

From arc-melted ingot to MTR fuel plate: a SEM/EBSD microstructural study of U_3Si_2

Julien Havette, Xaviere Iltis, Herve Palancher, Doris Drouan, Olivier Fiquet, Etienne Castelier, Mathieu Pasturel

► To cite this version:

Julien Havette, Xaviere Iltis, Herve Palancher, Doris Drouan, Olivier Fiquet, et al.. From arc-melted ingot to MTR fuel plate: a SEM/EBSD microstructural study of U_3Si_2. JdA 2021 - 50èmes Journées des Actinides + 13th school on the physics and chemistry of actinides, Mar 2021, virtual event, France. cea-03697840v1

HAL Id: cea-03697840 https://cea.hal.science/cea-03697840v1

Submitted on 20 Jun 2022 (v1), last revised 17 Jun 2022 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1: 50^{èmes} Journées des Actinides 13th School on the Physics and Chemistry of the Actinides

DE LA RECHERCHE À L'INDUSTRIE

From arc-melted ingot to MTR fuel plate: a SEM/EBSD microstructural study of U₃Si₂

<u>Julien Havette</u>^{1,2}, X. Iltis¹, H. Palancher¹, D. Drouan¹, O. Fiquet¹, E. Castelier¹, M. Pasturel²

 ¹ CEA, DES, IRESNE, DEC, Cadarache F-13108 Saint-Paul-Lez-Durance, France
 ² Univ. Rennes 1, CNRS, Institut des Sciences Chimiques de Rennes – UMR6226, F-35000 Rennes

IRESNE | DEC | SA3E | LCPC

50^{èmes} Journées des Actinides – 24/03/2021

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

Introduction

IRESNE | DEC | SA3E | LCPC

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

- Conversion of Research Reactors to Low Enriched Uranium (<20% ²³⁵U).
- Development of new nuclear fuels with higher uranium density, for high performance MTRs.
- U_3Si_2 is one of the main candidates.

Fuel	Melting point (°C)	Physical density (gcm ⁻³)	Uranium Ioading (g cm ⁻³)			
U	1133	19.1	19.1			
U–7Mo	1145	18.4	17.1			
U–10Mo	1150	18.2	16.4			
U ₆ Mn	726	17.8	17.1			
U ₆ Fe	815	17.7	17.0			
U ₃ Si	930	15.6	15.0			
U ₃ Si ₂	1665	12.2	11.3			
USi	1580	10.96	9.8			
UAI ₂	1590	8.1	6.6			
UAI3	1350	6.8	5.0			
UAI ₄	731	6.1	4.2			
$U_{0.9}AI_4$	641	5.7	3.7			
UAI _x	NA	6.4	4.5			

- Objectives of this study
 - Material Testing Reactors (MTRs) → mainly nuclear fuel plates.
 - U₃Si₂/Al fuel plate manufacturing process

- Microstructural characteristics before irradiation important to understand the in-pile behaviour.
- EBSD is an efficient technique.
- U₃Si₂ microstructure reinvestigated after the **<u>3 main steps</u>** of the manufacturing process.

Experimental methods

IRESNE | DEC | SA3E | LCPC

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

• U₃Si₂/Al fuel plate

Samples

Framatome-CERCA production
Fabrication in the frame of the CEA SHARE irradiation test (Leenaers *et al.*, 2008)

Arc-melted ingots and crushed ingots

 \circ Laboratory (CEA-Cadarache) production

Label	Cooling	U/Si atomic ratio	Weight (g)		
I1	"Very fast"	60/40	0.5		
I2	"Slow"	60/40	1		
I3	"Fast"	60/40 "low purity U"	1		
14	"Fast"	58/42	1		

- X-Ray Diffraction (XRD)
- Scanning Electron Microscopy (SEM) + Energy Dispersive Spectroscopy (EDS)
- Electron BackScattered Diffraction (EBSD)

Results and discussion

IRESNE | DEC | SA3E | LCPC

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

U₃Si₂ 010

- Important fragmentation of particles.
- Single crystalline particles.

