
HAL Id: cea-03699824
https://cea.hal.science/cea-03699824

Submitted on 20 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From requirement specification to OPC UA information
model design: A product assembly line monitoring case

study
Quang-Duy Nguyen, Saadia Dhouib, Kunal Suri, Fadwa Tmar

To cite this version:
Quang-Duy Nguyen, Saadia Dhouib, Kunal Suri, Fadwa Tmar. From requirement specification to
OPC UA information model design: A product assembly line monitoring case study. INDIN’22 -
IEEE International Conference on Industrial Informatics, Jul 2022, Perth (Virtual event), Australia.
pp.1-6. �cea-03699824�

https://cea.hal.science/cea-03699824
https://hal.archives-ouvertes.fr

From Requirement Specification to OPC UA
Information Model Design: A Product Assembly

Line Monitoring Case Study
Quang-Duy NGUYEN , Saadia DHOUIB , Kunal SURI and Fadwa REKIK

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
Email: quang-duy.nguyen@cea.fr, saadia.dhouib@cea.fr, kunal.suri@cea.fr, fadwa.tmar@cea.fr

Abstract—Open Platform Communication Unified Architec-
ture (OPC UA) has emerged as a highly-demanded standard
in building industrial systems. One factor in this success is the
concepts of OPC UA address space and OPC UA information
model. OPC UA address space provides a mechanism to represent
the resources of an OPC UA server and its field devices as
OPC UA nodes. OPC UA information model structures OPC UA
nodes as a schema. Once other devices and systems understand
the schema, they can interact appropriately with the industrial
system. Thus, designing the OPC UA information model is an
undeniable and essential practice of OPC UA-based industrial
system engineering. However, both academia and industry suffer
from a lack of shared experiences on this subject. This gap
motivated us to share our experiences on the development of
an OPC UA information model. These experiences are based on
an actual product assembly line monitoring case study developed
at CEA LIST. Overall, in this paper, we aim to throw some light
on the steps involved in the transformation of a requirement
specification into an OPC UA information model.

Index Terms—OPC UA, Information model, Design, Product
assembly line, Robotic cell, System engineering

I. INTRODUCTION

Open Platform Communication Unified Architecture (OPC
UA) is a widely-used standard in the industry. It is developed
and maintained by the OPC Foundation, a group of more
than 850 industry members. OPC UA’s newest version, v1.05,
consists of more than twenty-three specifications for building
an industrial system with reliability, security, and interoper-
ability. Its specifications part 3 and part 5 are the keys to
semantic interoperability. Part 3, Address Space, provides the
definition of OPC UA nodes and implies a mechanism to
represent the resources of an OPC UA server and its field
devices as OPC UA nodes [1]. Part 5, Information Model,
defines a vocabulary containing the most basic OPC UA nodes
and implies a mechanism to structure OPC UA nodes as an
OPC UA information model [2]. In other words, an OPC UA
information model is a schema of OPC UA nodes. This paper
considers the vocabulary presented in the first twenty-three
specifications as the standard information model. All other
OPC UA information models rely on the standard information
model. An OPC UA-based industrial system always has a
domain-specific OPC UA information model and an OPC UA
address space to store OPC UA nodes. Often, an OPC UA
server manages the OPC UA address space. Other devices and
systems can understand the system by learning from its OPC

UA information model. Then, they can access its resources
through the OPC UA address space lying in the OPC UA
server. Figure 1 illustrates an OPC UA-based industrial system.

Address Space

 NET

OPC UA-based industrial system

Fig. 1. Example of an OPC UA-based industrial system

OPC UA information model is an undeniable and essential
part of an OPC UA-based information system. Therefore,
designing the OPC UA information model must be part of
OPC UA-based information system engineering. However,
it still lacks sharing experiences on this subject. Instead of
focusing on the design step, some available research works
describe steps for generating, serializing, and implementing
the OPC UA information model and address space [3], [4].
The partners of the OPC Foundation often propose com-
panion specifications that include their domain-specific OPC
UA information model and examples of how to use them.
However, such examples are usually minimal. While in other
domains, such as ontology-based system engineering, there
exists research that focuses on the reason and steps to analyze
data from requirements to produce ontological schema design
[5]. Their sharing is useful to system developers in the domain.

