

Advanced hybrid plasmonic nano-emitters using smart photopolymer

Dandan Ge, Safi Jradi, Christophe Couteau, Sylvie Marguet, Renaud Bachelot

▶ To cite this version:

Dandan Ge, Safi Jradi, Christophe Couteau, Sylvie Marguet, Renaud Bachelot. Advanced hybrid plasmonic nano-emitters using smart photopolymer. Photonics research, 2022, 10 (7), pp.1552-1566. 10.1364/PRJ.455712 . cea-03695970

HAL Id: cea-03695970 https://cea.hal.science/cea-03695970

Submitted on 17 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Advanced hybrid plasmonic nano-emitters using smart photopolymer

3 DANDAN GE,¹ ALI ISSA,¹ SAFI JRADI,^{1,*} CHRISTOPHE COUTEAU,¹ SYLVIE
 4 MARGUET,² RENAUD BACHELOT^{1,*}

5 ¹ Light, nanomaterials, nanotechnologies (L2n) Laboratory. CNRS ERL7004. Université de Technologie

6 *de Troyes, 12 rue Marie Curie, 10004 Troyes Cedex, France*

7 ²Université Paris Saclay, CEA, CNRS, NIMBE, F-91191 Gif sur Yvette, France

8 ³safi.jradi@utt.fr,

9 ⁴renaud.bachelot@utt.fr

10 Abstract: The integration of nano-emitters into plasmonic devices with spatial control and nanometer precision has become a great challenge. In this paper, we report on the use of a smart 11 12 polymer for selectively immobilizing nano-emitters on specific preselected sites of gold 13 nanocubes (GNC). The cunning use of the polymer is twofold. First, it records both the selected 14 site and the future emitters-GNC distance through plasmon-assisted photopolymerization. 15 Second, because the polymer is chemically functionalized, it makes it possible to attach the 16 nano-emitters right at the preselected polymerized sites which subsequently "recognize" the 17 nano-emitters to get attached. Since the resulting active medium is a spatial memory of specific 18 plasmonic modes, it is anisotropic, making the hybrid nanosources sensitive to light 19 polarization. The ability to adjust their statistical average lifetime by controlling the thickness 20 of the nanopolymer is demonstrated on two kinds of nano-emitters coupled to GNC: doped 21 polystyrene nanospheres and semiconductor colloidal quantum dots.

22

23 1. INTRODUCTION

Organic and inorganic nano-emitters are used for many topical applications ranging from nanooptics and nano-photonics to biomedicine and cell biology. [1–3] When weakly or strongly coupled to metal nanoparticles, their key properties can be controlled: (e. g.) lifetime, [4,5] quantum yield, [6] fluorescence directivity, [7] emission intensity, [8] and spectral properties [9]. The integration of these hybrid nano-emitters as optical nanosources into photonic nanodevices is of interest for research and technological innovation due to their miniaturization and multi-applications.

31 However, the integration of the emitters near metallic nanostructures with spatial control 32 and nanometer precision in the three space dimensions remains a challenge. In the simplest 33 way, the emitters are dispersed randomly on the plasmonic structures, without any position 34 control. [10,11] By adding a spacer layer, the separation distance between the emitters and 35 metallic structures can be controlled along one direction. [12–14] To achieve 3D spatial control 36 of emitters relative to metallic nanostructures, a method based on trapping emitters in an 37 isotropic silica shell covering the entire metallic nanoparticles has been reported. [15,16] 38 Scanning-based methods have been reported to study in a controlled way the coupling between 39 emitters and metallic nanostructures. [17,18] The DNA origami-assisted method, as a powerful 40 approach, has been used for building special plasmonic nanoantennas and linking together 41 plasmonic nanostructures and nano-emitters. [19-22] For the structures presenting a gap, 42 including dimers and particles-film structures, DNA origami has proved to be able to place 43 emitters, even a single one, within the gap. [23-27]. In other words, DNA is generally used for 44 both bridging particles together and attaching nano-emitters. In the case of single metal

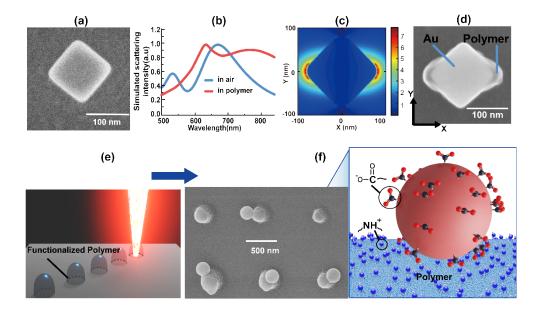
45 nanoparticles, the whole surface of particles is functionalized. With this approach, it is thus 46 difficult to control the anisotropy of the emitters distribution around single plasmonic 47 nanostructures. With the use of a DNA clamp, gold nanoparticles have been placed at three 48 special positions around a single nanorod, but the DNA clamp and special capture strands on 49 the clamp limit the shapes and size of the host nanostructures and it is hard to change capture 50 positions for a defined clamp [28]. Besides, DNA-based hybrid nanosystem are pretty fragile 51 in the sense that, for the survival of DNA origami, one needs to be in a salty liquid environment, 52 which limits the types of available metallic nanoparticles, and requires complicated steps. This 53 environment requirement limits the use of this approach for direct integration into nanophotonic 54 circuits. Although site-selective coating based on anisotropic chemical growth on metal 55 nanostructures was reported, [29-32] there are still challenges in achieving anisotropic 56 distribution of the emitters themselves near metal nanoparticles. As a matter of fact, controlling 57 in the three space dimensions, the anisotropic spatial distribution of emitters in the vicinity of 58 single metal nanostructures still constitutes a challenge.

59 Near-field plasmonic photopolymerization has proven to be an effective technique to trap 60 light-emitting quantum dots and molecules inside polymer volumes that are integrated at 61 electromagnetic 'hot-spots' [33,34]. The anisotropic distribution of emitters can be controlled 62 by choosing the plasmonic mode used for nanophotopolymerization. However, since the 63 emitters are initially randomly distributed inside the photopolymerizable formulation, the 64 spatial distribution of the emitters is still not precise enough. In particular, the distance between 65 the nano-emitters and the metal nanoparticle in the structures of Ref. 33 is not controlled. In 66 addition, because the emitter is pre-dispersed within the formulation, it is difficult to consider 67 the influence of the curing laser on the emitter during the photopolymerization process, such as 68 the two-photon absorption by the emitters, and the possible light force that may squeeze the 69 emitters outward.

In this letter, we report on the use of a smart nano-polymer that allows us to address the above issues. The smart nature of the polymer is twofold. First, it is a photopolymer that reticulates at the plasmonic hot spot of the metal nanoparticle, allowing one to keep the memory of the selected electromagnetic sites. This "memory" is spatially anisotropic and also decides the distance between the plasmonic nanostructure and the future nano-emitter to be attached. Secondly, it is chemically pre-functionalized to electrostatically "recognize" the nano-emitter that can get selectively attached to the pre-designed sites.

