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COMPLEX GENERALIZED INTEGRAL MEANS SPECTRUM OF DRIFTED
WHOLE-PLANE SLE & LLE

BERTRAND DUPLANTIER , YONG HAN, CHI NGUYEN, AND MICHEL ZINSMEISTER

ABSTRACT. We present new exact results for the complex generalized integral means
spectrum (in the sense of [DHLZ18]) for two kinds of whole-plane Loewner evolutions
driven by a Lévy process:

(1) The case of a Lévy process with continuous trajectories, which corresponds to Schramm-
Loewner evolution SLEκ with a drift term in the Brownian driving function. There is
no known result for its standard integral means spectrum, and we show that a natural
path to access it goes through the introduction of the complex generalized integral
means spectrum, which is obtained via the so-called Liouville quantum gravity.

(2) The case of symmetric Lévy processes for which we generalize results by Loutsenko
and Yermolayeva ([Lou12, LY13, LY14, LY19]).

Dedicated to the Memory of Krzysztof Gawedzki

1. INTRODUCTION

“Il apparut que, entre deux vérités du domaine réel, le chemin le plus facile et le plus
court passe bien souvent par le domaine complexe.”[It came to appear that, between two
truths of the real domain, the easiest and shortest path quite often passes through the com-
plex domain] (Paul Painlevé, 1900) [Pai00].

More than two decades ago, Oded Schramm [Sch00] introduced his celebrated theory of
random growth processes SLEκ. As an example, in the so-called chordal case in the half-
plane H, it consists of the one-parameter family of Loewner processes driven on the real
line ∂H by

√
κBt, where κ is a nonnegative number and Bt is standard one-dimensional

Brownian motion. This is the unique family of random processes satisfying a certain
Markov property with continuous driving function, that is symmetric with respect to the
imaginary axis. This theory may be generalized along two directions:

(1) One can drop symmetry with respect to the imaginary axis: one then considers
SLEκ with a drift term, e.g., the chordal Loewner process driven by a random
function of the form

λ(t) =
√
κBt + at,

where Bt is as before standard one-dimensional Brownian motion and a ∈ R.
(2) One can drop the continuity assumption while keeping symmetry: the process so

obtained is Loewner evolution driven by a Lévy process, called LLE (for Lévy-
Loewner evolution).

Notice that the first class of continuous drifted processes coincides with the whole class of
LLE processes with continuous trajectories. For κ = 0, the Loewner process generated by
λ(t) = at becomes deterministic. Several such deterministic chordal Loewner processes
were investigated in [KNK04, MR05, Lin05, LMR10].
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In this paper, we shall consider both extended classes in the whole-plane case. In order
to understand the multifractal spectra of these processes, such as their integral means spec-
tra (ims), and in the spirit of references [DNNZ15, DHLZ18, Lou12, LY13, LY14, LY19],
we shall first investigate the cases for which the expected complex moments,

E
[
|f ′(z)p|

∣∣∣∣( z

f(z)

)q∣∣∣∣] , p, q ∈ C,

may be computed explicitly, to become part of integrable probability. Here f stands for the
time 0 whole-plane map from D to the slit plane in the corresponding Loewner process.
Note that complex values of (p, q) are considered here in the case of whole-plane SLE
with drift. In agreement with the citation by P. Painlevé above, the suggested passage
by the complex plane will help us discover the precise form of the associated integral
means spectrum in the case of SLEκ with drift, via its complex and generalized versions
[DHLZ18]. We shall make use of the so-called Liouville quantum gravity, in the spirit of
[Dup00, DB02, Dup04, DMS21]. For the generalized spectrum of LLE processes, we shall
concentrate on (p = 2, q ∈ R) cases. Precise definitions are given in the next sections.

1.1. Interior whole-plane SLE. SLE is a particular case of a growth process called the
Loewner process, of which several variants exist, known as chordal, radial, dipolar, or
whole-plane [Law05, Bel19]. In this work we will consider the interior whole-plane case,
which is determined by a driving function λ : [0,+∞) → ∂D := {z ∈ C : |z| =
1} obtained as follows. Let us start by defining γ : [0,+∞) → C to be a continuous
function such that limt→+∞ |γ(t)| = +∞ and γ(t) 6= 0,∀t ≥ 0. Then, for each t > 0,
the slit domain Ωt = C\γ([t,∞)) is a simply connected domain containing 0. By the
Riemann Mapping Theorem, there exists a unique conformal map ft : D → Ωt such that
ft(0) = 0 and f ′t(0) > 0. By the Caratheodory convergence theorem, ft converges to
f0, the Riemann mapping of Ω0, as t → 0. We may assume without loss of generality
that f ′0(0) = 1 and, by re-parametrizing the curve if necessary, choose the normalization
f ′t(0) = et. Loewner’s theorem asserts that there exists a continuous function λ taking
values in the unit circle such that

∂

∂t
ft(z) = z

∂

∂z
ft(z)

λ(t) + z

λ(t)− z , lim
t→+∞

ft(e
−tz) = z, ∀z ∈ D. (1.1)

The Loewner method can be reversed: given a continuous function λ : [0,+∞) → ∂D,
the partial differential equation (1.1) has a unique solution ft(z), which is a conformal
map from D onto a domain Ωt, and the corresponding family (Ωt)t is increasing in t.
Nevertheless the domains Ωt need not be slit domains as in the example above.

Whole-plane SLEκ is the process driven by

λ(t) = ei
√
κBt ,

where κ ∈ [0,+∞) andBt is standard one-dimensional Brownian motion. Note that when
κ = 0, ft(z) = etz

(1−z)2 is the solution to (1.1), so that f0 is the Koebe function. Thus, as
κ→ 0+, whole-plane SLEκ may be seen as a stochastic perturbation of the Koebe map.

In this work, we generalize SLE by adding a drift term to Brownian motion, with a
driving function defined as

λ(t) := ei(
√
κBt+at), a ∈ R. (1.2)

The process driven by λ(t) then appears for small κ as a stochastic perturbation of the
(κ = 0, a 6= 0) case of the logarithmic spiral.



COMPLEX GENERALIZED INTEGRAL MEANS SPECTRUM OF DRIFTED WHOLE-PLANE SLE & LLE 3

1.2. Complex generalized integral means spectrum. Let f be a conformal map from
D to C with f(0) = 0, f ′(0) = 1. The generalized integral means spectrum of f was
originally defined in [DHLZ18] as follows: for any pair of real numbers (p, q), define the
integral moments, for r ∈ [0, 1),

Mf (p, q) :=

∫ 2π

0

rq
|f ′(reiθ)|p
|f(reiθ)|q dθ, r ∈ [0, 1). (1.3)

The generalized integral means spectrum is then defined as

βf (p, q) := lim sup
r→1−

[
logMf (p, q)/ log

(
(1− r)−1

)]
.

If the limit exists, then

Mf (p, q)
·∼ (1− r)−βf (p,q) , (1.4)

where the notation ‘ ·∼’ between two quantities stands for the equivalence of the logarithms
of these quantities [DHLZ18].

One recovers for q = 0 the standard integral means spectrum, βf (p) := βf (p, q = 0),
which is related by various Legendre transformations to the so-called multifractal spectra
[Man74, HP83, FP85, HJK+86a, HJK+86b], like those governing the moments of the
harmonic measure or the continuum of its local singularities [Mak98, GM08].

For a random simply connected domain as arising from a whole-plane Loewner process
with a random driving function like SLE, the question whether the equivalence (1.4) holds
almost surely is notoriously difficult. Earlier works dealt with the ‘expected spectrum’ for
Brownian motion [LW99, Dup99b], self-avoiding walk [Dup99b], percolation [Dup99a,
ASZ08], and SLE [Dup00, Dup03, Has02, Dup04, Dup06, BRGW05, RBGW07, BS09,
DNNZ15, BDZ17] as well as with the expected generalized spectrum of whole-plane SLE
[DHLZ18]. The almost sure case was solved only recently for the standard spectrum
of chordal SLE by Gwynne, Miller and Sun [GMS18] by using the so-called imaginary
geometry of Miller and Sheffield. (See also the earlier works [JVL12] for the SLE a.s. tip
spectrum and [ABV16] for the SLE a.s. boundary spectrum.)

The case of complex moments corresponds to the mixed multifractal spectrum of the
harmonic measure and logarithmic rotations of the conformal map [Bin97]. It was studied
in expectation in Refs. [DB02, DB08, BGIR08] for the chordal and radial SLE cases. We
shall consider here the whole-plane spectrum defined in expectation for complex moments,∫

r∂D
E
[
|f ′(z)p|

∣∣∣∣( z

f(z)

)q∣∣∣∣] |dz| ·∼ ( 1

1− r

)β(p,q)

, p, q ∈ C. (1.5)

It is then natural to introduce the one-point function

G(z) := E
[
|f ′(z)p|

∣∣∣∣( z

f(z)

)q∣∣∣∣] , p, q ∈ C. (1.6)

The setting chosen in (1.5) and (1.6) allows for complex values p, q ∈ C, which we shall
need to study the drift case. In the more general case of Lévy processes, we shall see that
their defining properties are exactly those needed to obtain a PDE satisfied by G (1.6),
as initiated in Refs. [Has02, BS09] and further developed in Refs. [DNNZ15, BDZ17,
DHLZ18] and [Lou12, LY13, LY14, LY19].
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1.3. Interior-exterior duality. As mentioned in [DHLZ18], it is interesting to remark
that the map f̂ ,

ζ ∈ C \ D 7→ f̂(ζ) := 1/f(1/ζ),

is just the exterior whole-plane map from C\D to the slit plane considered in Ref. [BS09]
by Beliaev and Smirnov and in Ref. [BDZ17]. We identically have for 0 < r < 1 and
p ∈ R, ∫

r−1∂D
E
(
|f̂ ′(ζ)|p

)
|dζ| = r2p−2

∫
r∂D

E
( |f ′(z)|p
|f(z)|2p

)
|dz|. (1.7)

We thus see that the standard integral mean of order (p, q = 0) for the exterior whole-plane
map studied in [BS09, BDZ17] coincides (up to an irrelevant power of r) with the (p, q′)
integral mean for q′ = 2p, for the interior whole-plane map.

Remark 1.1. Interior-Exterior Duality. By conformal inversion, we have for any p, q ∈ C,∫
r−1∂D

E

(∣∣∣∣∣ f̂ ′(ζ)p

f̂(ζ)q

∣∣∣∣∣
)
|dζ| = r2<p−2

∫
r∂D

E
(∣∣∣∣ f ′(z)p

f(z)2p−q

∣∣∣∣) |dz|, (1.8)

so that the (p, q) exterior integral means spectrum coincides with the (p, q′) interior in-
tegral means spectrum for q′ − p = p − q. In particular, the (p ∈ R, q′ = 0) interior
derivative moments studied in Ref. [DNNZ15] correspond to the (p, q = 2p) mixed mo-
ments of the exterior map.

1.4. Generalized spectrum for the logarithmic spiral. In this section we give an exam-
ple of a generalized integral means spectrum, which is deterministic and corresponds to
the κ = 0 case of the drifted SLEκ. It is nothing but the logarithmic spiral with parameter
a ∈ R (Fig. 1), i.e., the curve parametrized by

γ(t) = exp [(1 + ia)t] , t ∈ R. (1.9)

FIGURE 1. Logarithmic spiral γ(t) (1.9) for a = +5, restricted to t ≥ 0.
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1.4.1. Loewner process for the logarithmic spiral. Let us define, as before, Ωt := C \
γ[t,+∞) and let ft : D → Ωt be the associated Riemann map, i.e., the conformal map
such that

ft(0) = 0, f ′t(0) > 0. (1.10)
By the Koebe distorsion theorem, limt→−∞ f

′
t(0) = 0 and limt→+∞ f

′
t(0) = +∞. Then,

there exists t0 such that f ′t0(0) = 1. One also has that ft0(eiθ0) = γ(t0) = e(1+ia)t0 for
some θ0 ∈ [0, 2π). Consider now the function f̃t defined by

f̃t(z) := e(1+ia)tft0(e−iatz).

We have f̃t(0) = 0, f̃ ′t(0) = et, and

f̃t(e
i(θ0+at)) = e(1+ia)(t+t0) = γ(t+ t0). (1.11)

Hence from (1.11), f̃t : D→ Ωt+t0 is the Loewner process corresponding to the curve

γ̃(t) := γ(t+ t0), t ∈ R,

with the associated driving function λ̃(t) := ei(θ0+at).
Define then the curve,

η(t) := e−iθ0 γ̃(t), t ∈ R,
and the conformal map,

ht(z) := e−iθ0 f̃t(e
iθ0z).

One still has ht(0) = 0, h′t(0) = et, and ht(eiat) = η(t), so that ht is the Loewner map
corresponding to η(t) and the associated process is driven by λ(t) := eiat.
Notice that the curve η is obtained by a time-translation and a rotation of the logarithmic
spiral γ. Thus the integral means spectrum will be the same for the time zero Loewner
maps h0 and f̃0.

1.4.2. Complex generalized spectrum for the complete logarithmic spiral. We first focus
on the complete spiral, for which we first establish the following theorem.

Theorem 1.1. The complex generalized integral means spectrum of the complete loga-
rithmic spiral γ(t) = e(1+ia)t, t ∈ R, is given, for p, q ∈ C, by

β(p, q; a) = sup {0, β1(p, q; 0, a), β2(p, q; 0, a)} , (1.12)

where

β1(p, q; 0, a) := 2<
(
p− q
1− ia

)
+ <p− 1,

β2(p, q; 0, a) := −2<
(
p− q
1− ia

)
+ <p− 1.

(1.13)

Proof. Let us define on the unit disk D, the Moebius map ξ : z 7→ ξ(z) := i1−z
1+z

, and
consider the function Φ defined on D as,

Φ(z) := exp

[
2

1− ia log ξ(z)

]
=

(
i
1− z
1 + z

) 2(1+ia)

1+a2

, z ∈ D.

Define also the strip domain Sπ := {x+ iy : x ∈ R, 0 < y < π}. We know that z 7→ ξ(z)
conformally maps D onto upper half-plane H, while z 7→ log(z) conformally maps H onto
the strip Sπ. Lastly, z 7→ exp

(
2

1−iaz
)

conformally maps the strip domain Sπ onto C \ γ,
with a cut along the whole logarithmic spiral γ := {γ(t) = e(1+ia)t, t ∈ R}. Consequently,
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Φ is a conformal map from the unit disk D to the complement of the whole logarithmic
spiral γ, with Φ(1) = 0,Φ(−1) =∞.