In addressing the above issue, this paper aims to share expe-
riences transforming a requirement specification into an OPC
UA information model design. This sharing is meaningful and
compelling for two reasons. First, the experiences are from the
actual case study of developing the Product Assembly Line
(PAL) monitoring system deployed in the LocalSEA robotic
cell of CEA LIST [6]. The PAL is also used as a testbed for the
ongoing work in context of Eclipse Papyrus for Manufacturing
development environment and related toolset1. Second, this

1https://www.eclipse.org/papyrus/components/manufacturing/

This is not the final version. For more information, please check: https://ieeexplore.ieee.org/xpl/conhome/1001443/all-proceedings

https://orcid.org/0000-0002-3517-0945
https://orcid.org/0000-0003-3896-7295
https://orcid.org/0000-0002-2341-5343
https://orcid.org/0000-0002-8334-0259

case study’s OPC UA information model is complex. Indeed, it
models hardware, software, and abstract components. Also, it
deals with different complexity of data: real-time data, histor-
ical data, and summary data. Each complexity of components
and data requires a different strategy to model.

The development methodology applied in this case study is
mini-waterfall. It contains five phases: specification, design,
implementation, testing, and maintenance [7]. However, the
scope of this paper is only the two first phases.

The organization of this paper is as follows. Section II
introduces the case study, which includes the context and
motivation of this research. Section III focuses on analyzing
the requirement specification. Then, Section IV describes in
detail the transformation from the analysis into an OPC UA
information design. Finally, a brief conclusion sums up this
paper and opens a discussion.

II. CASE STUDY: PRODUCT ASSEMBLY LINE
MONITORING SYSTEM

PAL refers to "a manufacturing process where the bill-of-
material parts and components are attached one-by-one to a
unit in a sequential way by a series of workers to create a
finished product" [8]. Note that a worker can be a robot or
a human in the modern industry. A workstation is a point in
the series where one or several workers stay and do the same
job. The PAL system deployed in LocalSEA illustrates box
manufacturing. In which, a product is composed of two parts:
a box and its cover. While a cover’s color can be red or green,
all boxes are the same. The PAL system is composed of two
workstations. The first workstation, called storage, stores all
covers. The worker in the storage is a Niryo Ned2 robotic
arm that can pick up one cover and drops it into a carrier.
This procedure is called a pick-n-drop cycle. Then the carrier
can transport it to the second workstation. There are two
carriers: a conveyor belt carries red covers, and a mobile robot
carries green covers. The mobile robot is a TurtleBot3 Waffle
Pi3. The second workstation is a workspace where a human
assembles boxes with red covers, and another assembles boxes
with green covers. They produce two different products. Figure
2 illustrates the PAL system. In this scenario, there are two
further remarks. First, in practice, Niryo Ned controls and
supplies energy directly to the conveyor belt. Thus, it is
possible to consider the conveyor belt as a component of Niryo
Ned. Second, the park is a new component, representing the
position where the mobile robot waits to carry a new cover. It
is neither hardware nor software but an abstract component.

PAL monitoring involves getting real-time and historical
data from the PAL system and viewing such data in a human-
understandable interface. Thus, the PAL monitoring system
requires a server to connect to field devices, collect data from
them, record data when necessary, and expose such data to
external clients. The server in this case study is an OPC UA
server. The field devices are the two robots (Niryo Ned and
TurtleBot3 Waffle Pi) and the conveyor belt.

2https://niryo.com/product/ned-education-research-cobot/
3https://robotis.us/turtlebot-3-waffle-pi/

WorkStation 1: Storage

WorkStation 2: Workspace

ParkNiryo Ned

Cover

Box

ProductTurtleBot3 Waffle Pi

Conveyor Belt

Fig. 2. Product Assembly Line for box manufacturing deployed in LocalSEA

There are three stakeholders with different interests in data
outputs. The first stakeholder plans to visualize the position
and movement of Niryo Ned on an external computer in real-
time. The second one needs to record the periods when the
two robots work. Finally, the third stakeholder demands the
answer to the following questions:

• At any given time, how many covers have been handled
by Niryo Ned? How many red covers? How many green
covers?