Our approach is actually based on the association of three controlled elements: plasmonicnanostructures, smart photopolymer and nano-emitters.

79 2. EXPERIMENTAL SECTION


80 A. Plasmonic nanostructures

81 The plasmonic nanocavities used are 125-nm gold nanocubes (GNC, Fig. 1(a)) made by 82 chemical synthesis using the method already described in detail in Ref.35. These cubes, 83 deposited on an ITO-coated glass substrate, present a dipolar plasmon resonance at 670 nm in 84 air, see blue curve in Fig. 1(b), suitable for resonant near-field two-photon polymerization. [33]

85 B. Smart photopolymer

The photopolymer has been designed for plasmon-induced two-photon nanoscale polymerization [33, 34] but has been modified: it is also a functionalized polymer that grabs the emitters to its surface by electrostatic interaction. In that way, we can control both the number of emitters attached to the polymer surface and the average emitter-metal surface distance by adjusting the thickness of the polymer on the plasmonic structure. The 91 photosensitive formulation consists of 4.99 mmol of Pentaerythritol triacrylate (PETA) 92 monomer functionalized by 2.51 mmol of methyldiethanol amine (MDEA). 0.039 mmol of 2-93 Isopropylthioxanthone (ITX) was added to absorb light and make interaction with MDEA to 94 initiate the two-photon polymerization reaction and 1.13 mmol of monomethyl ether of 95 hydroquinone (MEHO) inhibitor was added to control the spatial confinement of the 96 polymerization process. After photo reticulation and development, the polymer surface presents

97 a high density of amino groups 10^8 molecules per μ m² determined by the orange 2 test.

98

99 Fig. 1 Gold nanocubes, nanoscale photopolymerization and surface functionalization. (a) SEM image of a 100 representative single gold nanocube. (a) Calculated scattering spectrum of a single gold nanocube of 125-nm, in air or 101 photopolymer medium (refractive index=1.48), on ITO-coated glass substrate (40 nm thickness of ITO layer with 102 refractive index of 2). (b) FDTD map (at the middle sectional plane of the cube, λ =780 nm) of the field modulus in 103 104 the vicinity of the gold nanocube illuminated with a X-polarized plane wave. (d) SEM image of the hybrid nanostructure resulting from 2-photon polymerization (TPP) triggered by the field shown in (c). (e) Illustration of the 105 photopolymerization of mixture of PETA monomer functionalized by amine. (f). Left: SEM image of polymerized 106 dots whose surface contains amine group. After immersion in a solution of negatively charged functionalized 107 fluorescent doped polystyrene spheres (200-nm diameter), the fluorescent spheres attached on four of the six polymer 108 dots by electrostatic interaction. Right: schematic representation of the electrostatic interaction.

109

More information about the smart photopolymer can be found in Ref. 36. The obtained 110 polymer nanotemplates are intended to be immersed in acidic medium solution of negatively 111 charged nano-emitters, resulting in the specific attachment of these nano-emitters on the 112 polymer surface. In other words, during immersion, the negatively charged nano-emitters 113 selectively assemble, by electrostatic interaction, on the positively charged functionalized 114 polymer surface due to the presence of protonated amine groups [Fig. 1(f)].

115 C. Nano-emitters

116 The first considered nano-emitters are fluorescent polystyrene spheres (FPS, from Thermo 117 Fisher) doped with light-emitting molecules. They are similar to those introduced in Fig. 1 but 118 they are significantly smaller: their average size is 45 nm (see Appendix B). The absorption 119 spectrum presents a peak at 580 nm whereas the emission peak is at 620 nm (see Appendix B). 120 Such FPSs were used by J. de Torres et al. to demonstrate plasmons-mediated fluorescence 121 energy transfer on silver nanowires. [37] The authors deposited the FPSs by spin-coating and 122 their spatial distribution was not controlled. The carboxylate-modified FPSs (FluoSpheres, 123 model F8793) used in this letter, are negatively charged and thus able to get selectively 124 positioned to the functionalized polymer surface by electrostatic force.

Based on the three above-described elements, advanced hybrid plasmonic nano-emitterscan be made.

127 D. Protocol for fabricating the hybrid plasmonic nano-emitters

128 The protocol for fabricating the hybrid plasmonic nano-emitter consists of two main steps (Fig.6).

130 Step 1. This step consists of the fabrication of the functionalized nanopolymer on the GNC 131 surface by plasmon-triggered polymerization at 780 nm. [33,34,38] This wavelength efficiently 132 excites the GNC plasmon when this later is surrounded by the liquid photopolymer [see red 133 curve in Fig. 1(b)] and is efficiently absorbed by ITX that is used as a 2-photon absorber. [39] 134 The photopolymerization occurs specifically at the electromagnetic hot spots, when the near-135 field intensity exceeds a certain intensity threshold. During this step, the selected nanoscale 136 sites are thus recorded by the polymer. After exposure, the deposited polymer volume is 137 revealed through rinsing with acetone and isopropanol for 10 mins separately. Fig. 1(d) illustrates a typical hybrid nanocube, revealed after rinsing, that results from nano-138 139 polymerization triggered by the plasmonic dipolar eigenmode excited with a X polarization 140 parallel to the diagonal of the cube [Fig. 1(c)]. The process relies on the control of the incident intensity relative to the threshold dose (D_{th}) of 2-photon polymerization. For getting the result 141 shown in Fig. 1(d), the incident laser dose was 40% of the threshold dose, so that no 142 143 polymerization occurs, except in the near-field of the GNC [illustrated in Fig. 1(c)] where the 144 local dose gets higher than D_{th} through plasmon enhancement.

The used experimental configuration for this step is shown in Appendix A, Fig. 7.

145

146 <u>Step2.</u> Following step 1, the sample is immersed into the FPS solution for 40 min. The FPSs 147 were stabilized by carboxylic acid and have negative charges on their surface. During 148 immersion and due to the presence of amine groups on the polymer (positive charges) FPSs get 149 attracted by the polymer, leading to the selective attachment of FPSs on its surface by 150 electrostatic interaction. During this step, the pre-recorded smart polymer gets revealed by 151 selectively attaching nano-emitters.

152 E. Selective attachment of fluorescent spheres at the nanocube corners

153 By adjusting the dose used for step 1, we were able to control the nanopolymer's thickness and thus the average distance between the GNC surface and the nano-emitters to be attached. At 154 155 the same time, increased thickness of polymer leads to the increased number of grafted emitters. 156 Fig. 2 illustrates this point: two different volumes of the polymer lead to a large change in the 157 number of attached FPSs. The effect of the dose on the volume of polymer is clearly shown in 158 Appendix C, Fig. 10. The selective immobilization of FPSs at the two corners of GNC is here 159 successfully demonstrated. The excitation laser used for 2-photon polymerization was X-160 polarized, resulting in two lobes of smart polymer that took the shape of the local plasmonic field [Fig. 1(c) and 1(d)]. In Fig. 2(a) and 2(b), two identical GNC have been polymerized with 161 162 two incident doses at 780 nm: 40% and 10% of D_{th} , respectively (step 1). Step 2 results in 163 hybrid FPS/GNC with a number of FPS at each cube corner which is strongly dependent on the 164 dose initially used for step 1: from a tenth of FPSs [Fig. 2(a)] to a few FPSs [Fig. 2(b)]. More 165 examples can be found in Appendix C, Fig. 9. The Appendix H deals with the control of the number of emitters that can attach to the polymer lobes. This number depends on the 166 167 concentration of emitters in the solution, the size of the emitter, the size of the integrated 168 polymer area and the immersion time. In particular, Fig. 2, Fig. 9 and Fig. 16 illustrate the 169 importance of the latter two.

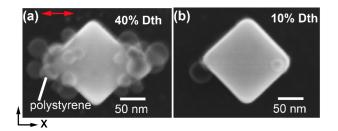


Fig. 2 SEM images of the hybrid FPSs-attached nanostructures fabricated using energy dose of (a) 40% and (b) 10%
 of threshold during step 1. The red arrow in (a) indicates the polarization direction of the excitation laser used for polymerization during step 1.

174 3. RESULTS AND DISCUSSION

175 A. Photoluminescence properties of the resulting hybrid nano-emitters

Under 532 nm excitation, the fluorescent signal was collected through a 650/150 nm band-pass filter (Semrock FF01-650/150-25). The fluorescence spectrum from the hybrid FPS-GNC nano-emitter is shown in Fig. 3(a). In Fig. 3(b), the time trace of fluorescence intensity obtained during 50 s shows no blinking and a pretty good stability of the fluorescence intensity. This is due to the large number of dyes inside each FPS giving out an ensemble signal and the protective environment inside the polystyrene bead isolating the system from the instable effects from the external environment.

183 These hybrid nanostructures have an anisotropic nanoscale spatial distribution of FPSs that 184 contributes to the polarization sensitivity of their fluorescence intensity. This feature is 185 illustrated in Fig. 3(d). The 532-nm excitation light was linearly polarized with a polarization 186 angle shown in Fig. 3(c). The considered single hybrid nano-emitter has been fabricated during 187 step 1 using 40% of Dth. In Fig. 3(d), the fluorescence intensity decreases when the polarization angle of the excitation laser varies from 0° to 90° and increases when the polarization changes 188 189 from 90° to 180°. The fluorescence intensity finally goes back to the same intensity level as the 190 intensity of 0° . The switch from high emission signal to weak emission signal is realized by 191 rotating the polarization direction, and a signal contrast δ of about 0.5 is obtained. In Fig. 3(b), 192 the cosine like function, reminding us of the Malus law, is not due to the polarization sensitivity 193 of the GNC. Rather, it is due to anisotropic spatial distribution of the active medium permitted 194 by the smart polymer. More data on the polarization sensitivity can be found in Appendix D.

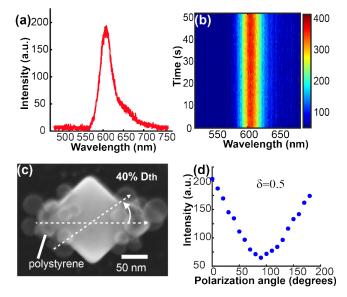


Fig. 3 (a) Fluorescence spectrum measured from the hybrid FPSs-GNC shown in Fig. 2(a) using polarized green laser of 532 nm wavelength for excitation. A 650/150 nm band-pass filter is used to separate the fluorescent signal from the incident excitation (b) Spectrum time trace, collected for 50s. (c) Definition of the polarization angle for excitation. (d) Fluorescence intensity as a function of the angle of incident polarization defined in (c).

B. Control of the average gap between GNC and nano-emitters and resulting Purcell factor

202 The spatial elongation of the nanopolymer during step 1 can be controlled through incident 203 energy dose. [31, 32] Energy doses ranging from 5% to 70% of D_{th} were used for fabricating 204 hybrid FPSs-attached hybrid plasmonic nanostructures (step 1). The fluorescence lifetime of 205 the FPSs on the hybrid nanostructures, resulting from step 2, was measured to study the 206 influence of the polymer thickness and thus the mean value of the FPS-GNC distance. Fig. 4(a) 207 shows typical lifetime measurements. When the FPSs are directly attached to pure polymer dots 208 without GNC (red curve), the lifetime is longer than it is when the FPSs are attached on the 209 polymer lobes on GNC, which is in agreement with what is expected, i.e., an increase of the 210 radiative and non-radiative deactivation rates in the presence of the metal nanostructure. The 211 lifetime turns out to decrease as the energy dose used for fabrication decreases: green curve 212 (5% D_{th}) demonstrates a much shorter lifetime decay than orange curve (40% D_{th}).

There are hundreds of molecules in each FPS $(3.5 \times 10^2 \text{ fluorescein equivalents per polystyrene sphere})$. In general, the overall decay of all the molecules can be fitted by a sum of exponential functions [42], *i.e.*,

216

$$I_{\text{total}}(t) = \sum_{i=1}^{N} A_i \exp(-t / \tau_i), \qquad (1)$$

217 Where N is the number of dyes, $I_{total}(t)$ is the normalized fluorescence intensity at time t 218 from all the FPSs, A_i is the probability density function, and $\sum_i^N A_i = 1$. Parameter *i* can be viewed as a specific family of molecules that is characterized by lifetime τ_i . The fluorescence 219 220 lifetime of the FPSs without GNC can be very well fitted using single-exponential function (see 221 Fig.14(a) in Appendix G), suggesting a single family of molecules, with a lifetime in the 6-7 222 ns range. With the presence of the GNC, the experimental data were fitted by one-exponential, 223 double-exponential and triple-exponential functions. An accurate fit was achieved with double-224 exponential function, while the third exponential component has near zero probability density 225 (Fig. 14(b)(c), in Appendix G). Hence the whole decay can be expressed as

226
$$I(t) = a_1 \exp(-\frac{t}{\tau_1}) + (1 - a_1) \exp(-\frac{t}{\tau_2})$$
(2)

The double-exponential fitting results with different polymer thicknesses are shown in Fig. 227 4(b). Clearly, we observe a fast decay τ_1 that is contained in the 1-2 ns range and a slow 228 229 decay τ_2 which is roughly stable within the 6-7 ns range. Considering the size of the FPS and keeping in mind that several FPSs are attached, we assign the fast decay τ_1 to the contribution 230 231 of the Purcell effect undergone by the dye molecules, while the slow decay τ_2 is assigned to the emission of unaffected/less affected dye molecules (similar treatment as Ref 43). τ_1 can be seen 232 233 as the mean value of the fluorescence lifetimes (Eq. 1) of the molecules that are sensitive to the 234 GNC. Coefficient a_1 stands for the weight of this fast decay component. It is associated with 235 the proportion of molecules which undergo the Purcell effect. As shown in Fig. 4(b), a_1 236 increases when the average polymer thickness decreases. This indicates an increase of the 237 proportion of the dye molecules which are affected by the presence of the GNC, in terms of the 238 Purcell effect.

240 Fig 4 (a) Lifetime measurement of FPSs attached on hybrid polymer-cube fabricated by a dose of 40% D_{th} (orange) 241 and 5% D_{th} (green). (b) Double-exponential fitting results of the lifetime of FPSs: fast decay component τ_1 , slow decay 242 243 component τ_2 and the coefficient a_1 of fast decay component changes as the average polymer thickness varies. (c) Weighted average lifetime of FPSs change along the average distance between the metal surface and FPSs increased 244 by decreasing the incident dose used for fabricating the hybrid GNC-based nanostructures. Dots of the same color 245 represent hybrid nanostructures made with the same excitation energy dose. The pink area represents the variation 246 range of the fluorescence lifetime of FPSs attached on polymer dots in the absence of gold particles. (d) The simulated 247 average Purcell factor (P) of dipoles varies as the nano-polymer distribution changes by considering different incident 248 energy dose and resulting average thickness. (e) and (f) are simulated field intensity (at Z= 25 nm away from the 249 bottom of the cube) of a hybrid FPS-GNC nanostructure fabricated using the energy dose of 40% D_{th} and 5% D_{th} 250 251 individually. The excitation wavelength is set at 532 nm, and the incident light is polarized along X. The black dotted line depicts the FPS, and the white dotted line describes the contour of polymer.

252 The weighted average lifetime $(a_1\tau_1+(1-a_1)\tau_2)$ is shown in Fig. 4(c). It is represented as a 253 function of the "average polymer thickness" defined in the Appendix E. For statistically 254 assessing the influence of the dose, many (from 4 to 8, corresponding to the different dots in 255 Fig. 4(c)) hybrid nanostructures have been made for each given dose. Combining the SEM and 256 AFM analysis before FPSs attachment (see Appendix E, Fig. 12), estimated polymer 3D 257 distribution and the average polymer thickness can be related to the levels of energy dose. 258 Consequently, the change in the fluorescence lifetime of FPSs can be presented as a function 259 of the average polymer thickness, as shown in Fig. 4(c) that clearly statistically reveals a trend: 260 the lifetime decreases as the average polymer thickness decreases and tends to a stable value \sim 261 2ns. Fig. 4(d) shows the corresponding simulated results through the inverse of the Purcell 262 factor, i.e. the ratio of the de-excitation rate with and without the GNC. The fluorescence 263 lifetime was calculated by placing dipoles at the center of FPSs at the position corresponding 264 to the polymer distribution, as observed by SEM and AFM (see Appendix E). Fig. 4(c) and 4(d) 265 reveal a consistent lifetime change trend, which confirms that the average polymer thickness is controlled by the incident energy dose used for fabrication of the hybrid nanosource, resulting 266 267 in the control of the FPS-GNC distance and fluorescence lifetime of FPSs. As a conclusion of 268 this section, through fittings, it turns out that, while τ_1 and τ_2 remain relatively stable, all is 269 very sensitive to the polymer thickness, resulting in significant sensitivity of the resulting 270 averaged weighted lifetime $(a_1\tau_1+(1-a_1)\tau_2)$ that can be viewed as a « tunable barycenter » in the 271 continuous sum of lifetimes in Eq. 1.

272 C. Further Discussion about the contributing molecules within the FPS

273 From Fig. 4(c) and 4(d), a maximum Purcell factor can be estimated at 3.1 for smallest polymer 274 thickness, which is a rather low factor. Because of FPS' size, even is the polymer thickness is 275 negligible, a large proportion of molecules within the FPS are still too far away from GNC, and 276 the proportion of the unaffected/less affected molecule cannot go to zero. As a result, (1-a1) 277 always >0. This point is illustrated by Fig. 4(e) and 4(f) in terms of near-field excitation. Two 278 hybrid nanosources were considered: one fabricated with a 40% Dth dose [Fig. 4(e)], polymer 279 thickness = 21.6 nm, (see Appendix E, Table 1) and one fabricated with a 5% Dth [Fig. 4(f)], 280 polymer thickness = 2 nm (see Appendix E Table 1). For simplicity, both hybrid nanosources 281 present a single FPS. The intensity map at Z=25 nm (λ =532 nm) was calculated by FDTD using 282 an incident X-polarized plane wave propagating along Z. The spatial distribution of the 283 intensity reveals the two families of molecules in terms of excitation: in Fig. 4(e), there is a 284 fewer proportion of dyes inside polystyrene sphere that are coupled to the localized field of the 285 GNC ("close"). Even if this near-field map represents the excitation (rather than the 286 deexcitation to the LDOS), it illustrates that the contribution of plasmon-coupled molecules to 287 the average lifetime/Purcell factor of the whole system is weak; most of the molecules whose lifetime play the main role in the whole system are unaffected from GNC ("far"). In Fig. 4(f), 288 289 a bigger proportion of dyes are coupled to the localized plasmonic near-field and their 290 contribution to lifetime decrease becomes significant. This is consistent with the double 291 exponential fitting results in Fig. 4(b). The above discussions can also explain why when the 292 polymer thickness decreases to the smallest, the weighted lifetime/average Purcell factor does 293 not continue declining but tends to stabilize in Fig. 4(c)/(d).

294 D. Use of semiconductor colloidal quantum dots as nano-emitters

295 In order to address the above issue, another approach was investigated: semiconductor colloidal 296 quantum dots were immobilized on a functionalized nanopolymer surface in the close vicinity 297 of a single gold nanocube. Compared to FPS, they can be considered as point-like emitters. 298 After step 1 of fabrication (illustrated in Fig. 1(d)) the hybrid GNC was immersed in a colloidal 299 solution of negatively charged CdSe/ZnS red QDs (with carboxylic acid as reactive group, 300 bought from Mesolight), with emission wavelength at 623 nm and diameter ≈ 12 nm (Fig. 301 8(c)(d), Appendix B). The obtained results, presented in Fig. 5(a), show a precise and selective 302 attachment of QDs on the two corners of the gold nanocube where the functionalized polymer 303 was printed by the plasmon-induced polymerization: Fig. 5(a) is the AFM image of a hybrid 304 polymer/GNC/QDs obtained with a 40 % Dth energy used for fabrication (step 1). It clearly 305 shows QDs attached at the surface of the integrated polymer lobes. More data with different 306 energy doses can be found in Appendix C (Fig. 10).

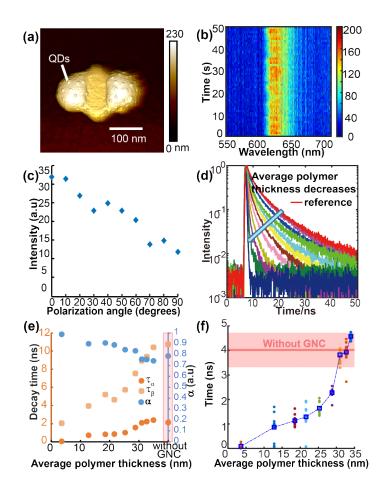


Fig. 5(b) shows a typical PL spectrum centered at λ =620 nm collected in the far field for 50 s (excitation at 405 nm). As for the FPS-based hybrid sources, the active medium is anisotropic, making the sources sensitive to the incident polarization: Fig. 5(c) shows the PL intensity as a function of the polarization direction of the excitation at 405 nm (the definition of this direction is the same as for Fig. 3(c)).

QDs generally have multi-exponential decay dynamics, which are due to their surface
 defects, surface ligands, inhomogeneities of ensemble sample or other characteristics.[44–46]
 Unlike in the situation with FPSs, the reference lifetime from QDs attached on the polymer dot
 without GNC nearby can be fitted well by double-exponential decay (Fig. 15(a), Appendix G).
 The short-time component and long-time component come from two different decay
 pathways [47]. Without QDs, these both lifetime represents a reference that is intrinsic to the
 semiconducting nanocrystal

With the presence of GNC, QDs' decay is influenced by the Purcell effect depending on
their relative positions to GNC. The lifetime of QDs can still be fitted by double exponential
functions (Fig. 15(b), Appendix G). Then the normalized intensity can be presented as

331 332

 $I(t) = \alpha \exp(-t/\tau_{\alpha}) + (1-\alpha) \exp(-t/\tau_{\beta}), \qquad (3)$

333 where the τ_{α} is the fast decay and τ_{β} is the slow decay. α decribes the contribution of τ_{α} . 334 Fig. 5(d) shows a typical lifetime measurement of different hybrid nanosources fabricated with 335 different energy doses ranging from 10% to 90% of D_{th}. From Fig. 5(d), the curves are fitted 336 by double-exponential decay, using equation (3) and the fitting results are shown in Fig. 5(e).

The origin of this double-exponential decay is different from it is in Eq. (2): In Eq. (3), it results from the intrinsic properties of the QDs [44-47] while it corresponds to two families of molecules in Eq. (2) ("far" and "close" molecules). Due to the small size of QDs, all the QDs are affected in the same way by the presence of the GNC (Fig. 13, Appendix E). As the result, both lifetimes are sensitive to the polymer thickness, as shown in Fig. 5(e).

342 Fig. 5(f) shows the weighted average lifetime $(\alpha \tau_{\alpha} + (1-\alpha) \tau_{\beta})$ for different polymer 343 thicknesses. Again, for each dose, many similar structures (from 6 to 9) were fabricated to get 344 a statistical trend. From Fig. 5(d) and 5(f), it turns out that the weighted average lifetime 345 decreases with the dose, as a result of the decrease of the average distance between quantum 346 nano-emitters and GNC. Fig. 5(e) shows the fitted values τ_{α} , τ_{β} and α , as a function of the 347 average polymer thickness. Compared to Fig. 4(b), Fig. 5(e) reveals different features of 348 interest. In Fig. 4(b), we saw that both decay components are almost stable, and a_1 increases 349 obviously as the polymer thickness decreases, mainly revealing the increase of the proportion 350 of molecules that are influenced by the GNC and a displacement of the barycenter in Eq. 1. In 351 Fig. 5(e), the components are both affected: τ_{α} and τ_{β} decrease together as the average polymer 352 thickness gets smaller. (It is actually impossible to keep τ_{α} and τ_{β} stable, see Fig. 15 (c)) 353 Meantime, coefficient α presents a weak increase (0.8 to 1), which is still much tiny compared 354 to the situation of FPS-attached hybrid GNC (in Fig. 4(b), a_1 varies from 0.9 to 0.1). There are 355 two possible explanations for this. First, α not only represents the intrinsic ratio between the 356 two decay pathways but also includes the weak increase of the proportion of QDs influenced 357 by GNC as the polymer thicknesses decreases. Second, the short-time component of QDs 358 already plays the major role in free space, the change of it cannot be distinguished as the change 359 of the long-time component because of the resolution limitation of the set-up. For FPSs, instead, 360 the variation of weighted average lifetimes is mainly due to a₁. In addition, according to Fig. 361 5F, quite different from Fig. 4(c), the maximum Purcell factor in the situation of attached ODs 362 can get larger than 10. This is because, due to their small size, at a small polymer thickness, 363 quantum dots may be strongly affected by the Purcell effect, and no quantum dots can escape 364 from the influence of GNC.

365

366 4. CONCLUSION

The use of a smart photopolymer has been leading to a new kind of plasmonic hybrid nanosources where different types of nano-emitters can be integrated on demand at predesigned sites of the metal nanostructures. The cleverness of the polymer makes possible the selection of the site through local preliminary plasmon excitation resulting in a 3D spatial memory. In particular, it is possible to control the average distance between the metal nanostructure and the emitter to be attached. This latter is recognized by the polymer through charge affinity, leadingto its selective controlled attachment.

374 Compared to Ref. 33, many advantages can be stressed. First, we can achieve a wider 375 variety of emitters. While the integration of emitters within the initial acrylate-type liquid 376 formulation is delicate in terms of phase separation and photochemical effects [48], the new approach reported here allows any negatively-charged emitters or particles to attach on the 377 378 surface of polymer lobes with the help of electrostatic forces. In the future, this approach will 379 open up many routes. For example, even negatively charged nanodiamonds permitting single 380 photon emission [49] could be selectively attached. Second, the main novelty lies on the fact 381 we remain the advantages of our previous method, which can place emitters close to plasmonic 382 structures with anisotropic distribution and further improve it with more possibilities. By 383 placing emitters on the surface of the polymer, the thickness of polymer is also the distance 384 between emitters and plasmonic particles, instead of letting the emitters randomly dispersed 385 inside the whole volume of the polymer lobes. The control of this distance has been leading to 386 an actual lifetime engineering. In order to comment further on this point, let us use the spherical 387 coordinates (ϕ, θ, ρ) of the emitter to be localized. We can control ϕ, θ using the method introduced in Ref. 33. We now control p with our new approach of functionalized 388 389 photopolymer.

Finally, the surface attachment method is likely to avoid bad influence from the laser during
polymerization, which may damage the emitters or introduce other effects such as light force,
and two-photon absorption, etc. These effects are currently being studied by our team.

393 This approach will be used for fabricating single-photon hybrid nanosources [33] and 394 precisely integrating different kinds of QDs through a multistep process [34], which will be 395 opening new avenues for advanced integrated nanosources based on weak and strong coupling, 396 among which multicolor nano lasers [34,50] that may be controlled by light polarization. 397 Besides, as we demonstrated in Ref. 33, a tunable emitter selection is possible by rotating the 398 incident polarization, through the concept of polarization-dependent spatial overlap integral 399 (overlap between the exciting near-field and the emitters). However, in ref. 33, the excitation 400 was in the blue, which is suitable for emitter excitation but not plasmon excitation. By 401 integrating emitters that efficiently get excited at 780 nm wavelength through either one or two-402 photon absorption, we would take advantage of the plasmonic hot spot for both integrating and 403 exciting them in the future.

404

405 APPENDIX A: PROCESS OF FBRICATION

406 The separation distance between each GNC is controlled bigger than 500nm by adjusting the 407 concentration of GNCs in solution, to avoid the influence from each other in the following

408 experiments including 2-photon polymerization and emission measurement.

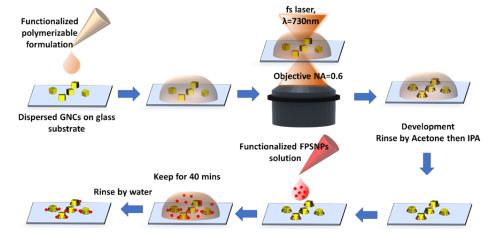
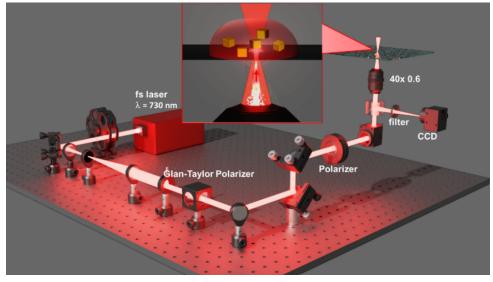
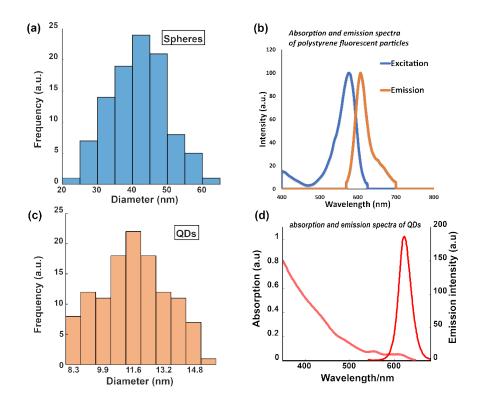



Fig. 6. The process steps for fabricating hybrid FPSs-attached cubes.

Fig. 6 illustrates the whole steps for preparing hybrid FPSs-attached cubes. And Fig. 7 gives out the optical set-up used for doing 2-pjoton polymerization on each single GNC. The position of focused laser spot and GNCs are observed by a CCD camera and makes it possible to aim the laser spot at each isolated GNC. Plasmon-triggered 2-photon polymerization process


415 The GNCs are dispersed on a glass substrate with a separation distance between each other 416 bigger than 500nm. A drop of the functionalized photosensitive formulation is then deposited on the pre-identified GNCs sample. Each GNC of consistent size and good shape is exposed 417 418 one by one using a focused femtosecond laser of 730nm by an objective lens (N. A=0.6) (Fig. 419 7). During polymerization, the exposure time is kept at 1/15 s. The exposure laser energy dose 420 is set below than the polymerization threshold and is defined as the percentage of threshold 421 dose (typical incident dose Din = 40% Dth). The polarization direction of curing laser is along 422 the diagonal of the GNCs.

423 424

Fig. 7 Optical configuration to carry out two-photon polymerization.

425 APPENDIX B: SIZE OF POLYSTYRENE FLUORESCENT PARTICLES AND 426 QUANTUMN DOTS

427

Fig. 8 (a) Diameter distribution histogram of the polystyrene fluorescent spheres (b) Excitation and emission spectra of polystyrene spheres measure by UV-visible Cary 100 spectrometer and Fluorescence Spectrophotometer separately.
(c) Diameter distribution histogram of the QDs. The QDs are deposited on glass substrate and then after coating of a conducting layer, the QDs 'sizes are measured under SEM. Due to the existence of the conductive layer, the size of the measured QD is several nanometers larger than the real size of QDs. (d) The absorption and emission spectra of the red QDs in toluene.

434 From Fig. 8(a), the average diameter of this kind of polystyrene fluorescent sphere is around 435 42.5nm. Different sizes of polystyrene spheres will change the related distance between their 436 containing fluorescent dye molecules and the GNC, which will lead to errors in the fluorescence 437 lifetime measurement. When the number of attached polystyrene spheres is relatively large, 438 since the measured fluorescence lifetime is a statistical average, the influence of the size 439 difference of polystyrene spheres on the result can be ignored. However, when the hybrid GNC 440 is fabricated by low dose, the number of attached polystyrene spheres is limited, the size 441 difference of the fluorescent spheres becomes non-negligible. That can explain why the 442 measured lifetime in the situation of smallest average thickness is bigger than the second 443 smallest situation in Fig. 4b of the article.

These Fluorescent FluoSpheres beads whose average diameter are around 42nm with the
dyes filling the full volume of the beads and contain 3500 fluorescein equivalents per
microsphere according to the handbook from Thermofisher.

447 APPENDIX C: MORE EXAMPLES OF HYBRID NANOCUBES

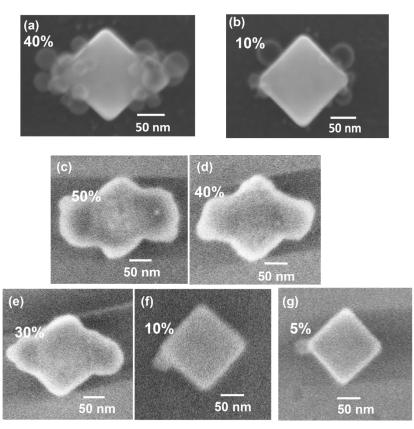
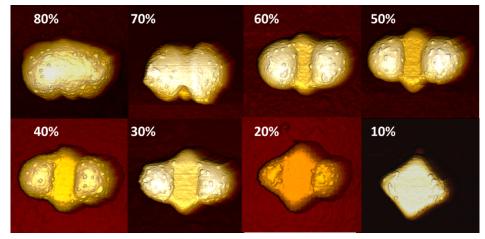



Fig. 9 More examples of hybrid FPSs-attached gold nanocubes. (a) and (b) SEM images of the hybrid FPSs-attached nanocubes fabricating using 40% D_{th} and 10% D_{th}, and the residence time of FPS solution is 40 mins. 10kV voltage is used for SEM observation. (c) (d) (e) (f) (g) fabricated using 50% D_{th} 40% D_{th}, 30% D_{th} 10% D_{th} 5%D_{th} separately, and the immersion time of the sample in the FPS solution decreased to 10 mins. 1kV voltage is used for SEM observation

454

455 Fig. 10 AFM images of some hybrid GNC with attached QDs, fabricated using incident doses from 80% decreasing to 10% of Dth (step 1).

457

458 APPENDIX D: POLARIZATION SENSITIVITY OF THE EMISSION INTENSITY

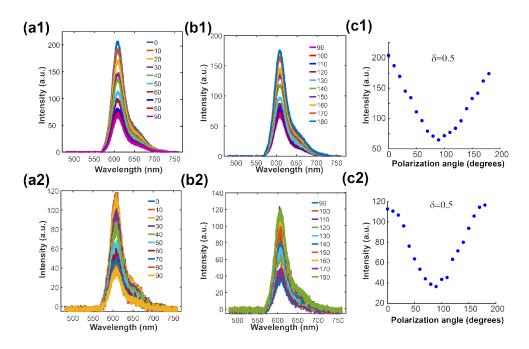
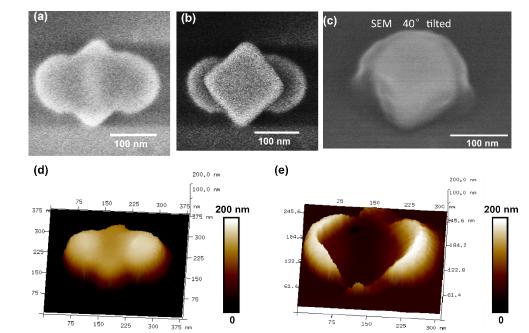
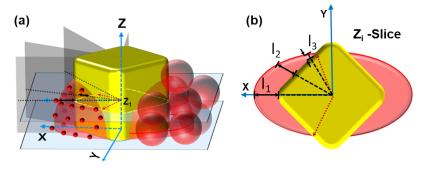



Fig. 11 Emission spectra from two hybrid FPSs-attached nanocubes fabricated using same parameters, their exposure dose is 40% D_{th}. (a1) and (b1) are the emission spectra from the first hybrid FPSs-attached nanocube when the polarization angle of the laser used for exciting varies from 0 degrees to 90 degrees and 90 degrees to 180 degrees separately. (c1) is the emission peak intensity changing trend. And (a2) (b2) (c2) are the results from the second hybrid FPSs-attached nanocube.


467

465 APPENDIX E: 3D POLYMER CHARACTERIZATION AND DEFINITION OF THE 466 AVERAGE POLYMER THICKNESS

468 Fig. 12 (a)SEM image of a hybrid nanocube without attaching any QDs/polystyrenes (fabricated using 50% Dth) (b)
 469 Mixed image, the original SEM image of the cube before exposure is superimposed to (a). (c) 40-degree tilted SEM

470 image. (d) 3D height image measured by AFM of the same hybrid nanocube of (a). (d) 3D height image subtracted by
 471 the original cube's height profile from (c), demonstrating the 3D polymer distribution.

485

Fig. 13. Average polymer thickness definition and assessment. (a) The whole hybrid cube-polymer structure is cut in the Z direction to get 20 slices of the cross-section. For each z-slice, a quadrant is sliced into n parts on average according to angle, and the intersection of the corresponding rays and the polymer profile is averaged to obtain the average elongation of the polymer under this Z slice. Finally, the polymer thickness of all slices in the z-direction is averaged to get the average polymer thickness. (b) shows the polymer elongations (l₁, l₂, l₃) obtained by the three tangents when a quadrant is divided into 3 sections in the z1-slice, then the average value of the three elongation rates of the polymer thickness of this slice.

480 For Z_i -slice, If the polymer thickness in the third quadrant is sampled at 30-degree intervals 481 shown in Fig. 13(b), three polymer thickness l_1 , l_2 , l_3 are obtained. Then the average polymer 482 thickness on Z_i -slice is $(l_1+l_2+l_3)/3$. For each Z_i -slice, keep sampling at 30-degree intervals, and 483 the number of 1 obtained will vary with the change of the polymer distribution of each slice. 484 Finally, the average of all the obtained 1 is taken as the average polymer thickness.

Percentage of Dth (%)	Average polymer thickness (nm)
5	2
10	3.6
20	12.8
30	18.5
40	21.6
50	25.3
60	28.8
70	31.0
80	32.7
90	34

Table 1. Calculated average polymer thickness, when using different dose in percentage of Dth

486

487 APPENDIX F: FLUORESCENCE SIGNAL AND LIFETIME MEASUREMENT

488 A. Optical set-up

For fluorescence intensity measurement, every single FPSs-attached hybrid polymer-cube is
excited using 532nm (CW laser, OBIS 532nm) focused by an objective lens of 40 x 0.6, and its
fluorescence signal is collected by the same objective, after fitting by a band-pass filter (FF01650/150-25), it is analyzed by a spectrometer. A half-wave plate is used to change the

493 polarization direction of linearly polarized laser and after each polarization rotation, use another 494 polarizer to check the polarization direction, and fine-tune the laser output light power to ensure 495 that the power reaching the sample surface remains the same (detected before objective lens, 496 laser power is set to 10 uw). For lifetime measurement, a pulsed laser (Picoquant D-TA-530B) 497 connected with an extra driver box (PDL 800-B), whose repetition frequency is set at 10MHz 498 is used. The laser beam is focused on the scanning sample hold stage by an objective lens of 499 100 x 0.95. The laser power detected before objective lens is about 0.5 \Box w. For each hybrid 500 FPSPNs-attached polymer-cube, its fluorescence is collected by reflection, and then after 501 passing through a band-pass filter (FF01-650/150-25), the collected light is directed by a fiber 502 towards an APD (Picoquant PMA- 182). The signal is sent to the stand-alone TCSPC Module 503 (TimeHarp-300), which is linked to the laser driver.

504 B. Purcell factor simulation

517

505 The Purcell factor is calculated by FDTD. For each incident light dose, the corresponding 506 3D polymer is constructed as a model with a refractive index of 1.5. And set the diameter of 507 the polystyrene sphere to 50mm. For each case, the hybrid polymer cube is cut into N slices in 508 the z direction, each Z_i-slice has a specific polymer contour at the z position, as shown in Fig. 509 13. The FPSs are distributed along the contour of the polymer. To calculate, we only chose 510 several FPSs along the contour at Z_i. For each nanosphere, calculate the Purcell factor of the ideal dipole at the center of the nanosphere, and finally average these results to obtain the 511 512 average Purcell factor of this z-slice, see Equation (F-1)

513
$$PF_{i} = \frac{1}{N_{i}} \sum_{k=1}^{N_{i}} PF_{k}$$
(F-1)

514 Where N_i is the sampling number of FPSs on Z_i slice.

515 The FSNPs are assumed uniformly distributed on the surface of polymer, then for each Z_i -516 slice, the number of attached FSNPs depends on the length of the polymer contour line.

$$PF_{total} = \left(\sum_{i=1}^{i=N} C_i \bullet PF_i\right) / \left(\sum_{i=1}^{i=N} C_i\right)$$
(F-2)

518 Where C_i is the length of polymer contour line of Z_i -slice, and N is the number of slices in 519 z-direction.

520 By this way, the obtained PF_{total} is worked as the average Purcell factor in the case of a 521 hybrid FPSs-attached polymer-cube fabricated by a certain dose.