Map coloured in phase highlights the presence of Si rich secondary phases :

- U₃₄Si_{34.5} (3.5%)
- U₈Si₈X (0.5%)

SEM characterizations

• αU at grain boundaries.

Ceal "High purity" stoichiometric ingots - Cooling rate effect

Arc Vertical section Copper hearth

Ceal "High purity" stoichiometric ingots - Cooling rate effect

Grains size analysis

Slow cooling favours grain growth.

Impact on the crushed ingot

I1: fast cooled ingot

12: slow cooled ingot

- Mainly single crystalline particles.
- Grain boundaries in particles \rightarrow intragranular fragmentation (as evidenced by Metzger *et al.*, 2017).
- Influence of fast cooling:
 - $\rm U_3Si_2$ grains are smaller in the ingot
 - U_3Si_2 particles are larger after a given crushing sequence \rightarrow influence of the higher amount of grain boundaries on the mechanical resistance?

"Low purity" stoichiometric ingot

- Secondary phases indexed :
 - \circ U₈Si₈X
 - U₃₄Si_{34.5} (Le Bihan *et al.*, 1996)
- Solidification in spiral shape

I3 ingot

2%at. Silicon excess

- Secondary phase indexed as U₈Si₈X.
- Solidification in spiral shape.

\rightarrow Low purity uranium leads to an overestimation of uranium and deviation to stoichiometry

Institut des

Sciences Chimiques

Conclusion

IRESNE | DEC | SA3E | LCPC

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

First EBSD examination performed on $U_3Si_2 \rightarrow$ new insights in characterization

Study of as-fabricated U_3Si_2/Al fuel plate and demonstration of the presence of:

o large grains and single crystalline particles (slow cooling rate on industrial ingots),

→ Laboratory production highlights that fast cooling rate >> grain size and >> mechanical resistance because of the intragranular fragmentation?

 \rightarrow Same fragmentation mechanism observed after U₃Si₂ hydrogenation.

First EBSD examination performed on $U_3Si_2 \rightarrow$ new insights in characterization

Study of as-fabricated U_3Si_2/Al fuel plate and demonstration of the presence of:

o large grains and single crystalline particles (slow cooling rate on industrial ingots),

→ Laboratory production highlights that fast cooling rate >> grain size and >> mechanical resistance because of the intragranular fragmentation?

 \rightarrow Same fragmentation mechanism observed after U₃Si₂ hydrogenation.

• two different Si rich secondary phases.

 \rightarrow U₈Si₈X supposingly stabilised by impurity (Laugier *et al.*, 1971) observed with high purity materials.

→ Thermodynamic calculations underway to understand its formation condition.

For further reading: Havette *et al.*, From arc-melted ingot to MTR fuel plate: A SEM/EBSD microstructural study of U₃Si₂, in *Journal of Nuclear Materials*, vol. 537, **2020**

RS

DE LA RECHERCHE À L'INDUSTRIE

Thank you for your attention

JdA-2021: 50^{èmes} Journées des Actinides + 13th School on the Physics and Chemistry of the Actinides

IRESNE | DEC | SA3E | LCPC

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

DE LA RECHERCHE À L'INDUSTRIE

Appendix

IRESNE | **DEC** | **SA3E** | **LCPC**

Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone

Table 1. Main impurities (in mg.kg⁻¹) in the two uranium batches used for the synthesis of U_3Si_2 by arc-melting.

U batches	Elements														
	Ag	AI	В	с	Со	Cr	Cu	Fe	Mn	Мо	ο	Ni	Pb	Si	Sn
"High purity"	<0.5	15	<0.2	300	≤1	3.5	2	25	3.5	<1	300	7	≤1	10	2
"Low purity"	-	90	-	300	-	12	15	85	5	-	1500	40	-	37	-

Cea Non stoichiometric ingots

Mechanism of spiral microstructure formation

Already observed in Zn-Zn+3%Mg eutectic (hexagonal) [9].

Commissariat à l'énergie atomique et aux énergies alternatives Document propriété du CEA – Reproduction et diffusion externes au CEA soumises à l'autorisation de l'émetteur

C22

Sciences Chimiques

C22 U-Si binary diagram

• Several compounds in the binary diagram:

