before, we distinguish two cases: |z| → 1, but u is bounded away from 0; u→ 0, and
|z|−1 = O(u1/2). In the first case, Λψ1/ψ1 is O(|z|−1); in the second case, it is O(u−1).

4. MIXING THE TWO SOLUTIONS

For t < t1, g0(u) changes sign at least once over the interval (0, 4), invaliding the proof
of Section 3.3. Recall that at the origin its sign alternates, as described in Eq. (3.20). The
idea is thus to try and combine the two functions ψ0 and ψ1 into

ψ := σψ0 + ψ1 = σg0(u)uγ0(zz̄ − 1)−β0 + uγ1(zz̄ − 1)−β1 , (4.1)

where σ is as in Eq. (3.20), so as to restore overall positivity for ψ. Then, in the action
Λ(ψ`δ), the differential operator Λ will act differently on ψ0 and ψ1, still maintaining the
possibility to build sub- and super-solutions in this way. In this section, we are mostly
interested in t < t1, but some arguments are independent of that assumption, provided one
assumes that, e.g., t < 0, so that both ψ0 and ψ1 are defined.

Lemma 4.1. There is r0 > 1 such that ψ = σψ0 +ψ1 > 0 for all z such that 1 < |z| < r0.

Proof. First of all, note that both ψ0 and ψ1 are continuous in the complement of the unit
disc, and that ψ1 > 0 everywhere. For t > t1 we have g0 > 0, hence both terms in ψ are
positive. For t = t1, g0(u) > 0 for u > 0, so that ψ > 0. For t < t1, this is no longer true,
but σg0(u) ≥ 0 in some neighborhood u ∈ [0, u0] of z = 1, hence ψ > 0 there. Outside
of this neighborhood, u is uniformly bounded away from 0, and also bounded above by
(|z|+ 1)2; therefore, for any r0 > 1, there exist positive constants c0, c1 such that for all z
such that 1 < |z| < r0 and u = |z − 1|2 > u0,

0 ≤|ψ0| ≤ c0(zz̄ − 1)−β0 ,

1

c1

(zz̄ − 1)−β1 <ψ1 < c1(zz̄ − 1)−β1 .

For t < t1, we have that β1 > β0 (See Prop. 5.3 below and Fig. 1), so that for |z|
sufficiently close to 1, we have ψ1 > |ψ0|, hence ψ > 0. �

Lemma 4.2. For t < t1 and t /∈ Tκ, there is r0 > 1 such that Λ(ψ`δ) for ψ (4.1) has a
constant sign in the annulus 1 < |z| < r0, which depends only on that of δ.
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Proof. As shown by Eq. (2.7), multiplying ψ by a logarithmic factor `δ results in an
additional term in the action of the differential operator, whose sign depends on that of
δ only. We shall show that near the boundary of the unit disc, this additional term is the
main one, hence Λ(ψ`δ) has constant sign there. Since ψ is positive, this implies that ψ`δ
is a sub- or super-solution for δ > 0 or δ < 0, respectively.

As was shown in (2.7), (3.14), (3.15) and (3.22), Λ(ψ`δ)/`δ can be written (up to smaller
order terms) as the sum of four terms

Λ(ψ`δ)

`δ
= σψ0

−2δr2

u(− log(r − 1))
+ ψ1

r − 1

u
+ ψ1

(r − 1)2

u2
+ ψ1

−2δr2

u(− log(r − 1))
, (4.2)

where r = |z|. We denote these terms by I – IV. Here, we omitted the positive constants
in front of II, III, but terms I and IV are written in their complete form. For functions A
andB of r, we shall use the short-hand notations, A & B forA ≥ cB with c some positive
constant, and A ≈ B when both A & B and A . B hold.

Below, we consider three cases, and show that in each case one of the logarithmic terms
(either I or IV) is the leading one when r → 1+.

Case 1: u is bounded away from zero. It is obvious that IV & II, III as (r − 1) → 0.
For u bounded away from zero, we have ψ0 ≈ (r − 1)−β0 and ψ1 ≈ (r − 1)−β1 . Since
β1 > β0 for t < t1 (Proposition 5.3), we have IV & I. Also notice that ψ1 is positive,
hence for sufficiently small r − 1, the sign of Λ(ψ`δ) is opposite to that of δ.

Case 2: We assume that (r−1)2−ε < u < u0, where ε > 0 and where, as above, u0 > 0
is chosen such that σg0(u) > 0 for 0 < u < u0. Then,

II = ψ1
r − 1

u
,

III . ψ1
(r − 1)2

u

1

(r − 1)2−ε = ψ1
(r − 1)ε

u
,

IV ≈ ψ1
−δ

u(− log(r − 1))
,

and obviously IV dominates II and III. Since σψ0 is positive for our choice of u0, we have
that both main terms I and IV in (4.2) have a sign opposite to that of δ.

Case 3: We assume that r − 1 > u1/2+ε for some ε > 0 that will be determined later.
We also recall that r− 1 ≤ u1/2. In this case − log(r− 1) ≈ − log u. First, we notice that

I ≈ ψ0
−δ

u(− log u)
,

II . ψ1
u1/2

u
,

III . ψ1
1

u
,

IV ≈ ψ1
−δ

u(− log u)
,

so that both III and IV are dominated by III′ := ψ1/u. We would like to show that III′ . I,
and this requests comparing ψ1 to ψ0. Proposition 5.4 below precisely gives that for t < t1,
one has βtip = β0 − 2γ0 − 1 > β1, hence

(r − 1)−β1 < (r − 1)−β0(r − 1)2γ0+1,
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and

ψ1 ≈ (r − 1)−β1uγ1 < (r − 1)−β0uγ0uγ1−γ0(r − 1)2γ0+1 ≈ σψ0u
γ1−γ0(r − 1)2γ0+1.

Note that the last estimate requires that g0(0) 6= 0, hence the condition t /∈ Tκ in Lemma
4.2. We expect uγ1−γ0(r − 1)2γ0+1 to be bounded by some positive power of u. As was
shown in Ref. [2], the definition of the threshold t2 for the tip relevance is that 2γ0 +1 < 0
for t < t2, and we have here t < t1 < t2 . Hence, for r − 1 > u1/2+ε,

uγ1−γ0(r − 1)2γ0+1 < uγ1−γ0+(1/2+ε)(2γ0+1) = uγ1+1/2+ε(2γ0+1).

Since γ1 > 0, for sufficiently small ε, the latter is bounded by some positive power of u,
e.g., by u1/2. Hence for this ε, we have that

ψ1 . σψ0u
1/2. (4.3)

Thus we see that III′ . I, and that the sign of Λ(ψ`δ) is given by that of I in Eq. (4.2),
which is opposite to the sign of δ.

Altogether, these three cases show that in some neighborhood of the unit circle, the sign
of Λ(ψ`δ) is constant and opposite to that of δ. �

Lemmas 4.1 and 4.2 together show that ψ`δ is a sub- or super-solution, depending on the
sign of δ. Following Ref. [2], one obtains that for F such that ΛF = 0, there exist positive
constants c2 and c3, such that in some annulus adherent to D, c2ψ`−δ < F < c3ψ`δ,
with δ > 0. We conclude that F behaves like ψ (4.1), up to arbitrary small logarithmic
correction.1 This completes the proof of Theorem 1.2 for t < t1 and t /∈ Tκ.

Lastly, when t belongs to the discrete set Tκ (3.17), because of (3.19), g0(u) (3.5) van-
ishes too fast at u = 0, and neither an upper bound like (4.3) holds, nor Lemma 4.2. But
having established Theorem 1.2 for t /∈ Tκ suffices to prove it for all t, by simply invoking
the convexity property of the integral means spectrum [17].

5. PHASE TRANSITIONS

5.1. Loci of various spectra. In this section, we prove that Figure 1 gives an accurate
description of the phase transitions between different parts of the integral means spec-
trum. Since all β’s and γ’s are given by simple algebraic equations, all inequalities are in
principle elementary, but could be a bit fiddly if not addressed in the right way.

First, notice that γ0 is increasing and negative for t < 0, whereas γ1 is decreasing and
positive. Next, we shall need to study γ0 + γ1. Differentiating with respect to t yields

∂

∂t
(γ0 + γ1) =

1√
(4 + κ)2/4− 2tκ

− 1√
1− 2tκ

< 0,

so that γ0+γ1 is decreasing; since γ0(0) = 0 and γ1(0) = 2/κ, this gives that γ0+γ1 > 2/κ
iff t < 0.

Proposition 5.1. Let b = b(γ0) be as in (3.6), then 1/2− b > 0 if and only if t > t1.