It enjoys the useful property,

Φ′(z) =
2

1− ia
(

log ξ(z)
)′

Φ(z) = − 4

1− ia
Φ(z)

1− z2
. (1.14)

Owing to (1.14),the complex mixed moments of Φ read

Φ′(z)p

Φ(z)q
=

(
− 4

1− ia
1

1− z2

)p
1

Φ(z)q−p
, (1.15)

so that ∣∣∣∣Φ′(z)p

Φ(z)q

∣∣∣∣ =

∣∣∣∣(− 4

1− ia

)p∣∣∣∣× |Φ(z)p−q|
|(1− z2)p| . (1.16)

We have explicitly ∣∣(1− z2)p
∣∣ = |1− z|<p |1 + z|<p e−=p arg(1−z2), (1.17)

and ∣∣Φ(z)p−q
∣∣ = exp<

[
2(p− q)
1− ia log ξ(z)

]
. (1.18)

Setting b = b(p, q) := 2(p−q)
1−ia , we have < [b log ξ(z)] = <b log |ξ(z)| − =b= log ξ(z),

and since log ξ(z) ∈ Sπ, its imaginary part stays bounded. We thus have the following
(logarithmic) equivalence near the two possible singular points z = ±1,∣∣Φ(z)p−q

∣∣ ·∼ |ξ(z)|<b(p,q) =

∣∣∣∣1− z1 + z

∣∣∣∣<
2(p−q)
1−ia

. (1.19)

Using (1.16), (1.17), and (1.19), we finally arrive at∣∣∣∣Φ′(z)p

Φ(z)q

∣∣∣∣ ·∼ ∣∣∣∣1− z1 + z

∣∣∣∣<
2(p−q)
1−ia

|1− z|−<p |1 + z|−<p . (1.20)

Behaviour near infinity and near the origin. For z = reiθ near z = −1 (point at∞ on the
spiral), |1+z|2 = r2 +2r cos θ+1 behaves like (1−r)2 +(π−θ)2. Similarly, near z = +1
(point 0 on the spiral), |1 − z|2 behaves like (1 − r)2 + θ2. The integral of (1.20) along
the circle |z| = r for r → 1− is thus dominated near z = −1 by the contribution of the
angular neighbourhood of θ = π, while near z = +1 it is symmetrically dominated by that
of the angular neighbourhood of θ = 0. From the explicit form of the integrand (1.20), we
readily obtain the overall asymptotic behaviour as r → 1− of the integral means,∫

r∂D

∣∣∣∣Φ′(z)p

Φ(z)q

∣∣∣∣ |dz| ·∼ (1− r)−βΦ(p,q;a) , r → 1−, (1.21)

where the integral means spectrum βΦ is given by the largest exponent,

βΦ(p, q; a) := β1(p, q; 0, a) ∨ β2(p, q; 0, a) ∨ 0, (1.22)

with the two dual spectra defined as,

β1(p, q; 0, a) := 2< p− q
1− ia + <p− 1, (1.23)

β2(p, q; 0, a) := 2< q − p
1− ia + <p− 1. (1.24)

�
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Remark 1.2. Singularity localization. Exponent β1 is associated with the singularity near
z = −1 on D in (1.20), i.e., at infinity on the spiral, while β2 corresponds to that near
z = +1, i.e., near the tip at origin 0, around which the spiral indefinitely winds.

Remark 1.3. Conformal invariance by inversion and duality. The full logarithmic spiral
is conformally invariant under the complex inversion, z 7→ 1/z, since 1/γ(t) = γ(−t),
and t ∈ R. This inversion exchanges the roles of origin and infinity, and maps the interior
of D to its exterior. The complex generalized integral means spectrum then obeys the
duality property (1.1). Spectra (1.23) and (1.24) are indeed dual of each other under the
corresponding exchange q−p 7→ p− q, resulting in the expected invariance under duality
of the integral means spectrum βΦ (1.22) for the complete logarithmic spiral.

1.4.3. Complex generalized spectrum of the half spiral. Consider now h0(z), the confor-
mal map corresponding to the whole-plane Loewner process driven by eiat, stopped at time
t = 0, the image of which, γ(t) = e(1+ia)t, t ≥ 0, we may call the half spiral (Fig. 1). The
complex generalized integral means spectrum of the half logarithmic spiral is given by the
following theorem. (See Fig. 2.)

Theorem 1.2. The complex generalized integral means spectrum of h0, where ht is the
whole-plane Loewner process driven by λ(t) = eiat, and whose trace is the half logarith-
mic spiral γ(t) = e(1+ia)t, t ≥ 0, is given, for p, q ∈ C, by

β(p, q;κ = 0, a) = sup

{
−<p− 1, 0, β1(p, q; 0, a) = 2<

(
p− q
1− ia

)
+ <p− 1

}
. (1.25)

From this, one immediately deduces the following corollary, which yields the real gen-
eralized integral means spectrum of the half spiral.

Corollary 1.1. The real generalized integral means spectrum of h0, where ht is the whole-
plane Loewner process driven by λ(t) = eiat, and whose trace is the half logarithmic
spiral γ(t) = e(1+ia)t, t ≥ 0, is given, for p, q ∈ R, by

β(p, q;κ = 0, a) = sup

{
−p− 1, 0, β1(p, q; 0, a) = 2

p− q
1 + a2

+ p− 1

}
. (1.26)

This result for the real case, p, q ∈ R, is illustrated in Fig. 2.

Proof. • Behaviour near infinity. For t ≥ 0, the half spiral and whole spiral are identical,
thus have the same spectrum near infinity. So we use the conformal map Φ to calculate
the integral means spectrum near ∞, i.e., by considering the mixed moments (1.20) for
z → −1 only, as well as the corresponding contribution to integral (1.21). Because of
Remark 1.2, the associated spectrum is β1 (1.23).
• Behaviour near the tip. Let φ(z) := z

(1−z)2 , z ∈ D, with φ(−1) = −1
4
, φ(0) = 0, φ(1) =

∞, be the Koebe function, conformally mapping the unit disk to the straight cut plane as
D 7→ C \ (−∞,−1

4
]. Let g be the conformal map from C \ (−∞,−1

4
] to the plane cut by

the half spiral, Ω0 := C \ γ[0,∞), with g(0) = 0, g(−1
4
) = γ(0) = 1. Then h0 = g ◦ φ.

Notice that both g and g′ are bounded near φ(−1) = −1
4
, hence also h0 near z = −1. Let

us define r∂Dε := {z : |z| = r, |1 + z| < ε}, for some fixed ε such that 1− r < ε < 1, as
the neighbourhood along the circle r∂D of the pre-image z = −1 by h0 of the half spiral
tip γ(0) = 1. In this domain, we have the logarithmic equivalence, as r → 1−,∫

r∂Dε

∣∣∣∣h′0(z)p

h0(z)q

∣∣∣∣ |dz| ·∼ ∫
r∂Dε
|φ′(z)p||dz|, r → 1−.
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p

q

0

−p−1

2
1+a2

(p−q)+ p−1

FIGURE 2. The three phases of the generalized integral means spectrum
of the logarithmic spiral, with βtip(p;κ = 0) = −p− 1, β0(p;κ = 0) = 0,
β1(p, q;κ = 0, a) = 2

1+a2 (p− q) + p− 1 (Corollary 1.1).

We thus obtain that the integral means spectrum near the tip of the half spiral is the same
as the ims near the tip of the half line, which is simply,

βtip(p;κ = 0) := −<p− 1. (1.27)

• Bulk behaviour. Away from ∞ and the tip, the half spiral is rectifiable, and its bulk
integral means spectrum is trivial, β0(p;κ = 0) = 0. This ends the proof of Theorem
1.2. �

2. COMPLEX GENERALIZED SPECTRUM OF DRIFTED WHOLE-PLANE SLE

2.1. Introduction. In this section, we will predict the exact form of the generalized
integral means spectrum β1(p, q;κ, a) associated with the whole-plane SLEκ with drift
a. As we shall see, its most symmetric and simplest form is obtained for the complex
generalized spectrum where the exponents are complex variables p, q ∈ C. We shall
use a non-fully rigorous method inherited from theoretical physics. More specifically,
we use two-dimensional quantum gravity where the Euclidean Lebesgue measure is re-
placed by the Liouville quantum measure. This allows us to compute multifractal ex-
ponents in Liouville quantum gravity (LQG) for p ∈ C in the q = 0 case, and for any
a ∈ R. The conversion to the complex multifractal spectrum in the Euclidean plane is
then obtained by using the celebrated Knizhnik-Polyakov-Zamolodchikov (KPZ) relation
[KPZ88, DK89, Dav88, DS09, DS11a, RV11, DS11b, DMS21]. The final step to get
the complex generalized spectrum for q 6= 0 is then obtained via the introduction of the
packing spectrum,

s1(p, q;κ, a) := β1(p, q;κ, a)−< p+ 1, (2.1)
together with the fact that it is a function of variable p− q only.
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0D’0

D1

I

III

IVII

D

P0

(  )ptip

1
p q(     ),

(  )p0
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FIGURE 3. Phase transition lines for the generalized integral means spec-
trum of whole-plane SLEκ with no drift a = 0. The standard ims of the
q = 2p exterior version crosses phases I, II, III only, while the q = 0
standard ims of the interior version crosses phases I, II, IV (from Ref.
[DHLZ18]).

2.2. Driftless case. Let us denote by β(p, q;κ, a) the generalized integral means spectrum
of the whole-plane SLEκ with drift coefficient a. Ref. [DHLZ18] studied the a = 0 case,
for which it is shown that β(p, q;κ, a = 0) has four possible forms, of which three are
independent of q,

βtip(p;κ) := −p− 1 +
1

4

(
4 + κ−

√
(4 + κ)2 − 8κp

)
, (2.2)

β0(p;κ) := −p+
4 + κ

4κ

(
4 + κ−

√
(4 + κ)2 − 8κp

)
, (2.3)

βlin(p;κ) := p− (4 + κ)2

16κ
, (2.4)

β1(p, q;κ, a = 0) := p+ 2(p− q)− 1

2
− 1

2

√
1 + 2κ(p− q). (2.5)

The separatrices between the different phases are located as follows [DHLZ18, Theorem
1.7] (See Fig. 3.) For p ≤ −1 − 3κ

8
there is a (quartic) curve ending at point Q0 : p′0 =

−1− 3κ
8
, q′0 = −2− 7κ

8
, that separates the half-plane into two parts, β being equal to βtip

above that curve and to β1 below it. In the strip −1− 3κ
8
≤ p ≤ 3(4+κ)2

32κ
, there is a section

of parabola joining Q0 to point P0 = (p0, q0), with

p0 =
3(4 + κ)2

32κ
, q0 =

(4 + κ)(8 + κ)

16κ
, (2.6)

that separates the strip into two parts, an upper one where β = β0 and a lower one where
β = β1. Finally the half-plane p ≥ p0 is similarly split by the half-line with unit slope
starting at P0 into an upper part where β = βlin, while β = β1 in the lower part. It should
be noticed that the generalized spectrum β is not everywhere the maximum of the four
spectra listed above [DHLZ18].

The existence of these phase transition lines was established in [DHLZ18] within a
connected semi-infinite domain of the (p, q) plane, as indicated in Fig. 4. This domain of
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FIGURE 4. Domains of validity of the proofs in the driftless case a = 0,
κ = 8/3 (from Ref. [DHLZ18]).

validity sweeps the plane from its upper-left part up to a piecewise boundary first made,
for increasing values of p, of the dotted green parabola up to its intersection with the
straight line D2 of equation p − q = 1 + κ

2
. It then follows this line up to its intersection

P3 =
(

1 + 2
κ
, 4−κ2

2κ

)
with the red parabola. From there, the boundary is made of the

section of red parabola up to point P0 (2.6), followed by the straight line D1 of equation
q− p = 16−κ2

32κ
. These restrictions to the domain of proof are due to technicalities involved

in the proofs [DNNZ15, BDZ17, DHLZ18], and the spectrum is supposed to be still given
by β1 in the whole connected domain located to the right of the piecewise boundary just
described. Recent work by Xuan Hieu Ho extends the domain of validity to the whole
interior of the red parabola [Ho22].

2.3. Drift case.

Claim 2.1. For p, q ∈ C, and a = 0, the complex spectrum of whole-plane SLE can be
obtained by combining Liouville quantum gravity and Coulomb gas methods. It is

β1(p, q;κ, a = 0) = s1(p− q;κ, a = 0) + <p− 1 (2.7)

s1(p− q;κ, a = 0) = s1(τ) := 2τ +
1

2
− 1

2

√
1 + 2κτ, (2.8)

1 + 2κτ :=
1

2
{1 + 2κ<(p− q) + |1 + 2κ(p− q)|} . (2.9)

Claim 2.2. For a 6= 0, the complex spectrum of whole-plane SLE with drift is given by an
extension of the above proofs, as

β1(p, q;κ, a) = s1(p− q;κ, a) + <p− 1 (2.10)

s1(p− q;κ, a) = s1(τ) := 2τ +
1

2
− 1

2

√
1 + 2κτ, (2.11)

1 + 2κτ :=
1

2

{
<
[
(1 + ia)2 + 2κ(p− q)

]
+
∣∣(1 + ia)2 + 2κ(p− q)

∣∣} . (2.12)
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Remark 2.1. In the limit κ → 0, the integral means spectrum (1.23) of the half-spiral is
recovered from (2.10) (2.11), by observing that the expansion to order O(κ) of the r.h.s. of
(2.12) indeed yields τ = <

(
p−q
1−ia

)
.

As we shall see in Section 3.4, this complex spectrum yields the correct answer along
an integrable complex parabola in the complex space (p, q) ∈ C2.

In the real moment case, (p, q) ∈ R2, the generalized integral means spectrum β1(p, q;κ, a)
associated with whole-plane SLEκ with drift a is given by the explicit formulae:

β1(p, q;κ, a) = p+ 2τ − 1

2
− 1

2

√
1 + 2κτ, (2.13)

1 + 2κτ :=
1

2

{
1− a2 + 2κ(p− q) +

√
[1− a2 + 2κ(p− q)]2 + 4a2

}
. (2.14)

Corollary 2.1. Eq. (2.14) can be inverted into:

p− q = τ

(
1 +

a2

1 + 2κτ

)
. (2.15)

Therefore the phase transition lines in the (p, p − q) plane for a 6= 0 are obtained from
those for a = 0 by the non-linear transform,

p 7→ p,

p− q = τ 7→ p− q = τ

(
1 +

a2

1 + 2κτ

)
. (2.16)

In the work [DHLZ18], the location of the various phase transition lines in the case
of whole-plane SLE without drift was established with the help of several master curves:
a so-called ‘red parabola’ where the one-point function G (1.6) is integrable, a so-called
‘green parabola’ where the spectrum changes from β0 to β1, and a ‘blue quartic’ where
it changes from βtip to β1, as well as several straight lines, like D′0 where the spectrum
changes from βtip to β0, D0 where it changes from β0 to βlin, and D1 where it changes
from βlin to β1 (Fig. 3). These curves are also instrumental in delimiting the domains of
validity of the proofs (Fig. 4). Applying the non-linear transform (2.16) in the (p, q − p)
plane to these curves yields the corresponding curves in the case of whole-plane SLE with
drift. They are illustrated in Figs. 5 and 6.

p

q−p

P0

D0

D1

∆0

FIGURE 5. Non-linear mapping (2.16) of the red and green parabolae and
blue quartic of Ref. [DHLZ18] (here κ = 2, a = 1).
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q−p

P0

D0

D1

D′0

Q0 D2

P1

P2

FIGURE 6. Non-linear mapping (2.16) of the domains of validity of the
proofs, as shown in Fig. 4 from [DHLZ18] (here κ = 2, a = 1).

p

q−p

P0

D0

D1

D′0

Q0βtip(p)

β0(p)
βlin(p)

β1(p, q; a)

I

II

III

IV

FIGURE 7. Phase transition lines for the generalized integral means spec-
trum of simple whole-plane SLEκ with drift (here κ = 2, a = 1). The
first bisector with q = 2p (orange continuous line) corresponds to the stan-
dard integral means spectrum (ims) for the exterior case which crosses only
phases I, II and III, whereas the second bisector with q = 0 (orange dotted
line) yields the standard ims for the interior case, which does enter phase
IV with the β1 spectrum.

2.3.1. Phase diagram. Various cases, relative to the values of parameters κ and a, and
drawn thanks to the non-linear mapping (2.16), are depicted in Figs. 7, 8, 9, and 10. In
these figures, it is especially interesting to focus on the standard integral means spectra in
the p, q − p plane, obtained for the whole-plane exterior version, along the line q = 2p,
hence q − p = p (first bisector, golden continuous line), and for the whole-plane interior
version along the line q = 0, hence q − p = −p (second bisector, golden dotted line).

Point P0 (2.6) in the drift-less case yields a value of t0 := p0 − q0 = κ2−16
32κ

, so that
1 + 2κt0 = κ2/2. The position of the translated point P0 = (p0, q̃0) in the presence of drift
a is given by Eq. (2.16) as

q̃0 = p0 +
16− κ2

32κ

(
1 +

16a2

κ2

)
. (2.17)
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FIGURE 8. Phase transition lines for the generalized integral means spec-
trum of simple whole-plane SLEκ with drift (here κ = 2, a = 2). The
standard ims in the q = 2p exterior case crosses all four phases in the order
I, II, IV and III, while the q = 0 standard ims in the interior case crosses
phases I, II and IV.

p

q−p

P0

D0

D1

D′0

Q0

βtip(p)

β0(p)
βlin(p)

β1(p, q; a)

I

II
III

IV

FIGURE 9. Phase transition lines for the generalized integral means spec-
trum of non-simple whole-plane SLEκ with drift (here κ = 6, a = 2). The
successive phase crossings of the two standard ims bisector lines are anal-
ogous to those depicted in Fig. 7.

To determine whether the first bisector enters region IV as in Fig. 8, so that the exterior
standard whole-plane spectrum has a β1 component, or avoids it as in Fig. 7, we need
to know the sign of q̃0 − 2p0. If positive, the first bisector passes below P0 so that it
successively traverses regions I, II, IV and III as in Fig. 8. Owing to (2.6), this happens
for

a2

κ2
≥ a0(κ) :=

1

4

2 + κ

4− κ, κ < 4. (2.18)

This phenomenon thus occurs only for simple SLEκ<4 curves, and for a sufficiently strong
drift term a. Otherwise, one is in the configuration of Figs. 7, 9, and 10 for the first
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β1(p, q; a)

I

II

III

IVIV

FIGURE 10. Phase transition lines for the generalized integral means spec-
trum of non-simple whole-plane SLEκ with drift (here κ = 6, a = 8). The
standard ims in the q = 2p exterior case crosses phases I, II, III only, while
the q = 0 standard ims in the interior case crosses all four phases in the
order I, II, III and IV.

bisector, and the β1 spectrum does not appear in the standard ims of the exterior whole-
plane SLE with drift.

To determine whether the second bisector enters region III and crosses all four phases
as in Fig. 10, so that the interior standard whole-plane spectrum has a linear component
βlin, or whether it avoids the linear phase III as in Fig. 9, we need to know the position
of P0 with respect to that bisector, hence the sign of q̃0. If negative, the second bisector
passes above P0, so that it successively traverses regions I, II, III and IV as in Fig. 10.
This happens for

a2

κ2
≥ ã0(κ) :=

1

8

8 + κ

κ− 4
, κ > 4. (2.19)

This phenomenon thus occurs only for non-simple SLEκ>4 curves, and for a sufficiently
strong drift term a. Otherwise, one is in the configuration of Figs. 7, 8, and 9 for the
second bisector, and the βlin spectrum does not appear in the standard ims of the interior
whole-plane SLE with drift, which takes the successive forms βtip, β0, β1.

Remark 2.2. The two conditions on the reduced drift parameter, a/κ ≥ a0(κ), in fact obey
SLE duality [Dup00, Dup04, Dup06, Zha08, Dub09]. Defining the dual SLE parameter
κ′ = 16/κ, with κ′ > 4 and κ < 4, one checks that ã0(κ′) = ã0(16/κ) = a0(κ). The
occurence here of this reduced drift parameter a/κ may seem natural, if one recalls that
the quadratic variation of

√
κBt + at is κt and its mean at.

2.4. Derivation of Claims 2.1 and 2.2.

2.4.1. Discourse on the Method. We are going to use here a Liouville quantum gravity
(LQG) approach, which historically gave the first derivation of the standard SLE multi-
fractal spectrum [Dup00], which was later confirmed by a standard mathematical approach
[BS09, BDZ17, GMS18]. It is based on the celebrated Knizhnik-Polyakov-Zamolodchikov
(KPZ) relation [KPZ88, Dav88, DK89] between scaling exponents in the Euclidean plane,
and their counterparts under a random LQG measure that gives the scaling limit of the
area measure on a random planar map. The KPZ relation is now mathematically proved
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[DS11a, RV11, DRSV14]. Although the LQG method, which originates in theoretical
physics, is heuristic and not fully rigorous, it often offers the quickest and most natural
path to the derivation of scaling exponents and multifractal spectra. It is also intimately
related to the recently developed and rigorous wedge-welding theory in Liouville quantum
gravity [She16, DMS21] (See in particular Appendix B in [DMS21] for a mathematically
precise description of the KPZ interpretation.)

2.4.2. Derivation of Claim 2.1. Let us first recall that in the original work on whole-plane
SLE [DNNZ15], the novel integral means spectrum, β1(p;κ) := β1(p; q = 0;κ, a = 0),
derived there for p ∈ R, was related to some Liouville quantum gravity results obtained in
[Dup04]. (See [DNNZ15, Section 1.3].) It was found that the related packing spectrum,
defined as,

s1(p;κ) := β1(p;κ)− p+ 1, (2.20)

is given by

s1(p) = s1(p;κ) := 2p+
1

2
− 1

2

√
1 + 2κp. (2.21)

When seen as a function of p, it has for inverse in terms of s = s1,

p =
s

2
+
κ

8
U−1
κ (s),

where we defined

U−1
κ (x) :=

1

2κ

(
κ− 4 +

√
(4− κ)2 + 16κx

)
,

Uκ(x) :=
1

4
x (κx+ 4− κ) ,

Vκ(x) := Uκ
(

1

2

(
x+ 1− κ

4

))
=

1

16κ

[
κ2x2 − (4− κ)2

]
.

Here Uκ is the KPZ function of Liouville quantum gravity adapted to SLEκ, while Vκ is an
associated function that relates boundary scaling dimensions to bulk ones [Dup04, Dup06].
Here we generalize methods introduced in [Dup00, DB02] and expounded in [Dup04,
Dup06], and use notations similar to those of [Dup04], Section 8. For simplicity, we first
implicitly assume SLE paths to be simple, i.e., with κ ≤ 4, since the quantum gravity
composition rules differ for the simple and non-simple phases of SLE [Dup04, Dup06].
Nevertheless, the results obtained also hold for κ > 4. One has the set of identities,

p = x1(s)− x1, (2.22)

x1(s) := 2Vκ
[
U−1
κ (s) + U−1

κ (x̃1)
]
, (2.23)

x1 := x1(0) =
1

8κ
(6− κ)(2− κ), (2.24)

x̃1 :=
6− κ

2κ
, U−1

κ (x̃1) =
2

κ
. (2.25)

The scaling exponent x1(s) geometrically corresponds to a configuration where the SLE
tip is locally avoiding a bunch of s independent Brownian paths. The tip here should be
understood as the so-called SLE ‘second tip’ at the origin [BDZ17], after inversion of
unbounded (interior) whole-plane SLE [DNNZ15], as in Beliaev and Smirnov’s bounded
(exterior) version of whole-plane SLE [BS09, BDZ17].
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In the LQG approach, s independent Brownian paths avoiding an SLE path near its tip
are conformally equivalent to a certain number k(s) of mutually-avoiding SLEs in a star
configuration, given by

k(s) = 1 +
U−1
κ (s)

U−1
κ (x̃1)

, (2.26)

such that x1(s) = 2Vκ(2k(s)/κ). When p ∈ C, its imaginary part t̃ := =p corresponds
to exponentially weighting by exp(t̃ arg C) the mutually-avoiding SLE-Brownian path
configurations C, with local winding angle arg C around the tip. One can then show by
Coulomb gas arguments [DB02, Dup04, DB08] that the new scaling exponent associated
with the tip is

x̂1(s, t̃) := x1(s)− κ

2

t̃ 2

k2(s)
. (2.27)

The average logarithmic spiral rotation rate a near the tip is then obtained by Legendre
transformation as [DB02, Dup04],

a =
∂

∂t̃
x̂1(s, t̃). (2.28)

On the other hand, the real part of p, t := <p, is now given by the generalization of (2.22),

<p = t = x̂1(s, t̃)− x1, (2.29)

whereas the packing spectrum for complex p, s = s1(p;κ) = β1(p;κ) − <p + 1, is still
given by (2.21), but now in terms of the reduced variable τ ,

τ := x1(s)− x1, (2.30)

s = s1(τ) = 2τ +
1

2
− 1

2

√
1 + 2κτ. (2.31)

From Eqs. (2.23), (2.26), we find the simple identity [DB02, Dup04]

1

2κ
k2(s) = x1(s) + b, b =

(4− κ)2

8κ
. (2.32)

We thus find for (2.27) the simple formula,

x̂1(s, t̃) = x1(s)− 1

4

t̃2

x1(s) + b
, (2.33)

from which (2.29) gives,

t = x̂1(s, t̃)− x1 = x1(s)− x1 −
1

4

t̃2

x1(s)− x1 + c

= τ − 1

4

t̃2

τ + c
, c := b+ x1 =

1

2κ
. (2.34)

Eq. (2.34) is then inverted into

τ =
1

2

(
t− c±

√
(t+ c)2 + t̃2

)
, (2.35)

which can be recast as

1 + 2κτ =
1

2
(1 + 2κt)± 1

2

√
(1 + 2κt)2 + 4κ2t̃2. (2.36)
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For t̃ = 0, we have τ = t, which selects the (+)-branch in (2.36), and recalling that
t = <p, t̃ = =p, we obtain

1 + 2κτ =
1

2
(1 + 2κ<p) +

1

2

√
(1 + 2κ<p)2 + 4κ2=p2, (2.37)

which is the announced complex formula (2.14) for p ∈ C, q = 0. When q 6= 0, we
invoke the general validity of the observation made in Ref. [DHLZ18] that the generalized
packing spectrum, s1(p, q;κ, a = 0) = β1(p, q;κ, a = 0)−<p+ 1, solely depends on the
reduced variable p− q, hence s1(p, q;κ, 0) = s1(p− q, 0;κ, 0). �

2.4.3. Derivation of Claim 2.2. When a 6= 0, we modify the above aproach as follows. In
the absence of Brownian paths, s = 0, (2.33) becomes, since x1(0) = x1,

x̂1(0, t̃) = x1(0)− 1

4

t̃2

x1(0) + b
= x1 −

κ

2
t̃2. (2.38)

The spiral rotation rate a then corresponds via (2.28) to a parameter t̃0 such that,

a = −κt̃0, x̂1(0, t̃0) = x1 −
a2

2κ
. (2.39)

Re-centering around the spiralling rate a, we define, instead of (2.33),

x̂1(s, t̃) := x1(s)− 1

4

(t̃− t̃0)
2

x1(s) + b
, (2.40)

and substitute to (2.29), (2.34)

t = x̂1(s, t̃)− x̂1(0, t̃0) = x1(s)− x1 +
a2

2κ
− 1

4

(t̃− t̃0)
2

x1(s)− x1 + c

= τ +
a2

2κ
− 1

4

(t̃− t̃0)
2

τ + c
, c =

1

2κ
, t̃0 = −a

κ
. (2.41)

Thus, instead of (2.35) we find

τ =
1

2

t− c− a2

2κ
±
√(

t+ c− a2

2κ

)2

+ (t̃− t̃0)2

 . (2.42)

By again selecting the (+)-branch, and recalling that t = <p, t̃ = =p, this can finally be
written as

1 + 2κτ =
1

2
(1− a2 + 2κt) +

1

2

√
(1− a2 + 2κt)2 + 4(a+ κt̃)2,

=
1

2

{
<
[
(1 + ia)2 + 2κp

]
+
∣∣(1 + ia)2 + 2κp

∣∣} . (2.43)

This is the announced result (2.12) for p ∈ C, q = 0. Again, for q 6= 0, we invoke the fact
[DHLZ18] that the generalized packing spectrum, s1(p, q;κ, a) = β1(p, q;κ, a)−<p+ 1,
solely depends on the reduced variable p− q. �

3. INTEGRABLE PROBABILITY FOR DRIFTED WHOLE-PLANE SLE

In order to anticipate the next section, let us put the computations in a more general
setting.
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3.1. Some background on Lévy processes.

Definition 3.1. A Lévy process is a stochastic process (Lt)t≥0 such that
(1) L0 = 0 (a.s);
(2) For any discrete ordered set {ti, i ∈ In := {0, · · · , n}}, such that t0 = 0 and

0 ≤ ti < ti+1, ∀i ∈ In−1, the successive increments ,Lti+1
− Lti , i ∈ In−1, are all

mutually independent;
(3) For any 0 ≤ s ≤ t, Lt − Ls has the same law as Lt−s.
(4) Lt is continuous in probability, limt→0 P(|Lt−L0| > ε) = 0, ∀ε > 0, which rules

out fixed discontinuities of the path t 7→ Lt.

Notice that Brownian motion is a special Lévy process, and a general difference with
Brownian motion is that random jumps are allowed. The characteristic function of a Lévy
process Lt has the form

E[eiξLt ] = e−tη(ξ), (3.1)
where η, called the Lévy symbol, is a continuous complex function of ξ ∈ R, satisfying
η(0) = 0 and η(−ξ) = η(ξ). If η(−ξ) = η(ξ), Lt is a symmetric Lévy process. For
Brownian motion, the Lévy symbol is η(ξ) = ξ2

2
. More generally, the function

η(ξ) =
|ξ|α
2
, α ∈ (0, 2],

is the Lévy symbol of the so-called α−stable process.

3.2. Derivation of the PDE. The inner whole-plane Loewner process driven by the real-
valued function Lt is defined as the solution of the ODE in C [Law05],{

∂tgt(z) = gt(z)gt(z)+λ(t)
gt(z)−λ(t)

lim
t→+∞

etgt(z) = z, ∀z ∈ C, (3.2)

where λ(t) = eiLt , and where gt is (a priori) a mapping from C to D. Its inverse function
ft := g−1

t obeys the PDE (1.1),{
∂tft(z) = zf ′t(z)λ(t)+z

λ(t)−z

lim
t→+∞

ft(e
−tz) = z, ∀z ∈ D, (3.3)

where ft is now a mapping from D to the domain Ωt = C\Kt, where the connected setKt

is the hull of the Loewner process. In this section, we will assume Lt to be a Lévy process.
The (complex) average integral means spectrum of the conformal map f = f0, where ft
is defined by (3.3), describes the singular behavior of the expectation,

E[|f ′(z)p|] = E
[
f ′(z)

p
2 f ′(z)

p̄
2

]
, p ∈ C. (3.4)

Similarly to the method used in [DHLZ18], we shall consider the Lévy-Loewner evolution
(LLE) two-point function for z1, z2 ∈ D, defined as,

G(z1, z2) := E

z q21 f ′(z1)
p
2

f(z1)
q
2

z
q̄
2
2

f ′(z2)
p̄
2

f(z2)
q̄
2

 , p, q ∈ C. (3.5)

The moment (3.4) is the value G(z, z̄) at coinciding points z1 = z2 = z, for the case
q = q̄ = 0. Following essentially the same approach as was introduced in [BS09, BDZ17,
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DHLZ18], we aim at finding a partial differential equation satisfied by G.

Since ft obeys a PDE instead of an ODE, the use of Itô calculus is problematic. A way
to overcome this difficulty [BS09] is to consider the ODE (3.2) for negative times, and
then compare the reverse function g−t to the inverse g−1

t . The details are as follows.
For any fixed s, define the auxiliary function g(s)

t such that: g(s)
t (z) = e−tz for t >

s, while for t ≤ s, g(s)
t is the solution to the differential equation (3.2) with the initial

(continuity) condition g(s)
s (z) = e−sz,∂tg

(s)
t (z) = g

(s)
t (z)

g
(s)
t (z)+λ(t)

g
(s)
t (z)−λ(t)

g
(s)
s (z) = e−sz.

(3.6)

Lemma 3.1. With gt and g(s)
t defined as above, we have, for any t ∈ R,

lim
s→+∞

g
(s)
t (z) = gt(z).

This lemma is just the interior version of the following result by Lawler [Law05] for the
exterior whole-plane case.

Lemma 3.2. [Law05, Prop. 4.21] Let g̃t(z) be the solution of the differential equation,∂tg̃t(z) = g̃t(z) λ̃(t)+g̃t(z)

λ̃(t)−g̃t(z)

lim
t→−∞

etg̃t(z) = z, ∀z ∈ C\{0}. (3.7)

For any fixed s, define g̃(s)
t (z) as: g̃

(s)
t (z) = e−tz if t ≤ −s; for t ≥ −s, g̃(s)

t (z) is
the solution of the above differential equation with initial value g̃(s)

−s(z) = esz. Then
lim

s→+∞
g̃

(s)
t (z) = g̃t(z).

In order to prove that Lemma 3.1 follows from 3.2, one applies complex inversion and
time reversal so as to define, g̃(s)

t (z) := 1/g
(s)
−t (1/z) and λ̃(t) := 1/λ(−t), where g(s)

t (z) is
defined by (3.6). Then g̃(s)

t satisfies Lemma 3.2 and for s→ +∞, it converges to the limit
g̃t obeying (3.7). It then finally suffices to check that gt(z) := 1/g̃−t(1/z) satisfies (3.2).

We then define a reversed radial LLE, as the solution to the ODE in the unit disk D,

∂tf̃t(z) = f̃t(z)
f̃t(z) + λ(t)

f̃t(z)− λ(t)
, f̃0(z) = z, ∀z ∈ D. (3.8)

Lemma 3.3. For ft as defined in (3.3) and f̃t as defined in (3.8), we have the equivalence
in law,

lim
t→+∞

etf̃t(z)
(law)
= f0(z). (3.9)

Proof. For any fixed s > 0, let g(s)
t be as above. Then we have g(s)

t (z)
(law)
= f̃t

(
g

(s)
0 (z)

)
,

because both obey (3.6), and they coincide at t = 0 because of the initial condition in

(3.8). We then have, etf̃t(z)
(law)
= etg

(s)
t

(
(g

(s)
0 )−1(z)

)
. Letting t = s, we get

etf̃t(z)
(law)
= (g

(t)
0 )−1(z),

and if we let t→ +∞, by Lemma 3.1 we have lim
t→+∞

etf̃t(z)
(law)
= g−1

0 (z) = f0(z). �
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Let us define the auxiliary, time-dependent, radial variant of the LLE two-point function
G(z1, z̄2) (3.5),

G̃(z1, z̄2, t) := E

z q21 f̃ ′t(z1)
p
2

f̃t(z1)
q
2

z
q̄
2
2

f̃ ′t(z2)
p̄
2

f̃t(z2)
q̄
2


= E

[
z
q
2
1 Xt(z1)z

q̄
2
2 Yt(z̄2)

]
, (3.10)

where f̃t is the reversed radial Loewner process (3.8), together with the shorthand nota-
tions,

Xt(z) :=
f̃ ′t(z)

p
2

f̃t(z)
q
2

, Yt(z̄) := Xt(z) =
f̃ ′t(z)

p̄
2

f̃t(z)
q̄
2

.

By (3.9), the two-point function G(z1, z̄2) (3.5) is the limit

lim
t→+∞

e<(p−q)tG̃(z1, z̄2, t) = G(z1, z̄2). (3.11)

As explained in [BS09], the idea is then to construct a martingaleMs related to G̃. The
vanishing of the drift term in its Itô derivative then yields a partial differential equation
obeyed by G̃.

For s ≤ t, define the two-point martingale (Ms)t≥s≥0 with

Ms := E[Xt(z1)Yt(z̄2)|Fs],
where the random variable is integrable for fixed z1 and z2, and where Fs is the σ-algebra
generated by the Lévy process filtration {Lu, u ≤ s}. By the Markov property of the Lévy
process, we know that for any s ≤ t,

f̃t(z)
(law)
= λ(s)f̃t−s(f̃s(z)/λ(s)). (3.12)

Therefore,
Ms = Xs(z1)Ys(z̄2)G̃(z1,s, z̄2,s; τ), τ := t− s,∀τ > 0, (3.13)

where

z1,s :=
f̃s(z1)

λ(s)
, z̄2,s :=

(
f̃s(z2)

λ(s)

)
= f̃s(z2)λ(s).

In order to prepare for Itô calculus, we have [DHLZ18, Section 4, Eqs. (47-49)]

dXs(z1) =Xs(z1)

[
p

2
− q

2
− p

(1− z1,s)2
+

q

1− z1,s

]
ds, (3.14)

dYs(z̄2) =Ys(z̄2)

[
p̄

2
− q̄

2
− p̄

(1− z̄2,s)2
+

q̄

1− z̄2,s

]
ds, (3.15)

∂z1,s

∂s

∣∣
λ(s)

=z1s
z1,s + 1

z1,s − 1
,
∂z̄2,s

∂s

∣∣
λ(s)

= z̄2,s
z̄2,s + 1

z̄2,s − 1
. (3.16)

Let us writeMs as a formal function of two variables,

H(s, Ls) :=Ms = Xs(z1)Ys(z̄2)G̃(z1,s, z̄2,s, t− s).
It is a (local) martingale for all s ≤ t, thus by Itô calculus its total s-derivative vanishes,

ΛH(s, Ls) + ∂sH(s, Ls) = 0,
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where Λ is the generator of the Lévy process Ls.
We have from Eqs. (3.14), (3.15), (3.16),

∂sH = H

[
p

2
− q

2
− p

(1− z1,s)2
+

q

1− z1,s

]

+H

[
p̄

2
− q̄

2
− p̄

(1− z̄2,s)2
+

q̄

1− z̄2,s

]
−Xs(z1)Ys(z̄2)∂τ G̃(z1,s, z̄2,s, t− s)

+Xs(z1)Ys(z̄2)∂z1G̃(z1,s, z̄2,s, t− s)z1s
z1,s + 1

z1,s − 1

+Xs(z1)Ys(z̄2)∂z̄2G̃(z1,s, z̄2,s, t− s)z̄2,s
z̄2,s + 1

z̄2,s − 1
,

where τ := t − s. Since neither Xs(z) nor its complex conjugate Ys(z) vanish in D, we
deduce that

−ΛG̃(z1,s, z̄2,s, t− s) = G̃(z1,s, z̄2,s, t− s)
[
p

2
− q

2
− p

(1− z1,s)2
+

q

1− z1,s

]
+ G̃(z1,s, z̄2,s, t− s)

[
p̄

2
− q̄

2
− p̄

(1− z̄2,s)2
+

q̄

1− z̄2,s

]
− ∂τ G̃(z1,s, z̄2,s, t− s) + ∂z1G̃(z1,s, z̄2,s, t− s)z1s

z1,s + 1

z1,s − 1

+ ∂z̄2G̃(z1,s, z̄2,s, t− s)z̄2,s
z̄2,s + 1

z̄2,s − 1
. (3.17)

Notice that by (3.11), it holds that, as t→ +∞,

<(p− q) exp [<(p− q)t] G̃(z1, z̄2, t) + exp [<(p− q)t] ∂tG̃(z1, z̄2, t)→ 0,

so that
lim
t→+∞

exp [<(p− q)t] ∂tG̃(z1, z̄2, t) = −<(p− q)G(z1, z2). (3.18)

Multiplying both sides of (3.17) by exp [<(p− q)(t− s)], and letting t→ +∞, we get

−ΛG(z1, z̄2) = G(z1, z̄2)

[
p

2
− q

2
− p

(1− z1)2
+

q

1− z1

]
+G(z1, z̄2)

[
p̄

2
− q̄

2
− p̄

(1− z̄2)2
+

q̄

1− z̄2

]
+ <(p− q)G (z1, z̄2)

+ ∂z1G(z1, z̄2)z1
z1 + 1

z1 − 1
+ ∂z̄2G(z1, z̄2)z̄2

z̄2 + 1

z̄2 − 1
. (3.19)

We finally get that G(z1, z̄2) satisfies P(D)G(z1, z̄2) = 0, where

P(D) := Λ + z1
z1 + 1

z1 − 1
∂z1 + z̄2

z̄2 + 1

z̄2 − 1
∂z̄2 + p− q + p̄− q̄

− p

(1− z1)2
+

q

1− z1

− p̄

(1− z̄2)2
+

q̄

1− z̄2

. (3.20)
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Recall the definition of Λ acting on a C∞(R2) function u,

Λu(x) = lim
t↓0

1

t
(Ex[u(Lt)]− u(x)) .

For k, l ∈ Z, we have for z = reiθ,

Λ(zkz̄l) = rk+lΛ(eiθ(k−l)) = rk+l lim
t↓0

1

t

(
Eθ[ei(k−l)Lt ]− ei(k−l)θ

)
= rk+l lim

t↓0

1

t
(e−tη(k−l) − 1) ei(k−l)θ = −η(k − l)zkz̄l, (3.21)

where η is the Lévy symbol of Lt.

3.3. Drifted Brownian motion. In this section, we consider the special Lévy process
Lt = at +

√
κBt, where a ∈ R, κ ≥ 0 and Bt is standard one-dimensional Brownian

motion. These processes are the most general Lévy processes with a.s. continuous trajec-
tories. By definition of the Lévy symbol

E[eiξLt ] = E[eiξ(at+
√
κBt)] = eiaξt−t

κ
2
ξ2

= e−tη(ξ).

So

η(ξ) =
κ

2
ξ2 − iaξ.

By (3.21), we have

Λ(zkz̄l) = −η(k − l)zkz̄l =
(
−κ

2
(k − l)2 + ia(k − l)

)
zkz̄l,

so that the Lévy generator in the Brownian drift case is explicitly

Λ = −κ
2

(z∂z − z̄∂z̄)2 + ia(z∂z − z̄∂z̄).

The operator in (3.20) thus becomes

P(D) =− κ

2
(z1∂z1 − z̄2∂z̄2)2 + z1

(
z1 + 1

z1 − 1
+ ia

)
∂z1

+z̄2

(
z̄2 + 1

z̄2 − 1
− ia

)
∂z̄2 + p− q + p̄− q̄

− p

(1− z1)2
+

q

1− z1

− p̄

(1− z̄2)2
+

q̄

1− z̄2

. (3.22)

3.3.1. Algebraic solutions. We want to find some solutions to the PDE

P(D)G(z1, z̄2) = 0, G(0, 0) = 1, (3.23)

and follow the method of Ref. [DNNZ15], by looking for solutions of the form,

G(z1, z̄2) = (1− z1)α(1− z̄2)ᾱP (z1z̄2), P (0) = 1. (3.24)
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The action of the partial differential operator P(D) (3.22) readily gives

P(D)[(1− z1)α(1− z̄2)ᾱP (z1z̄2)]

= z1z̄2(1− z1)α−1(1− z̄2)ᾱ−1(καᾱP (z1z̄2) + 2(z1z̄2 − 1)P ′(z1z̄2))

+ [P(∂)(1− z1)α](1− z̄2)ᾱP (z1z̄2) + [P(∂̄)(1− z̄2)ᾱ](1− z1)αP (z1z̄2),

where

P(∂) := −κ
2

(z1∂z1)2 +

(
z1 + 1

z1 − 1
+ ia

)
z1∂z1 + p− q +

q

1− z1

− p

(1− z1)2
, (3.25)

P(∂̄) := −κ
2

(z̄2∂z̄2)2 +

(
z̄2 + 1

z̄2 − 1
− ia

)
z̄2∂z̄2 + p̄− q̄ +

q̄

1− z̄2

− p̄

(1− z̄2)2
.

Notice that as complex conjugates,

∀z ∈ D, P(∂)(1− z)α = 0⇔ P(∂̄)(1− z̄)ᾱ = 0.

So if we have,

P(∂)(1− z1)α = 0, (3.26)

then equation (3.23) reduces for (3.24) to

καᾱP (z1z̄2) + 2(z1z̄2 − 1)P ′(z1z̄2) = 0, P (0) = 1

⇔ P (z1z̄2) = (1− z1z̄2)−
κ
2
αᾱ. (3.27)

Let us now look for α such that Eq. (3.26) is satisfied. A direct computation readily
gives [DNNZ15],

P(∂)(1− z)α = (1− z)αA+ (1− z)α−1B + (1− z)α−2C,

where

A := −κ
2
α2 + (1 + ia)α + p− q, (3.28)

B := κα2 −
(κ

2
+ 3− ia

)
α + q, (3.29)

C := −κ
2
α2 +

(
2 +

κ

2

)
α− p. (3.30)

Notice that A + B + C = 0. For any α ∈ C, the choice of p, q such that B = 0 and
C = 0, yields a solution to (3.26), hence together with (3.27) a solution (3.24) to (3.23).

We thus get the identity for drifted SLE,

G(z1, z̄2) = E

z q21 f ′(z1)
p
2

f(z1)
q
2

z̄
q̄
2
2

f ′(z2)
p̄
2

f(z2)
q̄
2

 = (1− z1)α(1− z̄2)ᾱ(1− z1z̄2)−
κ
2
αᾱ, (3.31)
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where the quadratic equations B = 0, C = 0 yield p and q in terms of α ∈ C under the
parametric form,

p = −κ
2
α2 +

(
2 +

κ

2

)
α, α ∈ C, (3.32)

q = −κα2 +
(κ

2
+ 3− ia

)
α. (3.33)

These results generalize those found for real p, q and a = 0 in [DHLZ18]. The complex
p, q case, still for a = 0, has been thoroughly studied in Ref. [Ho16]. These equations
generalize in the complex p, q case, hence in four-dimensional space, the so-called red
parabola of the real (p, q)-plane described in [DHLZ18]. As a consequence, we have
proven the following

Theorem 3.1. Let f(z) = f0(z) where ft is the drifted whole-plane Loewner process
driven by λ(t) = ei(at+

√
κBt), a ∈ R. For (p, q) ∈ C2, let the complex ‘red parabola’R be

defined as the two-dimensional manifold,

p = −κ
2
α2 +

(
2 +

κ

2

)
α, q − p = −κ

2
α2 + (1− ia)α, α ∈ C. (3.34)

For (p, q) ∈ R, z1, z2 ∈ D, we identically have

G(z1, z̄2) = E

z q21 f ′(z1)
p
2

f(z1)
q
2

z̄
q̄
2
2

f ′(z2)
p̄
2

f(z2)
q̄
2

 = (1− z1)α(1− z̄2)ᾱ(1− z1z̄2)−
κ
2
αᾱ.

In particular, for z1 = z2 = z,

G(z, z̄) = E
[
|zq|

∣∣∣∣f ′(z)p

f(z)q

∣∣∣∣] = (1− z)α(1− z̄)ᾱ(1− zz̄)−
κ
2
αᾱ. (3.35)

Hence, in the case of the complex red parabola (3.32), (3.33), we find that the complex
generalized bulk spectrum is simply given by

β(p, q;κ, a) =
1

2
κ|α|2. (3.36)

Remark 3.1. Tip spectrum. When 2<α + 1 ≤ 0, the presence in (3.35) of the singular
factor |(1 − z)α|2, besides that of the bulk singular one, brings in an extra singular con-
tribution to the integral means near z = 1. This yields the new complex generalized tip
spectrum [BS09, BDZ17, DHLZ18] along the red parabola (3.34),

β(p, q;κ, a) =
1

2
κ|α|2 − 2<α− 1, 2<α ≤ −1. (3.37)

Let us now turn to the case of real points along the complex red parabolaR (3.34).

Corollary 3.1. Let f(z) = f0(z) where ft is the drifted whole-plane Loewner process
driven by λ(t) = ei(at+

√
κBt). If p, q take the following values:

p = p(κ, a) =
(4 + κ)2

8κ

(
1 +

4a2

(2 + κ)2

)
, q = q(κ, a) =

4 + κ

2κ

(
1 +

4a2

(2 + κ)2

)
;

then the generalized integral means spectrum β(p, q) of f is equal to p.

Proof. Let us look for exponents p, q ∈ R, as parameterized by (3.32) and (3.33), with
α = α1 + iα2 and α1, α2 ∈ R. The condition =p = 0 gives

α2

(
−κα1 + 2 +

κ

2

)
= 0,
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hence either α2 = 0 or α1 = (4 + κ)/2κ. The condition =q = 0 yields

2κα1α2 −
(κ

2
+ 3
)
α2 + aα1 = 0.

So if α2 = 0, we have either α1 = 0 or a = 0. The first case is trivial, while the second
one is the driftless case studied in [DHLZ18]. So, assuming a 6= 0, we obtain

α1 =
4 + κ

2κ
, α2 = −a(4 + κ)

κ(2 + κ)
,

and

α =
4 + κ

2κ

(
1− i 2a

2 + κ

)
,

which in turn gives

p = p(κ, a) :=
(4 + κ)2

8κ

(
1 +

4a2

(2 + κ)2

)
, (3.38)

q = q(κ, a) :=
4 + κ

2κ

(
1 +

4a2

(2 + κ)2

)
. (3.39)

Notice the further identity κ
2
αᾱ = p. So for these special real values of p and q we have

E
[
|z|q |f

′(z)|p
|f(z)|q

]
=
|(1− z)α|2

(1− |z|2)
κ|α|2

2

.

Notice also that <α > 0, so that the singularity at z = 1 does not contribute to the circle
integral ∫

|z|=r<1

|(1− z)α|2

(1− |z|2)
κ|α|2

2

|dz| �r→1− (1− r)−κ|α|
2

2 .

So in the case (3.38) (3.39) the averaged generalized spectrum is simply β(p, q) = p. �

3.4. Check of integral means spectra on the integrable complex ‘red parabola’. As
in [DHLZ18, Section 5.2.1], we will find that along the ‘red parabola’ R, a succession
of explicit complex integral means spectra reproduces the result β := κ|α|2/2 of Theo-
rem 3.1. In addition to formulae (2.7), (2.9), (2.10), (2.12) for the complex generalized
spectrum β1 of (drifted) whole-plane SLE, we shall need the SLE complex bulk spectrum
β0(p), p ∈ C, and some extensions of both β0 and β1 [DHLZ18, Section 5.1].

3.4.1. SLE complex bulk spectrum. The SLE complex bulk spectrum β0(p), p ∈ C, can
be obtained from the results of [DB02, DB08], and reads [BD22],

β0(p) = s0(p) + <p− 1, (3.40)

s0(p) = s0(t, t̃), t := <p, t̃ := =p, (3.41)

where the expression for s0(t, t̃) is

s0(t, t̃) = 1 + b′ − t+

√
(b′ − t)2 + t̃2 − (2b′)

1
2

[
b′ − t+

√
(b′ − t)2 + t̃2

] 1
2

, (3.42)

s0(t, 0) = 1 + 2(b′ − t)− 2
√
b′
√
b′ − t, b′ :=

(4 + κ)2

8κ
. (3.43)
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By introducing the variables,

τ0 := b′ − t, (3.44)

τ̄ :=
1

2

[
b′ − t+

√
(b′ − t)2 + t̃2

]
=

1

2

(
τ0 +

√
τ 2

0 + t̃2
)
, (3.45)

the function s0(t, t̃) (3.42) can then be recast as a function of the single variable τ̄ , as

s0(t, t̃) = s(τ̄) := 1 + 2τ̄ − 2
√
b′
√
τ̄ , (3.46)

s0(t, 0) = s(τ0) = 1 + 2τ0 − 2
√
b′
√
τ0.

3.4.2. Extensions of complex spectra β0 and β1. As in Refs.[DNNZ15, DHLZ18] it is
natural to define auxiliary pseudo-integral means spectra, which help in understanding
phase transitions that are mediated by overlaps between various analytic expressions of the
spectra. They are obtained by restoring the usual sign indeterminacy in front of square root
operations [DNNZ15, Section 4.2], [DHLZ18, Section 5.1]. Let us define the auxiliary
functions,

β±0 (p) := s±0 (p) + <p− 1, p ∈ C, (3.47)

s±0 (p) = s±0 (t, t̃) = s±(τ̄) := 1 + 2τ̄ ± 2
√
b′
√
τ̄ , (3.48)

τ̄ =
1

2

(
<(b′ − p) + |b′ − p|

)
, b′ =

(4 + κ)2

8κ

=
1

2

(
b′ − t+

√
(b′ − t)2 + t̃2

)
, t := <p, t̃ := =p,

such that the complex bulk integral means spectrum (3.40) is given by the (−)-branch,
β0 ≡ β−0 . Similarly, we define

β±1 (p, q;κ, a) := s±1 (p− q;κ, a) + <p− 1, p, q ∈ C, (3.49)

s±1 (p− q;κ, a) = s±1 (τ) := 2τ +
1

2
∓ 1

2

√
1 + 2κτ, (3.50)

1 + 2κτ =
1

2

{
<
[
(1 + ia)2 + 2κ(p− q)

]
+
∣∣(1 + ia)2 + 2κ(p− q)

∣∣} , (3.51)

such that the complex generalized spectrum (2.10) associated with spiral whole-plane SLE
is given by the (+)-branch, β1 ≡ β+

1 .

3.4.3. Complex spectra β±1 alongR. From parameterization (3.34), we first find the iden-
tity along the red parabolaR,

(1 + ia)2 + 2κ(p− q) = (1 + ia− κα)2.

Using the general identity,
1

2

[
<(z2) + |z2|

]
= (<z)2, z ∈ C, (3.52)

we find for (3.51),

1 + 2κτ = [<(1 + ia− κα)]2 = (1− κ<α)2,

so that s±1 (3.50) reads

s±1 (τ) =
1

κ

[
(1− κ<α)2 − 1

]
+

1

2
∓ 1

2
|1− κ<α|.
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We simultaneously have from (3.34) and (3.52),

<p = −κ
2
<(α2) +

(
2 +

κ

2

)
<α =

κ

2
|α2| − κ(<α)2 +

(
2 +

κ

2

)
<α. (3.53)

Combining the last two equations gives

s±1 (τ) + <p− 1 =
κ

2
|α2|+ κ

2
<α− 1

2
∓ 1

2
|1− κ<α|.

Therefore, we get for (3.49) the branch-dependent identity,

β±1 (p, q;κ, a) = s±1 (τ) + <p− 1 =
κ

2
|α2|, κ<α T 1. (3.54)

This shows that the result of Theorem 3.1 for spiral whole-plane SLE is recovered for
<α ≥ 1/κ by the ‘physical’ branch β+

1 of the generalized complex spectrum, and for
<α ≤ 1/κ by its ‘unphysical’ branch β−1 , in a way entirely similar to the real case studied
in [DHLZ18, Section 5.2.1].

3.4.4. Complex spectra β±0 along R. From parameterization (3.34) we first get the iden-
tity,

b′ − p =
κ

2

(
α− 4 + κ

2κ

)2

,

from which we deduce with the help of (3.52),

τ̄ =
1

2

(
<(b′ − p) + |b′ − p|

)
=
κ

2

(
<α− 4 + κ

2κ

)2

.

This in turn gives

s±0 (τ̄) = 1 + κ

(
<α− 4 + κ

2κ

)2

±
(

2 +
κ

2

) ∣∣∣∣<α− 4 + κ

2κ

∣∣∣∣ ,
which, together with (3.53) yields

s±0 (τ̄) + <p− 1 =
κ

2
|α2| −

(
2 +

κ

2

)
<α + κ

(
4 + κ

2κ

)2

±
(

2 +
κ

2

) ∣∣∣∣<α− 4 + κ

2κ

∣∣∣∣ .
Thus we find the branch-dependent identity,

β±0 (p;κ) = s±0 (τ̄) + <p− 1 =
κ

2
|α2|, κ<α T 2 +

κ

2
. (3.55)

We thus see that the result of Theorem 3.1 for spiral whole-plane SLE is recovered for
<α ≤ 2/κ + 1/2 by the ‘physical’ branch β−0 of the standard complex spectrum, and for
<α ≥ 2/κ + 1/2 by its ‘unphysical’ branch β+

0 , in a way again similar to the real case
studied in [DHLZ18, Section 5.2.1]. We thus arrive at

Proposition 3.1. Along the red parabola R (3.34), the integral means spectrum of the
drifted whole-plane SLE is successively given by

β−0 (p;κ) = β−1 (p, q;κ, a) =
κ

2
|α2|, <α ∈ (−∞, 1/κ],

β−0 (p;κ) = β+
1 (p, q;κ, a) =

κ

2
|α2|, <α ∈ [1/κ, 2/κ+ 1/2],

β+
0 (p;κ) = β+

1 (p, q;κ, a) =
κ

2
|α2|, <α ∈ [2/κ+ 1/2,+∞).
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Remark 3.2. The two ‘physical’ integral means spectra β−0 (3.40) and β+
1 (2.10) overlap

along the red parabolaR (3.34) in the interval <α ∈ [1/κ, 2/κ+ 1/2], a result which can
be directly compared to [DHLZ18, Eqs. (93)-(95)].

This corresponds to the presence of a two-dimensional “overlap ribbon” on the red
parabola, where the complex generalized integral means spectrum takes both the β−0 and
β+

1 forms. In the 4-dimensional (p, q) space, there exists a larger phase-transition mani-
fold, that is defined by the single condition that these two spectra are equal. This three-
dimensional manifold must intersect the above overlap ribbon on a certain phase-transition
line. The study of such phase-transition manifolds is left to a future work.

4. GENERAL LÉVY PROCESSES WITH SPECIAL SYMBOLS

In this section, we generalize the results in [DHLZ18], [DNNZ15], [Lou12], [LY13],[LY14]
and [LY19] to the generalized integral means spectrum: in other words, we investigate the
values of (p, q) for which the generalized integral means spectrum for Lévy-Loewner evo-
lution has an exact form.

For this purpose, we assume in this section that G(z, z̄) (3.5) may be written as

G(z, z̄) = (1− z)(1− z̄)h(z, z̄),

where h(z, z̄) is doubly analytic in z, z̄ and satisfies the boundary condition h(0, 0) = 1.
By applying (3.20), we get

Λ [(1− z)(1− z̄)h]

+

[
q̄(1− z)− p̄1− z

1− z̄ + q(1− z̄)− p1− z̄
1− z + (p̄− q̄ + p− q)(1− z)(1− z̄)

]
h

+
1− z
1− z̄ z̄(1 + z̄)(h+ (z̄ − 1)∂z̄h) +

1− z̄
1− z z(1 + z)(h+ (z − 1)∂zh) = 0

The coefficient of h = h(z, z̄) in this equation is the sum of a polynomial in z, z̄, and of
the polar part,

1− z̄
1− z [−p+ z(1 + z)] +

1− z
1− z̄ [−p̄+ z̄(1 + z̄)] .