• How many covers are on the storage before each pick-n-
drop cycle?

• At any given time, what is the total energy consumption
of Niryo Ned and TurtleBot3 Waffle Pi?

• At any given time, are the conveyer belt and TurtleBot3
Waffle Pi still running?

III. REQUIREMENT SPECIFICATION ANALYSIS

In system development, the specification is the output from
the specification phase. It contains all the information related
to the case study and the requirements needed to deploy the
next phase. The specification of the PAL monitoring case study
includes mainly the eight groups of information:

(1) Information for project management.
(2) Description of Niryo Ned, TurtleBot3 Waffle Pi, and the

conveyor belt.
(3) Description of the available network infrastructure and

communication method.
(4) Description of the role of human workers.
(5) Description of the final products.
(6) Description of the working procedure of the PAL.
(7) Description of the expected output data.
(8) Description of the services that the system can provide.
Among the above, only information groups (2), (3), (6),

and (7) are necessary for the OPC UA information model
design. Note that the information group (7) is translated from
the demands of the stakeholders as follows.

• Concerning the first stakeholder’s demand, the expected
data is the rotation angles of the robot arm’s six joints.
The unit of each joint’s value should be radian (rad) or
milliradian (mrad). The manufacturer defines the limita-
tion of each joint. For example, the angle that the first
joint can rotate is between -2970 and 2970 mrad.

• Concerning the second stakeholder’s demand, the infor-
mation about when the two robots are "on" or "off" is
not informative to record in the historical database. Thus,

system designers propose to record the temperature of the
two robots’ control unit processors (CPU) instead. The
unit of each value is degree Celsius (°C). They have the
same meaning in this case: when a robot is on, the CPU
temperature of the robot’s controller is above 0°C.

• Concerning the third stakeholder’s demand, the questions
turn into the following information:

– The number of (red) covers transported via conveyor
belt. The data type is an integer.

– The number of (green) covers transported via
TurleBot3 Waffle Pi. The data type is an integer.

– The number of covers that Niryo Ned’s camera has
found in the storage. The data type is an integer.

– The energy consumption of Niryo Ned. The unit of
energy consumption is Joule (J). The data type of
energy consumption is double.

– The energy consumption of TurtleBot3 Waffle Pi.
– The status of Niryo Ned.
– The status of TurtleBot3 Waffle Pi.
– The status of the conveyor belt.

For technical reasons, the information about the status of the
park is also required. Indeed, it enables Niryo Ned to recognize
whether the mobile robot is ready for transportation.

There are some remarks from the above information. First,
the expected data from the first and second stakeholders can
be obtained directly from data sources of the PAL system’s
devices without further processing. Thus, they are raw data.
While the first stakeholder demands real-time raw data, the
second is interested in historical data. Unlike the above, the
expected data from the third stakeholder requires summary
data. Such complex data usually are aggregated and processed
by one or several software components. For example, no
module works as an energy calculator integrating inside Niryo
Ned. Thus, system designers can design a software component
representing this module, and system developers must develop
a program that calculates energy consumption and links the
result to the software component.

System designers study the above information and extract
five groups of requirements corresponding to five elements
of the PAL: Niryo Ned, TurtleBot3 Waffle Pi, the storage,
the conveyor belt, and the park. There are two types of
requirements: (1) object and (2) variable. They all should be
described with at least a title and a description. Each variable
requirement must be associated with a specific data type.

R1. Niryo Ned is an object requirement to represent the
Niryo Ned robotic arm.

R1 Status: is a variable requirement to represent the status
of Niryo Ned. It should have at least three states:
available, busy, and offline.

R1.1. Controller: is an object requirement to represent the
Raspberry Pi 4 that controls Niryo Ned.

R1.1.1. CPU: is an object requirement to represent a micropro-
cessor of the Raspberry Pi 4.

R1.1.1 Temperature: is a variable requirement to represent the
CPU temperature. All temperature variables should be

described with the unit °C. Since the data is periodically
recorded in a historical database, it should associate with
a valid interval representing the recording frequency.

R1.2. Joint base: is an object requirement to represent the
joint that connects the base and shoulder of Niryo Ned.

R1.2 Actual position: is a variable requirement to repre-
sent the rotation angle of the joint base. All actual
position variables should be described with the unit
rad or mrad, and the range of motion associated with
the minimum and maximum rotation angle values.

R1.3. Joint shoulder: is an object requirement to represent
the joint that connects the shoulder and arm.

R1.3 Actual position: is a variable requirement to repre-
sent the rotation angle of the joint shoulder.

R1.4. Joint elbow: is an object requirement to represent the
joint that connects the arm and elbow.

R1.4 Actual position: is a variable requirement to repre-
sent the rotation angle of the joint elbow.

R1.5. Joint forearm: is an object requirement to represent the
joint that connects the elbow and forearm.

R1.5 Actual position: is a variable requirement to repre-
sent the rotation angle of the joint forearm.

R1.6. Joint wrist: is an object requirement to represent the
joint that connects the forearm and wrist.

R1.6 Actual position: is a variable requirement to repre-
sent the rotation angle of the joint wrist.

R1.7. Joint hand: is an object requirement to represent the
joint that connects the wrist and hand.

R1.7 Actual position: is a variable requirement to repre-
sent the rotation angle of the joint hand.

R1.8. Red cover counter: is an object requirement to represent
a software component that counts the number of covers
transported via the conveyor belt.

R1.8 Count number: is a variable requirement to represent
the number counted by the red cover counter.

R1.9. Green cover counter: is an object requirement to
represent a software component that counts the number
of covers transported via TurtleBot3 Waffle Pi.

R1.9 Count number: is a variable requirement to represent
the number counted by the green cover counter.

R1.10. Energy calculator: is an object requirement to repre-
sent a software component that calculates the energy
consumption of Niryo Ned during a period.

R1.10 Energy consumption: is a variable requirement to rep-
resent the calculation result. All energy consumption
variables should be described with the unit joule (J).

R2. TurtleBot3 Waffle Pi: is an object requirement to
represent TurtleBot3 Waffle Pi.

R2 Status: is a variable requirement to represent the status
of TurtleBot3 Waffle Pi. It should have at least three
states: available, busy, and offline.

R2.1. Controller: is an object requirement to represent the
Raspberry Pi 4 that controls TurtleBot3 Waffle Pi.

R2.1.1. CPU: is an object requirement to represent a micropro-
cessor of the Raspberry Pi 4.

R2.1.1 Temperature: is a variable requirement to represent the

CPU temperature.
R2.2. Energy calculator: is an object requirement to repre-

sent a software component that calculates the energy
consumption of TurtleBot3 Waffle Pi during a period.

R2.2 Energy consumption: is a variable requirement to rep-
resent the calculation result.

R3.1. Storage: is an object requirement to represent the phys-
ical storage. It is optional.

R3.1.1. Storage counter: is an object requirement to represent
a software component that counts the total of covers at
the storage.

R3.1.1 Count number: is a variable requirement to represent
the number of covers at the storage.

R4. Conveyor belt: is an object requirement to represent the
conveyor belt of this case study.

R4 Status: is a variable requirement to represent the status
of the conveyor belt. It has only two states: on and off.

R5. Park: is an object requirement to represent the position
where the TurtleBot3 Waffle Pi waits to carry a cover.
It is an abstract component.

R5 Status: is a variable requirement to represent the state
if the TurtleBot3 Waffle Pi is available in the park.

IV. OPC UA INFORMATION MODEL DESIGN

The strategy to design our domain-specific OPC UA infor-
mation model for PAL monitoring is to reuse the existing vo-
cabulary before defining new concepts. This approach enables
our designers to profit from well-defined concepts of industrial
organizations and also improves the interoperability between
OPC UA-based industrial systems. The group of new-defined
concepts is called the custom-specific information model.