Proof. Owing to (3.6), b = γ0 + γ1 − 2/κ. Solving the equation b = 1/2 yields t = t1.
Since b is decreasing with t, we obtain that 1/2− b > 0 if and only if t > t1. �

Proposition 5.2. The set of equations, b = n + 1
2
, n ∈ N, is realized at the finite set of

points Tκ := {t1−n, n ∈ Jκ}, where Jκ := {n ∈ N, 0 ≤ n ≤ bκ−1c} and where t1−n is
given by Eq. (3.18).

1We believe that the logarithmic correction is not really there and that F/ψ is bounded.
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Proof. For t ∈ (−∞, 0], we have that b ∈ [0, 1
2

+ 1
κ
), which defines the possible range of

values n ∈ Jκ where b = n+ 1
2
. Solving the latter equation yields (3.18). �

Proposition 5.3. We have that β1(t) > β0(t) if and only if t < t1.

Proof. First of all, recall that all exponents β’s are given by the same quadratic function
β(γ) (3.2). Since γ0 6= γ1, β(γ1) = β(γ0) if and only if γ1 + γ0 = (4 + κ)/2κ. We know
that this happens at t = t1 only. Computing at t = 0, we have β0(0) = 0 and β1(0) = −1,
hence β1(t) > β0(t) if and only if t < t1. �

Note that Propositions 5.1 and 5.3 imply that the point where the construction in Ref.
[2] breaks down and the point where β1 exceeds β0 coincide.

Proposition 5.4. We have that β1 < βtip = β0 − 2γ0 − 1 if and only if t < 0.

Proof. From Eqs. (3.13) and (3.21) we have,

β0 = −t+
4 + κ

2
γ0, β1 = −t− κ

2
γ1,

so that
βtip − β1 =

κ

2
(γ0 + γ1)− 1 =

κ

2
b(γ0),

which is positive iff t < 0. �

5.2. Second tip and derivative exponents. Of particular interest here is the packing
spectrum associated with the β1 spectrum of whole-plane SLEκ (see Ref. [17] for a de-
tailed discussion of the different spectra of the harmonic measure and their relations),

s(t) := β1(t)− t+ 1 = −2t+
1

2
− 1

2

√
1− 2κt. (5.1)

In the domain t ≤ t1 < 0, s(t) is decreasing; its inverse is

t = −ν(s), ν(s) :=
s

2
+

1

16

(
κ− 4 +

√
(4− κ)2 + 16κs

)
, (5.2)

where, as remarked in Ref. [7, Section 4.4], ν(s) coincides with the non-standard multi-
fractal tip exponents as obtained in Ref. [4, Eq. (12.19)], or with the so-called derivative
exponents as obtained in Ref. [13, Eq. (3.1)] for standard (interior or exterior) radial SLE.
For ĝτ such a radial SLEκ of hull Kτ , the exponent ν describes the exponential decay
e−ν τ in time τ > 0, of the moment of the boundary derivative modulus, E [|ĝ′τ (z)|s], for
z ∈ ∂D\Kτ . It also governs the same exponential decay of the moment of order s, E [Lst ],
of the harmonic measure Lt of ∂D \Kτ in D \Kτ , as seen from the origin in the interior
case, or from infinity in the exterior case.

In the case of the interior whole-plane SLE, of map f0 from D to a slit domain [7], one
has f0 = limτ→+∞ e

τ ĝ−τ , which is in law the same as limτ→+∞ e
τ ĝ−1
τ , with ĝτ standard

interior radial SLE; in this limit, the unit circle is pushed back to infinity as eτ∂D. Ref. [7,
Section 4.4, Figure 8] then provides a heuristic explanation of the inverse relation between
(5.1) and (5.2) as due, in the integral means

∫
r∂D |f

′
0(z)|t|dz| where r → 1−, to the local

boundary contribution of the image under ĝτ of ∂D \Kτ , i.e., in the limit τ → +∞, of the
pre-image under f0 of the point at infinity.

The two whole-plane maps, interior f0 and exterior g−1
0 , are naturally conjugate under

the inversion map z 7→ 1/z, as are the interior and exterior versions of radial SLE ĝτ ; in
the exterior case, the unit circle shrinks as e−τ∂D to a vanishingly small circle around the
origin, to which the whole-plane SLE curve is anchored via this ‘second tip’. This strongly
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suggests that for bounded whole-plane SLE, the β1-spectrum is due to the presence of the
second tip, image of the point at infinity in the unbounded case.
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