The latter clearly becomes pole free, i.e., a polynomial in z, z̄ if and only if p = p̄ = 2,
which we shall hereafter assume. Under this condition, the above equation becomes

Λ[(1− z)(1− z̄)h] + (z + 1)(z̄ − 1)z∂zh+ (z̄ + 1)(z − 1)z̄∂z̄h

+ [(z − 1)(3− q̄)z̄ + (z̄ − 1)(3− q)z]h = 0. (4.1)

Besides the restriction to p = 2, we shall also assume that q ∈ R and that the Lévy process
Lt is symmetric. We then get

Λ[(1− z)(1− z̄)h] + (z + 1)(z̄ − 1)z∂zh+ (z̄ + 1)(z − 1)z̄∂z̄h

+ (3− q)(2zz̄ − z − z̄)h = 0. (4.2)

In order to analyze this equation, we use the Fourier expansion of t 7→ h(reit, re−it):

h(z, z̄) =
+∞∑

n=−∞

θn(ξ)zn, ξ := zz̄, z = reit. (4.3)
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When replacing h by this expansion in the equation, we get a recursion formula between
the θn’s for n ∈ Z. More precisely, by writing that the n’th Fourier coefficient of the left
side of (4.2) vanishes, we obtain for n ∈ Z,

2ξ(ξ − 1)θ′n(ξ)−
(
ηn + n+ (ηn + 2q − n− 6)ξ

)
θn

+ ξ
(
ηn + n+ q − 2

)
θn+1(ξ) + (ηn − n+ q − 2)θn−1(ξ) = 0. (4.4)

Note that the assumption that Lt is symmetric implies that h(z, z̄) is symmetric w.r.t. z
and z̄, which translates into,

θ−n(ξ) = ξnθn(ξ), (4.5)

from which we may simply recast expansion (4.3) above as

h(z, z̄) = θ0(ξ) +
∞∑
n=1

θn(ξ)(zn + z̄n) = θ0(ξ) +
∞∑
n=1

2θn(ξ)rn cosnt. (4.6)

Before continuing, let us recall that we are looking for the integral means, i.e., the angular
integrals,

I(r) =

∫ 2π

0

G(reit, re−it)dt,

that can be easily expressed in terms of θj’s as

I(r)

2π
= (1 + r2)θ0(r2)− 2r2θ1(r2), (4.7)

so that we only need to compute θ0 and θ1. For later purposes, let us also mention that
θ0(0) = 1. We thus focus on the equations for n = 0 and n = 1 (recall that η0 = 0 and
that θ−1(ξ) = ξθ1(ξ)),

(ξ − 1)θ′0(ξ)− (q − 3)θ0(ξ) + (q − 2)θ1(ξ) = 0, (4.8)

2ξ(ξ − 1)θ′1(ξ)− [η1 + 1 + (η1 + 2q − 7)ξ] θ1(ξ) + (η1 + q − 1)ξθ2(ξ)

+ (η1 + q − 3)θ0(ξ) = 0. (4.9)

There are two simple cases where we can explicitly compute θ0 and θ1.

(1) The first case is when the coefficient of the θ0-term in the second equation vanishes,
i.e., when

η1 = 3− q, (4.10)

which requires q < 3. In this case we may take θ1 = 0 (and actually θn = 0 for
n ≥ 1) and θ0 to be the solution to

(ξ − 1)θ′0(ξ)− (q − 3)θ0(ξ) = 0, θ0(0) = 1.

This gives

h(z, z̄) = θ0(ξ) =
1

(1− ξ)3−q , (4.11)

and

G(z, z̄) =
(1− z)(1− z̄)

(1− zz̄)3−q ,

so that β(2, q) = 3− q > 0.



COMPLEX GENERALIZED INTEGRAL MEANS SPECTRUM OF DRIFTED WHOLE-PLANE SLE & LLE30

(2) The second case is by letting the coefficient of the θ2-term vanish in the second
equation, i.e., by taking

η1 = 1− q, (4.12)

which requires q ≤ 1. We then get a system of coupled ODEs for θ0 and θ1, which
we must solve with initial data θ0(0) = 1, θ1(0) finite. We findθ0(ξ) = (1 + ξ)(1− ξ)−(4−q)

θ1(ξ) = − 2
2−q (1− ξ)−(4−q),

(4.13)

from which we deduce that β(2, q) = 4− q(> 3).

Eqs. (4.11) and (4.13) generalize results of Ref. [LY14] to q 6= 0.
As noticed in [LY19], the preceding method generalizes: more precisely for any n ≥ 1,

if we let the coefficient of the θn−1-term vanish in the nth equation, i.e., by taking ηn =
2 − q + n, then the solution of the system is θp = 0 for p ≥ n, while θ0, ..θn−1 are the
solutions of the n first equations, with the initial data θ0(0) = 1.
Another possible generalization is by letting vanish, again in the nth equation, the coeffi-
cient of the θn+1-term, i.e., by taking ηn = 2 − q − n; then the n first equations allow us
to compute θ0, ..θn−1, which is more than needed since we only need to know θ0 and θ1.
Having dealt in the last section with the n = 1 case, let us now investigate the n = 2 case.

4.1. The η2 = 4 − q case. We take θn≥2 = 0, and have to solve the following system of
differential equations:{

(x− 1)θ′0(x) + (3− q)θ0(x) + (q − 2)θ1(x) = 0

2x(x− 1)θ′1(x)− [1 + η1 + (η1 + 2q − 7)x] θ1(x) + (η1 − 3 + q)θ0(x) = 0.

We can assume the existence of a real number δ (to be determined later) and of two func-
tions f0, f1 : [0, 1]→ R such that θ0 and θ1 have the following form,

θ0(x) = (1− x)−δf0(x), θ1(x) = (1− x)−δf1(x).

The ODE system satisfied by f0 and f1 is then{
(x− 1)f ′0 + (3− q − δ)f0 + (q − 2)f1 = 0

2x(x− 1)f ′1 − [1 + η1 + (η1 + 2q − 7 + 2δ)x] f1 + (η1 − 3 + q)f0 = 0.
(4.14)

The form of the equation coefficients suggests we define δ′ as,

δ′ := δ + q − 3, (4.15)

so that{
(x− 1)f ′0 − δ′f0 + (q − 2)f1 = 0

2x(x− 1)f ′1 −
(
1 + η1 + (η1 − 1 + 2δ′)x

)
f1 + (η1 − 3 + q)f0 = 0.

(4.16)

From the first equation we extract f1 as a function of f0 and f ′0 for q 6= 2,

f1(x) =
x− 1

2− q f
′
0(x)− δ′

2− qf0(x), q 6= 2. (4.17)
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Substituting into (4.16), we obtain the following degree two differential equation satisfied
by f0,

2x(x− 1)2

2− q f ′′0 (x) +

(
2x(x− 1)

1− δ′
2− q −

x− 1

2− q (1 + η1 + (η1 − 1 + 2δ′)x)

)
f ′0(x)+(

η1 + q − 3 +
δ′

2− q (1 + η1 + (η1 − 1 + 2δ′)x)

)
f0(x) = 0. (4.18)

We want to find δ′ such that this equation reads

x(x− 1)f ′′0 (x) + ((a+ b+ 1)x− c)f ′0(x) + abf0(x) = 0, (4.19)

so that f0(x) = 2F1(a, b, c;x), the hypergeometric function. This identification shows that
δ′ must obey the following relation,

E(δ′, η1, q) := 2δ′(δ′ + η1) + (2− q)(η1 + q − 3) = 0, (4.20)

so that (4.18) simplifies into

x(x− 1)f ′′0 (x) +

(
3− η1 − 4δ′

2
x− 1 + η1

2

)
f ′0(x) (4.21)

− δ′ 1− η1 − 2δ′

2
f0(x) = 0. (4.22)

This yields

a = −δ′, b =
1− η1

2
− δ′, c =

1 + η1

2
, (4.23)

and we can choose f0(x) = 2F1(a, b; c;x) and θ0(x) = (1− x)−δ 2F1(a, b; c;x). The other
independent solution to the hypergeometric equation is

x1−c
2F1(1 + a− c, 1 + b− c; 2− c;x),

which is non-analytic at the origin x = 0, hence is discarded as a candidate for f0.

Before continuing, let us consider general symmetric Lévy processes: what are the
possible couples (η1, η2)? We know that we must have η2 ≥ 0 and the Lévy-Khinchine
formula implies that η1 ≥ η2/4. It happens1 that every couple (η1, η2) such that η1 ≥
η2/4 ≥ 0 actually corresponds to some (symmetric) Lévy process. Moreover the case
η1 = η2/4 exactly corresponds to an SLE process, while in the case η2 = 0, Lt is a pure
jump process with jumps equal to kπ, k odd (notice that the other case is similar with k
even, yielding a continuous process on the circle).

For η2 = 4 − q, the preceeding constraints on (η1, η2) become q ≤ 4 and η1 ≥ η2/4 =
1− q/4, with equality for SLEκ, with κ = 2− q/2. Let us then define

D4−q := {(q, η1) ∈ R2; q ≤ 4, η1 ≥ 1− q/4}. (4.24)

Let us return to Eq. (4.20). It can be shown (see below) that η2
1− 2(2− q)(η1 + q− 3) ≥ 0

in D4−q; we may thus extract δ′ from (4.20):

δ± = δ′± + 3− q

δ′± = δ′±(q, η1) :=
1

2

(
−η1 ±

√
η2

1 − 2(2− q)(η1 + q − 3)

)
. (4.25)

1Rémy Rhodes, private communication.
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Replacing in (4.23) δ′ by its value in terms of η1, q, we get:

a± = a±(η1, q) :=
1

2
η1 ∓

1

2

√
η2

1 − 2(2− q)(η1 + q − 3) (4.26)

b± = b±(η1, q) :=
1

2
∓ 1

2

√
η2

1 − 2(2− q)(η1 + q − 3) (4.27)

c = c(η1, q) :=
1 + η1

2
. (4.28)

We can now compute f1 as,

f1(x) =
x− 1

2− q f
′
0(x) +

−δ′
2− qf0(x)

=
a

2− q 2F1(a, b; c;x) +
ab(x− 1)

c(2− q) 2F1(a+ 1, b+ 1; c+ 1;x). (4.29)

Using expression (4.7) for the integral means, we get
1

2π
I(r) = (1− r2)−δ

[
(1 + r2)f0(r2)− 2r2f1(r2)

]
. (4.30)

4.1.1. The (+)-branch. Let us first consider the case where

a = a+, b = b+.

We then have c− a+ − b+ =
√
η2

1 − 2(2− q)(η1 + q − 3) > 0, so that

0 < 2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) <∞. (4.31)

If furthermore, a+ b+ 1 < c, then 2F1(a+ 1, b+ 1; c+ 1; 1) <∞, and

∆ := lim
r→1

(
(1 + r2)f0(r2)− 2r2f1(r2)

)
= 2

(
1− a

2− q

)
2F1(a, b; c; 1) <∞.

We have thus proven that if ∆ > 0, the spectrum is

β(2, q) = 3− q + δ′+(η1, q) = 3− q +
1

2

(√
η2

1 − 2(2− q)(η1 + q − 3)− η1

)
.

One can check that the coefficient A := 1− a+/(2− q) > 0 for q < 3, whereas for q ≥ 3,
it vanishes for η1 = 1 − q or η1 = 3 − q. In D4−q, A is thus positive since η1 ≥ 1 − q/4
is located outside the non-positive interval [1 − q, 3 − q]. So we get that the spectrum is
equal to δ+ on the subset of D4−q of points for which a+ b+ 1 < c. This condition is just
Z > 1, with

Z = Z(η1, q) := η2
1 − 2(2− q)(η1 + q − 3). (4.32)

Note that Z can be written as

Z = (q − 3)2 + (η1 + q − 2)2 − 1 (4.33)

= X2 + Y 2 − 1, X := q − 3, Y := η1 + q − 2, (4.34)

so that the condition Z > 1 corresponds to the exterior of the blue ellipse of equation
Z = 1, i.e., X2 + Y 2 = 2 in the (q, η1)-plane (Fig. 11).

Notice that the set Z = 0 is the co-centered green ellipse of equation X2 + Y 2 = 1,
which only intersects D4−q at the tangency point (12

5
, 2

5
) with the (η1 = 1 − q/4)-line,

implying that Z ≥ 0 in D4−q, as mentioned above.
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In the interior of the blue ellipse, we instead have a + b < c < a + b + 1, and we use
the Euler transformation,

2F1(a, b; c;x) = (1− x)c−a−b 2F1(c− a, c− b; c;x), (4.35)

so that

2F1(a+ 1, b+ 1; c+ 1;x) = (1− x)c−a−b−1
2F1(c− a, c− b; c+ 1;x). (4.36)

We then get from (4.29)

f1(x) =
a

2− q 2F1(a, b; c;x)− ab

c

1

(2− q)(1− x)c−a−b 2F1(c− a, c− b; c+ 1;x).

(4.37)

We now have 2F1(a, b; c; 1) <∞ and 2F1(c− a, c− b; c+ 1; 1) <∞, so the second term
in (4.37) still vanishes as x→ 1. This again yields

0 < ∆ = 2

(
1− a

2− q

)
2F1(a, b; c; 1) <∞,

i.e., the same result as found outside the blue ellipse. We thus find for the (+)-branch,

1

2π
I(r) ∼ 2(1− r2)−δ+

[
1− a+

2− q

]
Γ(c)Γ(c− a+ − b+)

Γ(c− a+)Γ(c− b+)
, r → 1−, q 6= 2. (4.38)

4.1.2. The (−)-branch. Let us now consider the other possible choice,

a = a−, b = b−.

We then use both (4.35) and (4.36) in (4.29),

f1(x) = (1− x)c−a−b
[

a

2− q 2F1(c− a, c− b; c;x)− ab

c

1

(2− q) 2F1(c− a, c− b; c+ 1;x)

]
,

(4.39)

where now c− a− b < 0, and where

2F1(c− a, c− b; c; 1) =
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
<∞,

2F1(c− a, c− b; c+ 1; 1) =
Γ(c+ 1)Γ(a+ b− c+ 1)

Γ(a+ 1)Γ(b+ 1)
<∞.

From the well-known identity Γ(x+ 1) = xΓ(x), we finally get for (4.39)

f1(x) = (1− x)c−a−b
c− b
2− q

Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

.