A. Vocabulary Selection

The vocabulary to study is the standard information model
and the list of 40 companion specifications approved by the
OPC Foundation. Among them, the OPC UA information
model part 100 Devices (CS-DI) is one of the most important.
It provides generic fundamental concepts for the topology
of an industrial system, including all devices, hardware and
software components, networks, and features [9]. It is the
skeleton for many other companion specifications to extend.

Next, OPC UA information for Robotics (CS-Robotics) is
another companion specification information model necessary
for this case study. It is presented by the working group of the
Mechanical Engineering Industry Association (VDMA), and
OPC Foundation [10]. CS-Robotics also relies on CS-DI. The
working group of VDMA and OPC Foundation aim to propose
a vocabulary for multiple industrial robot types; however,
CS-Robotics is still developing, and its current version only
supports robotic arms. It is possible to divide this vocabulary
into four groups related to four main objects: motion device
system, controller, motion device, and safety state. Logically,
a motion device system contains the three others.

Other companion specifications can be used to model some
requirements in this case study. The companion specifica-
tion for Process Automation Devices is worth mentioning.

It includes an extension of analog measurement variables
that can detail BaseAnalogItemType of CS-DI, such as the
concept of TemperatureMeasurementVariableType can cover
the CPU temperature requirements. However, their impact on
this case study is too small compared to the cost of loading
the whole vocabulary. Thus, our designers decide to reuse only
the standard information model, CS-DI, and CS-Robotics and
define new custom-specific concepts when necessary.

B. Requirement Coverage

Requirement coverage is the step to selecting the con-
cepts that can model requirements. In OPC UA information
model language, the concept is a type such as ObjectType
and VariableType. Table I presents the relation between the
requirements listed in Section III and the concepts to cover
them. In this table, each row represents the coverage of
a requirement. The first column identifies the requirement.
The second column contains the exact concept covering the
requirement. The representation format of a concept comprises
two parts: domain and Concept. The part domain is the
namespace of the vocabulary that holds the concept. In detail,
ns0 is for the standard information model, ns2 is for CS-DI,
ns3 is for CS-Robotics, and ns4 is for the custom-specific
information model. The part Concept is the name of concept.

As dedicated to robotic arms, many concepts from CS-
Robotics can cover the group of requirements R1 related to
Niryo Ned. However, there are some exceptions. First, no
concept in our selected information models is specifically for
the CPU. Since the generic ns2:DeviceType is abstract, our
designers cannot use it directly but need to define the subtype
ns4:ComputerComponentType to cover the CPU requirements.
Fortunately, the CPU temperature variable requirements can be
covered by ns0:AnalogUnitType. Second, concerning the soft-
ware components, including counters and energy calculators,
our designers can just use ns2:SoftwareType to cover them.
However, their associated variables are summary data. Thus,
to explicitly represent such complexity, it is necessary to define
the ns4:AggregatedItemType variable type, as the subtype of
ns0:DataItemType, dedicated to summary and processed data.

Concerning the group of requirements R2, there is not yet
any vocabulary for mobile robots. Thus, our designers copy
the schema from CS-Robotics and produce another version
for mobile robots with some replacements. In detail, the new
concepts related to mobile robots replace the concepts related
to motion devices. Also, the new concepts related to wheels
replace the concepts related to axes. Since the two types of
robots share many identical characteristics, it is practical and
easy to reuse well-defined concepts from CS-Robotics, such as
ns3:ControllerType, with mobile robots. The schema of mobile
robots is a part of the custom-specific information model.

Group R3 contains three elements. First, the storage is a
component of the system, but it should not be modeled as
a ns2:DeviceType or ns2:SoftwareType. Our designers then
defines ns4:PlaceType as a subtype of the ns2:ComponentType
object type to cover storage. On the other hand, the stor-
age counter can be covered by ns2:SoftwareType, and the

TABLE I
REQUIREMENTS COVERAGE BY THE STANDARD INFORMATION MODEL
(NS0), CS-DI (NS2), CS-ROBOTICS (NS3), AND CUSTOM-SPECIFIC (NS4)

Requirement domain:Concept
R1. Niryo Ned ns3:MotionDeviceSystemType

R1 Status ns0:MultiStateDiscreateType

R1.1. Controller ns3:ControllerType

R1.1.1. CPU ns4:ComputerComponentType

R1.1.1 Temperature ns0:AnalogUnitType

R1.2. Joint base ns3:AxisType

R1.2 Actual position ns0:AnalogUnitType

R1.3. Joint shoulder ns3:AxisType

R1.3 Actual position ns0:AnalogUnitType

R1.4. Joint elbow ns3:AxisType

R1.4 Actual position ns0:AnalogUnitType

R1.5. Joint forearm ns3:AxisType

R1.5 Actual position ns0:AnalogUnitType

R1.6. Joint wrist ns3:AxisType

R1.6 Actual position ns0:AnalogUnitType

R1.7. Joint hand ns3:AxisType

R1.7 Actual position ns0:AnalogUnitType

R1.8. Red cover counter ns2:SoftwareType

R1.8 Count number ns4:AggregatedItemType

R1.9. Green cover counter ns2:SoftwareType

R1.9 Count number ns4:AggregatedItemType

R1.10. Energy calculator ns2:SoftwareType

R1.10 Energy consumption ns4:AggregatedItemType

R2. TurtleBot3 Waffle Pi ns4:MobileRobotSystemType

R2 Status ns0:MultiStateDiscreateType

R2.1. Controller ns3:ControllerType

R2.1.1. CPU ns4:ComputerComponentType

R2.1.1 Temperature ns0:AnalogUnitType

R2.2. Energy calculator ns4:SoftwareType

R2.2 Energy consumption ns4:AggregatedItemType

R3.1. Storage ns4:PlaceType

R3.1.1. Storage counter ns2:SoftwareType

R3.1.1 Count number ns4:AggregatedItemType

R4. Park ns4:PlaceType

R4 Status ns0:TwoStateDiscreteType

R5. Conveyor belt ns4:ConveyorBeltType

R5 Status ns0:TwoStateDiscreteType

count number can be covered by ns4:AggregatedType. The
park of group R4 can be covered by ns4:PlaceType. To
cover the conveyor belt of the group R5, our designers de-
fine ns4:ConveyorBeltType as the subtype of ns4:DeviceType.
The variables of the park and conveyor belt are status
representing two states. Thus, both can be covered by
ns0:TwoStateDiscreteType. Back to the two robots Niryo Ned
and TurtleBot3 Waffle Pi, their status represents three states,
so they must be covered by ns0:MultiStateDiscreteType.

C. Schema Forming

Forming a schema is the step that brings the semantic to
a model by making relations of all elements. The concepts

in the OPC UA information model language are linked due
to references. Three basic reference types in our schema
are HasComponent, Organizes, and HasProperty. Moreover,
the references HasTypeDefinition and HasSubType appear in
Subsection IV-A to define a new object or variable type. By
default, information models provide not only the vocabulary,
but also a schema with relations between the concepts. Thus,
when reusing a schema, system designers have only three jobs:
(1) define instances from the concepts, (2) put the defined
instances in appropriate positions in the schema, and (3) add
details to complete it. Since the skeleton of the OPC UA
information model for the PAL monitoring system is CS-DI
and CS-Robotics, our designers can adopt the above strategy.

Figure 3 is an excerpt of the blueprint of our final OPC
information model design. The DeviceSet instance prede-
fined by CS-DI is the root for all device instances. In this
case, there are two instances: Niryo_Ned representing Niryo
Ned and TurtleBot3_Waffle_Pi representing TurtleBot3
Waffle Pi. As every MotionDeviceType instance, Niryo_Ned
has three groups of components which are Controlers,
MotionDevices, and SafetyStates. Our designer defines
the instance Raspberry_Pi_4 as the controller of Niryo
Ned. It has a microprocessor represented by the CPU in-
stance. Temperature is one of the variable of the CPU’s
ParameterSet. In the MotionDevices group, our designers
define Robot to represent the mechanical and electronic parts
of the Niryo Ned. The instance has many sub-elements,
of which three are essential for this scenario. First, the
ParameterSet has the component which is the Status
variable. Second, the Axes contains all the joint instances
of Niryo Ned. Third, the AdditionalComponents can con-
tain all additional modules of Niryo Ned. In this sense,
all software components and their corresponding variables
are in this folder. The organization of the sub-elements of
TurtleBot3_Waffle_Pi shares the same design logic as the
one of Niryo_Ned, as explained in Section IV-B. Also in
this design, our designers consider the conveyor belt and the
storage as additional components of Niryo Ned, and the park
as an additional component of TurtleBot3 Waffle Pi.

All variables in our schema are described with proper-
ties except CountNumber. Every ActualPosition associates
with an EngineeringUnits and a EURange. The former
property holds the value which is the unit identification
corresponding to mrad. The latter one holds the minimum
and maximum rotation angle values. Every Status initi-
ated by ns0:TwoStateDiscreteType has two properties of two
states FalseState and TrueState. However, the Status
initiated by ns0:MultiStateDiscreteType links to a property
EnumStrings which associates with three integer values cor-
responding to available, busy, and offline states. Temperature
and EnergyConsumption variables have EngineeringUnits,
with the units respectively are °C and J. One essential ad-
dition to Temperature variables are a new property, called
RepeatIntervalMs, which implies the frequency that the
variables is updated. Our designers define this property to
distinguish historical data from other real-time data.

 Organizes
 Organizes

DeviceSet

Niryo_Ned
MotionDevideSystemType

Robot

Axes

Legends:

<Object_Instance>

<Object_Type>

Namespace:
 0 : http://opcfoundation.org/UA
 2 : http://opcfoundation.org/UA/DI
 3 : http://opcfoundation.org/UA/Robotics
 4 : http://lsea.org/localsea

BaseObjectType

MotionDeviceType

FolderType

Joint_Base

Joint_Shoulder

AxisType

AxisType

Joint_Elbow
AxisType

Joint_Forearm
AxisType

Joint_Wrist
AxisType

Joint_Hand
AxisType

Controllers
FolderType

MotionDevices
FolderType

Raspberry_Pi_4
ControllerType

Components
FolderType

<Variable_Instance>::<Data_Type>

<Variable_Type>

AdditionalComponents
FolderType

Objects
FolderType

 Organizes

ParameterSet
BaseObjectType

TurtleBot3_Waffle_Pi
MobileRobotSystemType

Status::UInt16

MultiStateDiscreteType

ParameterSet
BaseObjectType

ParameterSet
BaseObjectType

ParameterSet
BaseObjectType

ParameterSet
BaseObjectType

ParameterSet
BaseObjectType

ParameterSet
BaseObjectType

ActualPosition::Double

AnalogUnitType

ActualPosition::Double

AnalogUnitType

ActualPosition::Double

AnalogUnitType

ActualPosition::Double

AnalogUnitType

ActualPosition::Double

AnalogUnitType

ActualPosition::Double

AnalogUnitType

Red_Cover_Counter
SoftwareType

Green_Cover_Counter
SoftwareType

Storage_Counter
SoftwareType

CPU
ComputerComponentType

Energy_Calculator
SoftwareType

ParameterSet
BaseObjectType

ParameterSet
BaseObjectType

ParameterSet
BaseObjectType

ParameterSet
BaseObjectType

ParameterSet
BaseObjectType

CountNumber::UInt32

AggregatedItemType

CountNumber::UInt32

AggregatedItemType

CountNumber::UInt32

AggregatedItemType

EnergyConsumption::Double

AggregatedItemType

Conveyor_Belt
ConveyorBeltType

ParameterSet
BaseObjectType

Status::Boolean

TwoStateDiscreteType

AdditionalComponents
FolderType

Robot
MobileRobotType

Controllers
FolderType

MobileRobots
FolderType

Raspberry_Pi_4
ControllerType

Components
FolderType

CPU
ComputerComponentType

ParameterSet
BaseObjectType

ParameterSet
BaseObjectType

Status::UInt16

MultiStateDiscreteType

Wheels
FolderType

Energy_Calculator
SoftwareType

ParameterSet
BaseObjectType

EnergyConsumption::Double

AggregatedItemType

Park
PlaceType

ParameterSet
BaseObjectType

Status::Boolean

TwoStateDiscreteType

Temperature::Double

AnalogUnitType

Temperature::Double

AnalogUnitType

 HasComponent
 HasProperty

EnumStrings

FalseStateTrueState

<Property_Instance>

EngineeringUnits

RepeartIntervalMs

EngineeringUnits

EngineeringUnits

EURange

Fig. 3. Excerpt of the blueprint of the OPC UA information system for the PAL monitoring case study