I(r) (4.30) is now equivalent for r2 = x→ 1 to

1

2π
I(r) ∼ 2(1− x)−δ−+c−a−b

[
1− c− b

2− q

]
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
.

where we recall that a = a−, b = b−. We now use the duality formulae

c− a− = b+, c− b− = a+, a− + b− − c = c− a+ − b+,

and
δ± = 3− q + δ′±, δ

′
− − δ′+ = c− a− − b−,
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so that for r → 1−,
1

2π
I(r) ∼ 2(1− r2)−δ+

[
1− a+

2− q

]
Γ(c)Γ(c− a+ − b+)

Γ(c− a+)Γ(c− b+)
,

which is exactly the same as the result (4.38) for the (+)-choice in Section 4.1.1.

Remark 4.1. The q = 2 case. Up to now, we have assumed that q 6= 2. The solution for
q = 2, thus η2 = 2, η1 ≥ 1/2, can be obtained by continuity as the q → 2 limit of f0 and
f1 (4.17). Eq. (4.26) gives

a+ =
1

2η1

(η1 − 1)(q − 2) +O
(
(q − 2)2

)
,

b+ =
1

2
(1− η1) +O(q − 2), c =

1

2
(1 + η1),

so that f0 = 1, and (4.17) has a finite limit when q → 2,

f1(x) =
η1 − 1

2η1

[
1− 1− η1

1 + η1

(1− x) 2F1(1, 1
2
(3− η1); 1

2
(3 + η1);x)

]
, (4.40)

together with δ′+ = 0 and δ+ = 1. Eq. (4.38) simply becomes 1
2π
I(r) ∼ (1−r2)−1 (3− 1/η1),

as r → 1−, so that β(p = 2, q = 2) = 1.

We therefore proved the following

Theorem 4.1. For a Lévy process, with symbols η2 = 4 − q, η1 ≥ η2/4 for q ≤ 4, the
generalized integral means spectrum of the corresponding LLE is

β(2, q) = 3− q +
1

2

(√
η2

1 − 2(2− q)(η1 + q − 3)− η1

)
. (4.41)

In particular, if q = 2, η2 = 2, the standard integral means spectrum at p = 2 of the
logarithm of the LLE is independent of η1 ≥ 1/2, and equal to β(2, 2) = 1.

In the q = 0 case, Eq. (4.41) recovers a result of [LY19].

4.1.3. Algebraic solutions. As a transition to the next section, let us look for purely alge-
braic solutions of the form,

θj(x) = (1− x)−αfj(x), fj(x) = A0
j + A1

j(1− x), j = 0, 1.

where Akj , k = 0, 1 are fixed coefficients and with the understanding that θj = 0 for j ≥ 2.
Recall that the hypergeometric function 2F1 is given by the well-known series expansion,

2F1(a, b; c;x) =
∞∑
n=0

(a)n(b)n
(c)n

xn

n!
= 1 +

ab

c

x

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

x2

2!
+ · · · , (4.42)

with

(a)n =

{
1 n = 0

a(a+ 1) · · · (a+ n− 1) n ≥ 1,

so that the fact that f0(x) = 2F1(a, b; c;x) is at most linear in x implies that either: a =
a+ = 0; a+ = −1; b = b+ = 0; or b+ = −1. The function f1 (4.17) is then also linear,
assuming for now that q 6= 2. For later convenience, let us write (4.26) (4.27) as

a+ = 1
2
η1 − 1

2
Z1/2, b+ = 1

2
− 1

2
Z1/2, (4.43)

Z = η2
1 − 2(2− q)(η1 + q − 3).
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FIGURE 11. Domain lines in the (q, η1) plane, for the η2 = 4−q case. The
two purple straight lines have for equations, η1 = 1 − q and η1 = 3 − q.
The green, blue and red ellipses have for respective equations X2 + Y 2 =
1, 2, 10, with X = q − 3, Y = η1 + q − 2, with same center located at
(q, η1) = (3,−1).

• The a+ = 0 case. The equation Z = η2
1 gives for q 6= 2, η1 = 3− q, which recovers the

algebraic solutions, Eqs. (4.10) and (4.11). For q = 2, Remark (4.1) and Eq. (4.40) yield
for η1 = 1, f0 = 1, f1 = 0, in agreement with (4.11).

• The a+ = −1 case. The equation Z = (η1 + 2)2 yields (4 − q)(η1 + q − 1) = 0.
Hence we first recover the algebraic case η1 = 1 − q, as in Eqs. (4.12) and (4.13). The
other case, q = 4, is the vertical boundary line for D4−q (Fig 11), where η2 = 0, and
for which Eq. (4.41) gives δ+ = β(p = 2, q = 4) = 0, so that θj = fj, j = 0, 1.
One further finds b+ = −c = −1

2
(1 + η1), so that one gets the polynomial solutions,

f0(x) = 2F1(−1, b+; c;x) = 1 + x, and from (4.17) f1(x) = 1
2
(1 + x).

• The b+ = 0 case. From (4.43) we get the condition Z = 1, which in parameterization
(4.33) of Z (4.32) is just that defining the blue ellipse as X2 + Y 2 = 2. Its solution is
given by η1 = 2 − q ±

√
−q2 + 6q − 7. The condition (q, η1) ∈ D4−q (4.24) selects the

(+)-branch only, and restricts the range of parameter q to q ∈ [8
5
, 16

5
] (see Fig. 11). This

yields a first line of algebraic solutions,
η1 = 2− q +

√
1 + (q − 2)(4− q)

β(2, q) = 1
2

(
5− q −

√
1 + (q − 2)(4− q)

)
q ∈ [8

5
, 16

5
].
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• The b+ = −1 case. From (4.43) we get the condition Z = 9, which in parameterization
(4.33) is defining a red ellipse as X2 + Y 2 = 10. Its solution is given by η1 = 2 − q ±√

1 + 6q − q2. The condition (q, η1) ∈ D4−q (4.24) allows for both (±)-branches, but
restricts the range of parameter q to [3 −

√
10, 4] for the (+)-branch, and to [3 −

√
10, 0]

for the (−)-branch (see Fig. 11). This finally gives algebraic solutions for,
η1 = 2− q +

√
1 + 6q − q2

β(2, q) = 1
2
(7− q −

√
1 + 6q − q2)

q ∈ [3−
√

10, 4],

and 
η1 = 2− q −

√
1 + 6q − q2

β(2, q) = 1
2
(7− q +

√
1 + 6q − q2)

q ∈ [3−
√

10, 0].

From (4.42) and for n ≥ 2, one further finds a whole series of algebraic solutions where
the fj’s are polynomials of degree n, when either (a)n+1 = 0 or (b)n+1 = 0, i.e., either
a+ = −n or b+ = −n.

• The a+ = −n case. From (4.43), one finds

η1 =
(2− q)(3− q)− 2n2

2− q + 2n
. (4.44)

One recovers the two linear cases seen above, n = 0, η1 = 3− q with q ≤ 8/3 and n = 1,
η1 = 1− q with q ≤ 0. For n ≥ 2, the Lévy symbol condition η1 ≥ 1− q/4 requires that
q ≤ 2− 2n. Eq. (4.44) can be recast as

(2− q + 2n)(η1 + q − 3 + 2n) = 2n(n− 1).

This corresponds to a branch of a hyperbola Hn in the (q, η1) plane, defined in affine
coordinates by

XnYn = 2n(n−1), Xn := 2−q+2n, Yn := η1+q−3+2n, q ≤ 2−2n, n ≥ 2. (4.45)

• The b+ = −n case. From (4.43) one readily finds

Z = (2n+ 1)2, (4.46)

which in parameterization (4.33) is defining the ellipse En by the equation

X2 + Y 2 = 1 + (2n+ 1)2.

This in turn yields

η1 = 2− q ±
√

(2− q)(q − 4) + (2n+ 1)2, (4.47)

together with

β(2, q) = 3− q +
1

2
(2n+ 1− η1) (4.48)

=
1

2

(
2n+ 5− q ∓

√
(2− q)(q − 4) + (2n+ 1)2

)
.
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The condition (q, η1) ∈ D4−q (4.24) allows for both (±)-branches, but restricts for the
(+)-branch the range of parameter q to [3 −

√
(2n+ 1)2 + 1, 4], and for the (−)-branch

to [3−
√

(2n+ 1)2 + 1, 8
5
(1− n)]. For n = 0, 1 one recovers the blue and red ellipses of

Fig. 11.

Let us finally investigate what happens on the boundary of D4−q.
(1) On the η1 = 1− q/4 line:

As we have already seen, this case occurs when η2 = 4η1 and the process is an
SLEκ with κ = 2η1 = 2− q/2, for which we get from the above,{

β(2, q) = 1− 1
4
q, q ≥ 12

5
,

= 4− 3
2
q, q ≤ 12

5
.

(4.49)

It is known that the SLE generalized spectrum has several phases [DHLZ18],
among which, the standard ‘bulk’ spectrum [BS09],

β0(p;κ) := −p+
(4 + κ)2

4κ
− κ+ 4

4κ

√
(4 + κ)2 − 8κp, (4.50)

and the ‘unbounded whole-plane’ one [DHLZ18],

β1(p, q;κ) := 3p− 2q − 1

2
− 1

2

√
1 + 2κ(p− q). (4.51)

We thus have 
β0(2;κ = 2− q/2) = 1− 1

4
q, q ≥ −4,

= 16
4−q , q ≤ −4.

β1(2, q;κ = 2− q/2) = 4− 3
2
q, q ≤ 3,

= 7− 5
2
q, q ≥ 3.

Hence, on the SLE boundary line, a phase transition takes place at q = 12/5 in
the spectrum (4.49), in the sense that β(2, q) = β1(2, q;κ = 2− q/2) if q ≤ 12/5
and β(2, q) = β0(2;κ = 2 − q/2) if q ≥ 12/5. One can check that the phase
transition point (p = 2, q = 12/5) is located on the so-called ‘green parabola’
that delineates the respective domains of validity of β0 and β1 for whole-plane
SLEκ=4/5 [DHLZ18, Sec. 5.2.2].

(2) On the q = 4 line:
Here, η2 = 0 and the spectrum is β(2, 4) = 0,∀η1. This case corresponds to a pure
jump Lévy process, whereas the equality q = 2p = 4 corresponds to a bounded
LLE process [DHLZ18]; the above result then agrees with [CR08].

Fig. 11 summarizes the results of this section, showing
• the domain D4−q, domain of validity of the hypergeometric analysis;
• the domain of definition of the square root involved in the expression of the spec-

trum β(2, q) (4.41), which is the exterior of the green ellipse (thus containing
D4−q);
• the η1 = 1− q and η1 = 3− q lines, corresponding to degenerate hypergeometric

solutions with a+ = −1, 0;
• the special solutions with b+ = −1, 0, for which the hypergeometric f0, f1 are de-

gree 1 polynomials, which respectively correspond to the two red and blue ellipses
(intersected with D4−q). Note that the phase-transition point (q = 12/5, η1 = 2/5)
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is the intersection point of the boundary of D4−q with the green ellipse (a single
tangency point).

4.2. The η2 = −q case. Here the points (q, η1) must belong to

D−q = {(q, η1) : q ≤ 0, η1 ≥ −q/4}. (4.52)

In this case, the first three equations (4.4) together with (4.5) form a system of coupled
ODEs with unknowns θj ,j = 0, 1, 2,

(ξ − 1)θ′0(ξ)− (q − 3)θ0(ξ) + (q − 2)θ1(ξ) = 0,

2ξ(ξ − 1)θ′1(ξ)− [η1 + 1 + (η1 + 2q − 7)ξ] θ1(ξ) + (η1 + q − 3)θ0(ξ)

+(η1 + q − 1)ξθ2(ξ) = 0,

2ξ(ξ − 1)θ′2(ξ)− [2− q + (q − 8)ξ] θ2(ξ)− 4θ1(ξ) = 0.

(4.53)

4.2.1. Polynomial Ansatz. Let us now consider for n ≥ 0 the following Ansatz,

θj(ξ) = (1−ξ)−αfj(ξ), fj(ξ) =
n∑
k=0

AkjPk(ξ), Pk(ξ) := (1−ξ)k, j = 0, 1, 2. (4.54)

Eqs. (4.53) give
[1] • (ξ − 1)f ′0(ξ)− (q − 3 + α)f0(ξ) + (q − 2)f1(ξ) = 0,

[2] • 2ξ(ξ − 1)f ′1(ξ)− [η1 + 1 + (η1 + 2α + 2q − 7)ξ] f1(ξ)

+(η1 + q − 3)f0(ξ) + (η1 + q − 1)ξf2(ξ) = 0,

[3] • 2ξ(ξ − 1)f ′2(ξ)− [2− q + (2α + q − 8)ξ] f2(ξ)− 4f1(ξ) = 0.

(4.55)

Consider then in each left-hand side of the three equations [1], [2], [3] in (4.55), the
contributions arising for a fixed k from the monomials AkjPk in fj, j = 0, 1, 2 (4.54).
Because of the universal presence of factors (ξ − 1) or ξ(ξ − 1) in front of derivatives
P ′k(ξ) = −kPk−1(ξ), and of polynomials of degree at most 1 in ξ in front of Pk(ξ), only
Pk and Pk+1 monomials will result from Pk. We explicitly find for the three lines the
resulting contributions,

[1] •
{

[k − (q − 3 + α)]Ak0 + (q − 2)Ak1
}
Pk,

[2] •
{

(η1 + q − 3)Ak0 + 2 [k − (η1 + α + q − 3)]Ak1 + (η1 + q − 1)Ak2
}
Pk

+
{

(−2k + η1 + 2α + 2q − 7)Ak1 − (η1 + q − 1)Ak2
}
Pk+1,

[3] •
{
−4Ak1 + [2k − (2α− 6)]Ak2

}
Pk + (−2k + 2α + q − 8)Ak2Pk+1.

(4.56)

When summing up over k ∈ {0, · · · , n} to reconstruct the fj’s in (4.55), each monomial
Pk must get an overall vanishing coefficient in order to satisfy the equations. Therefore,
collecting all coefficients of terms Pk, we are led to the recursions,

[1] • [k − (q − 3 + α)]Ak0 + (q − 2)Ak1 = 0,

[2] • (η1 + q − 3)Ak0 + 2 [k − (η1 + α + q − 3)]Ak1 + (η1 + q − 1)Ak2
= [2(k − 1)− (η1 + 2α + 2q − 7)]Ak−1

1 + (η1 + q − 1)Ak−1
2 ,

[3] • −4Ak1 + 2 [k − (α− 3)]Ak2 = [2(k − 1)− (2α + q − 8)]Ak−1
2 .

(4.57)

Note that in the k = 0 case, there are no Ak−1
1 and Ak−1

2 terms, which are thus set by
convention equal to 0.
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This system is best written under a matricial form, by defining successively,

Dk(α) :=

k − (α + q − 3) q − 2 0
η1 + q − 3 2k − 2(η1 + α + q − 3) η1 + q − 1

0 −4 2k − 2(α− 3)


and

Ck−1(α) :=

0 0 0
0 2(k − 1)− (η1 + 2α + 2q − 7) η1 + q − 1
0 0 2(k − 1)− (2α + q − 8)

 .