V. CONCLUSION AND DISCUSSION

This paper presents the experiences of designing an OPC
UA information model from a requirement specification. The
presented PAL monitoring system relies on a case study de-
ployed in the robotic testbed LocalSEA. The vocabulary used
to model the system relies mainly on the standard information
model, CS-DI, and CS-Robotics. The sharing experiences are
helpful to system developers who are dealing with a complex
OPC UA-based industrial system engineering. Unfortunately,
limited by the case study, this paper has no chance to share
experiences in modeling OPC UA methods and views.

There are three further points to discuss. First, it is worth
recalling that the blueprint in Subsection IV-C is only a part
of the complete OPC UA information model. Since this paper
focuses on highlighting the transformation from requirements
into design, therefore, avoids presenting other unrelated parts.

Second, the conveyor belt is an additional component of
Niryo Ned as in our design, or can be modeled as an
independent device. The choice depends on the design style
and the case study. For example, the second solution is better
when multiple robotic arms share the same conveyor belt.

Third, the serialization from the OPC UA information model
design into a system modeling format is out of the scope of this
paper. In reality, our designers develop and use an extension
for Eclipse Papyrus to encode the design into a SysML-based

model and then generate code for OPC UA servers. We plan
to share this extension with the public in the future.

REFERENCES

[1] OPC Foundation, “OPC Unified Architecture - Part 3: Address Space
Model,” Industry Standard Specification OPC 10000-3, 2017.

[2] OPC Foundation, “OPC Unified Architecture - Part 5: Information
Model,” Industry Standard Specification OPC 10000-5, 2017.

[3] F. Pauker, T. Frühwirth, B. Kittl, and W. Kastner, “A Systematic
Approach to OPC UA Information Model Design,” Procedia CIRP,
vol. 57, pp. 321–326, 2016.

[4] S. Rohjans, K. Piech, and S. Lehnhoff, “UML-based modeling of OPC
UA address spaces for power systems,” in 2013 IEEE International
Workshop on Inteligent Energy Systems (IWIES). Vienna, Austria:
IEEE, Nov. 2013, pp. 209–214.

[5] M. Poveda Villalón, Q.-D. Nguyen, C. Roussey, C. de Vaulx, and J.-
P. Chanet, “Ontological Requirement Specification for Smart Irrigation
Systems: A SOSA/SSN and SAREF Comparison,” in 9th International
Semantic Sensor Networks Workshop, ISWC 2018, vol. 2213, Monterey,
United States, Oct. 2018, pp. 1–16.

[6] Q.-D. Nguyen, F. Tmar, Y. Huang, and S. Dhouib, “Early lessons
learned from the development of a local OPC UA-based robotic testbed
for research,” in IEEE 31st International Symposium on Industrial
Electronics, Anchorage, Alaska, United States, Jun. 2022, pp. 1–4.

[7] P.-A. Muller and N. Gaertner, Modélisation objet avec UML. Paris:
Eyrolles, 2004.

[8] N. T. Thomopoulos, Assembly Line Planning and Control. Cham:
Springer International Publishing, 2014.

[9] OPC Foundation, “OPC Unified Architecture - Part 100: Devices,”
Industry Standard Specification OPC 10000-100, 2021.

[10] Mechanical Engineering Industry Association (VDMA), “OPC UA for
Robotics - Part 1: Vertical Integration,” VDMA, Industry Standard
Specification VDMA 40010-1, 2019.

	Introduction
	Case Study: Product Assembly Line Monitoring System
	Requirement Specification Analysis
	OPC UA Information Model Design
	Vocabulary Selection
	Requirement Coverage
	Schema Forming

	Conclusion and Discussion
	References