Let us finally define the column vectors,

Ak :=

 Ak0
Ak1
Ak2

 , k ≥ 0,

so that recursions (4.57) become for k ≥ 1

Dk(α)Ak = Ck−1(α)Ak−1, k ≥ 1, (4.58)

together with the initial condition,

D0(α)A0 = 0, (4.59)

and the closure relation

An+1 = 0, (4.60)

such that Ak = 0, ∀k ≥ n+ 1.
Equation (4.59) shows that for a non-trivial solution to exist, one must have

detD0(α) = 0,

with A0 an eigenvector of vanishing eigenvalue. The determinant of D0 is

detD0(α) = 2(1− α)E0(α) (4.61)

E0(α) := 2(α + q − 3)(η1 + α + q − 5)− q(η1 + q − 3).

Let us look for the solutions to

E0(α) = 0⇔ α = α±0 := 3− q +
1

2

(
2− η1 ±

√
Ẑ
)
, (4.62)

Ẑ = Ẑ(η1, q) := (η1 − 2)2 + 2q(η1 + q − 3), (4.63)

which yields the set of non-trivial zeroes of detD0. Ẑ can also be written as

Ẑ = (q − 1)2 + (η1 + q − 2)2 − 1

= X̂2 + Y 2 − 1, X̂ := q − 1, Y := η1 + q − 2. (4.64)

Thus Ẑ is non-negative outside the green ellipse Ẑ = 0 (Fig 12), and since q ≤ 0 in D−q,
expression (4.64) is clearly non-negative there, vanishing only for q = 0, η1 = 2, so that
α±0 (4.62) is defined and real in D−q. Observe also that a translation maps Z (4.33) to Ẑ
(4.64),

Ẑ(η1, q) = Z(η1 − 2, q + 2). (4.65)
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The null eigenvectors A0(α) of D0(α) with vanishing eigenvalue are given, either for
α = α±0 or for α = 1, by the one-dimensional space

A0 = A0(α) =


A0

0 ∈ R
A0

1 = 1
q−2

(α + q − 3)A0
0

A0
2 = − 2

α−3
A0

1.

(4.66)

As it will appear shortly, the value of the generalized spectrum is given by the root α+
0 in

(4.62). To check this, consider the first integrability line, η1 = 3− q, where (4.62) gives,{
α+

0 = 3− q, α−0 = 2, q ≤ 1

= 2 = 3− q, q ≥ 1.

Therefore, the choice of root α+
0 reproduces for q ≤ 1, hence q ≤ 0 in D−q the expected

spectrum (4.11) β(2, q) = 3−q. For the second integrability line, η1 = 1−q, one similarly
finds {

α+
0 = 4− q, α−0 = 3, q ≤ 1

= 3 = 4− q, q ≥ 1.

The condition η1 ≥ 0 requires that q ≤ 1, thus the choice of root α+
0 again gives for q ≤ 0

in D−q the expected spectrum (4.13) β(2, q) = 4− q.

4.2.2. Recursion. Assume for the time being that for k ≥ 1, detDk(α) 6= 0, so that
Dk(α) is invertible. We immediately get from (4.58)

Ak = MkA
0 (4.67)

Mk =
k−1∏
`=0

D−1
k−`(α)Ck−`−1(α)

:= D−1
k (α)Ck−1(α)D−1

k−1(α)Ck−2(α) · · ·D−1
1 (α)C0(α). (4.68)

Notice that Dk and Ck obey a simple shift relation,

Dk(α) = D0(α− k), Ck(α) = C0(α− k). (4.69)

Result (4.68) can then be rewritten simply as,

Mk =
k−1∏
`=0

D−1
0 (α− k + `)C0(α− k + `+ 1) (4.70)

:= D−1
0 (α− k)C0(α− k + 1)D−1

0 (α− k + 1)C0(α− k + 2) · · ·D−1
0 (α− 1)C0(α).

4.2.3. Polynomial solutions. Requiring the fj’s to be polynomials of given degree n ≥ 1
is equivalent to requiring that An+1 = 0 (4.60). From (4.58), we get

Dn+1(α)An+1 = CnA
n = 0,

i.e.,

[2n− (η1 + 2α + 2q − 7)]An1 + (η1 + q − 1)An2 = 0, (4.71)

[2n− (2α + q − 8)]An2 = 0. (4.72)
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If 2n−(2α+q−8) 6= 0, thenAn2 = 0, and for a non-vanishing solution to exist, one needs
the condition 2n− (η1 +2α+2q−7) = 0 to hold for α = α±0 . This gives±

√
Ẑ = 2n−1,

with n ≥ 1. This selects the (+)-branch α = α+
0 , together with

Ẑ = (2n− 1)2, n ≥ 1. (4.73)

Because of (4.64), one thus finds from (4.73) a set of ellipses Ên in the (q, η1) plane,
satisfying the equation

X̂2 + Y 2 = (2n− 1)2 + 1. (4.74)

It is interesting to note that it is far from obvious that condition (4.73), while necessary,
is also sufficient to obtain that An2 = 0 at level n of recursion (4.67), when starting from
eigenvector A0(α) (4.66) for α = α+

0 . We checked with Mathematica® that this is indeed
the case, but despite repeated attempts, a combinatorial-like proof has eluded us.

Remark 4.2. Degeneracy of Dk(α). Let us finally consider the degenerate case when
detDk(α) = detD0(α− k) = 0. Since α = α+

0 , this requires that either α+
0 − k = α−0 or

α+
0 − k = 1.
• Case α+

0 − k = α−0 . This gives Ẑ = k2, and since Ẑ = (2n − 1)2, we get k = 2n − 1.
Since the recursion stops at level n+1, we are only interested in the cases where k ≤ n+1,
hence n ≤ 2.
When n = 1, a direct computation gives the solution at level k = n = 1 with the necessary
condition A1

2 = 0, as A1
1 = −1

4
(η1 + q − 1)A0

2, and A1
0 = q−2

α+q−4
A1

1. Adding to it any null
eigenvector of D1(α+

0 ) = D0(α−0 ) would also provide a solution to the recursion at level
k = 1, but not its closure at level n + 1 = 2. Taking into account the boundary condition
θ0(0) = f0(0) = A0

0 + A1
0 = 1 yields the explicit solution on ellipse Ê1,

θj(ξ) = (1− ξ)−α+
0 fj(ξ), fj(ξ) = A0

j + A1
j(1− ξ), j = 0, 1, 2,

j = 0 : A0
0 = 2

2− q
η1 + 1

, A1
0 =

η1 + 2q − 3

η1 + 1
,

j = 1 : A0
1 =

η1 − 3

η1 + 1
, A1

1 =
η1 + q − 1

2− q
η1 + q − 3

η1 + 1
,

j = 2 : A0
2 =

4

q − 2

η1 + q − 3

η1 + 1
, A1

2 = 0.

When n = 2, we get k = n + 1 = 3. In that case, A3 = 0 is a trivial solution yielding
Ak = 0, ∀k ≥ 3, and while adding to it any null vector of D3(α+

0 ) would still satisfy the
recursion at level 3, it would not close the latter at next levels.
• Case α+

0 − k = 1. From (4.62) and (4.73), one finds η1 = 5 + 2(n − k) − 2q, and one
has to consider the intersection in D−q of this straight line with ellipse Ên. One finds two
solutions, q±n,k := n − k + 2 ±

√
∆, ∆ = (n − 1)2 + (k − 1)(2n + 1 − k). As before,

we are only interested in recursion levels 1 ≤ k ≤ n + 1, so that ∆ ≥ 0. One also has
∆ = (n− k+ 2)2 + 2(k− 2)(2n+ 1− k), so that for k ≥ 2, there is one admissible root,
q−n,k ≤ 0, whereas q+

n,k ≥ 0, and for k = 1, q−n,1 = 2, q+
n,1 = 2n which are not in D−q.

By continuity, at points q−n,k with 2 ≤ k ≤ n + 1 on Ên, the generalized integral means
spectrum is still β(2, q) = α+

0 .
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Eq. (4.74) gives for ellipse Ên the equations in Cartesian coordinates (q, η1) ∈ D−q,
η1 = 2− q +

√
q(2− q) + (2n− 1)2

α = α+
0 = β(2, q) = 1

2
(5− q + 2k −

√
q(2− q) + (2n− 1)2)

q ∈ [1−
√

1 + (2n− 1)2, 0],

(4.75)

and 
η1 = 2− q −

√
q(2− q) + (2n− 1)2

α = α+
0 = β(2, q) = 1

2
(5− q + 2k +

√
q(2− q) + (2n− 1)2)

q ∈ [1−
√

1 + (2n− 1)2, inf{−8
5
(n− 3

2
), 0}].

(4.76)

In the latter set, the q = −8
5
(n− 3

2
) point for n ≥ 2 corresponds to SLEκ with κ = 4

5
(n− 3

2
)

and α = β
(
2,−8

5
(n− 3

2
)
)

= β1

(
2,−8

5
(n− 3

2
); 4

5
(n− 3

2
)
)

in (4.51).
The results are summarized in Fig. 12. The blue and red ellipses in Fig. 12 above

FIGURE 12. Domain lines in the (q, η1) plane, for the η2 = −q case. The
two purple straight lines have for equations, η1 = 1 − q and η1 = 3 − q.
The green, blue and red ellipses have for respective equations X̂2 + Y 2 =
1, 2, 10, with X̂ = q− 1, Y = η1 + q− 2, with a common center located at
(q, η1) = (1, 1).

respectively correspond to the first n = 1 and n = 2 cases. Because of (4.65), these
ellipses are images by the (q → q− 2, η1 → η1 + 2) translation of the corresponding same
color ellipses of Fig. 11 in Section 4.1, with a common center now located at (q, η1) =
(1, 1). Note also that if the generalized spectrum is given in the whole region D−q by α+

0

in Eq. (4.62), then on the SLEκ-line where κ = 2η1 = η2/2 = −q/2 it coincides with
the spectrum β1(2, q;κ = −q/2) = 5 − 3q/2, and there is no phase transition along that
line, in contrast to the (η2 = 4 − q)-case. The phase transition now takes place on the
q = 0 = η2 line, at its η1 = 2 contact point with the green ellipse, since the predicted
spectrum α+

0 is there equal to 5− η1 for 0 ≤ η1 ≤ 2 and to 3 for η1 ≥ 2. This agrees with
results (4.13), β(2, 0) = 4 for η1 = 1, and (4.11), β(2, 0) = 3 for η1 = 3.
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Remark 4.3. Alternative condition. For completeness, let us also mention that the alter-
native condition in (4.72), 2n−(2α+q−8) = 0 with α = α±0 , yields 2n+q+η1 = ±

√
Ẑ,

leading to η1 +q−1 = q(q−2)
4(n+1)

−n and to the selection of the (+)-branch. From (4.71), one
further needs to check that (η1 + q + 1)An1 = (η1 + q − 1)An2 upon starting the recursion
(4.67) from the null-eigenvector (4.66). Using again Mathematica® shows this equality
not to hold, thus leading to no further solution.

4.2.4. General solution to the Fuchsian system. From the perspective of Fuchsian systems
[IY08, LY19], the initial equations (4.53) for the vector function, ϑ(ξ) := (θ0(ξ), θ1(ξ), θ2(ξ))t

can be written under the matrix form,

ϑ′(ξ) =
A
ξ
ϑ(ξ) +

B
1− ξϑ(ξ),

where matrices A and B do not depend on ξ. They are simply given here by

A =
1

2

 0 0 0
η1 + q − 3 −(η1 + 1) 0

0 −4 q − 2

 , (4.77)

B =
1

2

 2(3− q) 2(q − 2) 0
η1 + q − 3 −2(η1 + q − 3) η1 + q − 1

0 −4 6

 . (4.78)

The discriminant of B is

det(B− α1) = (1− α)

[
1

2
(η1 + q − 3)(2α + q − 6) + (α− 2)(α + q − 3)

]
=

1

2
(1− α)E0(α) =

1

4
detD0(α),

so that B has for eigenvalues the zeroes of detD0, α±0 (4.62) and 1.
For ξ → 1−, the vector functions ϑ(ξ) = (θ0(ξ), θ1(ξ), θ2(ξ))t, have for asymptotic

behavior,

ϑ(ξ) = (1− ξ)−α+
0 f+(ξ) + (1− ξ)−α−0 f−(ξ) + (1− ξ)−1f1(ξ), (4.79)

where f±, f1 are vector functions with Taylor series expansions in ξ. In the generic non-
resonant case, where the eigenvalues do not differ by integer numbers, these functions
converge at ξ = 1 towards the eigenvectors of B corresponding to their respective eigen-
value powers α±0 , 1. In the resonant case, they can be polynomials in ξ, or can involve
polynomials in − log(1− ξ), which then dominate the limit when ξ → 1−.

In the resonant case of the En ellipses of Section 4.2.3, we have α−0 = α+
0 − (2n − 1)

with n ≥ 1. These vector functions are then simple polynomials, with

f+(ξ) = (f0(ξ), f1(ξ), f2(ξ))t,

and f−(ξ) = f1(ξ) = 0. At ξ = 1, f+(ξ) becomes the eigenvector f+(ξ = 1) = A0(α+
0 ),

as given in (4.66).
Let us conclude with the following Theorem.

Theorem 4.2. The generalized integral means spectrum β(2, q) of a whole-plane Lévy-
Loewner process with Lévy symbols η1 and η2 = −q is given in the whole D−q domain
(4.52) by α+

0 in Eq. (4.62).
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Proof. Because of (4.79), the generalized integral means spectrum must be equal to one of
the three eigenvalues α+

0 , α
−
0 , 1. Eigenvalues α+

0 and α−0 are equal only when Ẑ = 0, i.e.,
on the green ellipse which lies outside D−q, except for the point P0 = (q = 0, η1 = 2).
Therefore in D∗−q := D−q \ P0, we have α+

0 > α−0 . One can also check that on D−q,
α+

0 > 1, whereas the equality α−0 = 1 is realized in D−q on the branch of hyperbola of
equation (η1 + q − 8)(q − 4) = 4 with q ≤ 0. We know that β(2, q) = 3 − q = α+

0

on the half-line η1 = 3 − q, q ≤ 0, as well as β(2, q) = 4 − q = α+
0 on the half-line

η1 = 1 − q, q ≤ 0. Because of the Hölder inequality, the generalized integral means
spectrum is convex in (p, q) [DHLZ18], hence continuous. By continuity, β(2, q) = α+

0 on
these integrability lines cannot jump to α−0 < α+

0 or 1 < α+
0 in D∗−q, hence β(2, q) = α+

0

in the whole domain. At the singular point P0 , the spectrum is still α+
0 , with a change of

its analytic form. �
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