For example, of 20% Dth, the polymer volume is cut into 2 slices in the z direction. For slice1, 3 positions of fluorescent spheres are calculated. For every position, we calculated the Purcell factor of an orientation-averaged dipole placed in the center of sphere. And the boundary length of the polymer of this Z_1 -slize is around 48.7nm. For Z_2 -slice, because the boundary length of polymer is much smaller than diameter of sphere, we only calculate the Purcell factor at one position. Finally, an average Purcell factor ~2.17 was obtained according to Eq. F-2

529 APPENDIX G: MULTI-EXPONENTIAL DECAY FITTING OF THE LIFETIME OF 530 FPS AND QD IN FREE SPACE

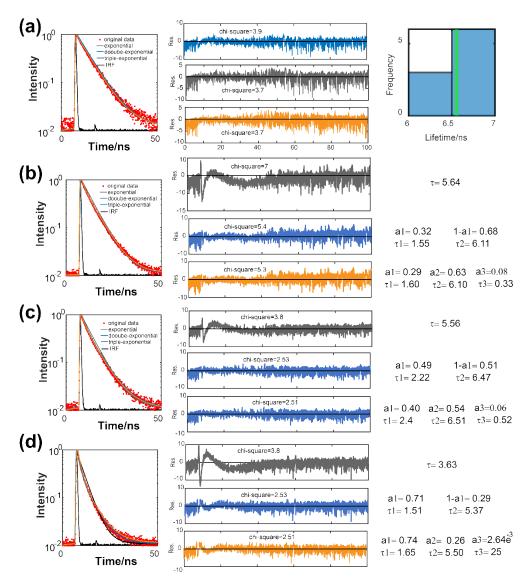


Fig. 14 (a) The first row shows an example of the lifetime from FPSs attached on pure polymer dot without Au nanocube nearby. Two kinds of fitting, single-exponential fitting (grey line) and double-exponential fitting (blue line), triple-exponential fitting (orange line) are used here. From the fitting results, the single exponential function can already achieve good fitting result. The far-right image shows the histogram of FPSs' lifetime under single exponential fitting, and the green line represents the average value. For comparison (b) (c) and (d) show three examples of the lifetime from FPSs attached on polymer lobes of GNC.

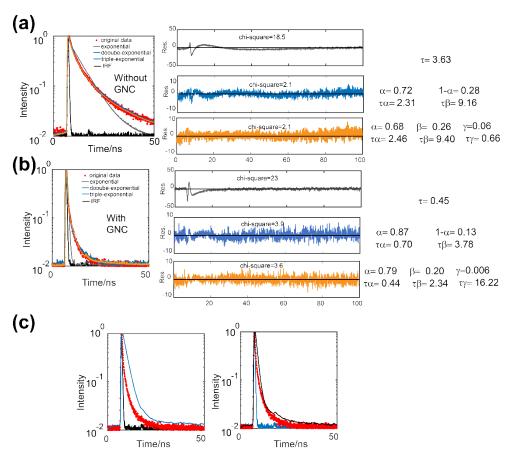
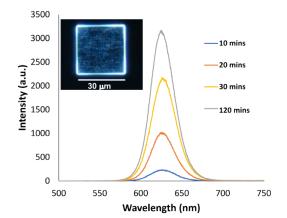



Fig. 15 Example of the lifetime from QDs attached on pure polymer dot without Au nanocube nearby (a) and with Au nanocube nearby (b). Single-exponential function is not enough to get a good fitting result while double/triple-exponential function can get a better fit. (c) Two failed attempts. By limiting the value range of τ_a (2-3), τ_β (9-10), and τ_α (1-3), τ_b (8-10) to attempt to use similar τ_{α} , τ_b in (a) to fit the decay curve.

543 APPENDIX H: NUMBER OF ATTACHED EMITTERS

In Ref. 36, the original principle of this chemically attached method has been described. In this article, gold nanoparticles (diameter~ 50nm) were attached to the smart photopolymer. The control of the surface density (and thus the number) of gold nanoparticles has already been studied. The gold nanoparticles have same size as the fluorescent spheres used in our current manuscript. We expect that their density changes with the immersion time following the same law.

551 Fig. 16 Fluorescence intensity from QDs attached on 2D flat functionalized polymer structure (see inset) with respect 552 to the immersion time (mins). The excitation laser is 405 nm with a power of $2\mu m$, collection time is kept as 0.1 s. The 553 left top small image (inset) is the dark-field image of the 2D flat polymer square.

554 As far as the QDs are concerned, Fig.16 shows the fluorescence intensity from QDs attached 555 on a micrometer sized functionalized flat polymer structure. Different times of immersion were 556 used. Considering the fixed size of the polymer area, this Fig. 16 clearly shows that the intensity

557 (and thus the related number of attached QDs) strongly depends on the immersion time.

558 Funding. PRONANO project co-funded by FEDER and the region Grand Est. Q-LED project funded by FEDER and 559 UTT.

560 Acknowledgments. D. Ge thanks the CSC for funding support. Fabrication and characterization were mostly done 561 thanks to the Nano'mat Platform, supported by the Ministère de l'Enseignement Supérieur et de la Recherche, the 562 Région Grand Est (Pronano project), the Conseil Général de l'Aube, and FEDER (Pronano and Q-LED projects) funds 563 from the European Community. This work has been made within the framework of the Graduate School NANO-PHOT 564 (École Universitaire de Recherche, contract ANR-18-EURE-0013). The manuscript was written through contributions 565 of all authors. All authors have given approval to the final version of the manuscript.

566 Disclosures. The authors declare no conflicts of interest.

567 Data availability. Data underlying the results presented in this paper are not publicly available at this time but may 568 be obtained from the authors upon reasonable request.

569 Reference

- 570 F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz de la Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, 1. 571 E. Martin Rodriguez, D. Jaque, J. Garcia Sole, and J. A. Capobianco, "Temperature sensing using fluorescent 572 nanothermometers," ACS nano 4, 3254-3258 (2010). 573 2.
- J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, and E. Waks, "Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip," Nano Lett. 17, 7394-7400 (2017). 3. X. Feng, Y. Li, X. He, H. Liu, Z. Zhao, R. T. K. Kwok, M. R. J. Elsegood, J. W. Y. Lam, and B. Z. Tang, "A
- 574 575 576 577 578 579 580 Substitution-Dependent Light-Up Fluorescence Probe for Selectively Detecting Fe3+ Ions and Its Cell Imaging Application," Adv. Funct. Mater. 28, 1802833 (2018).
- 4. T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, "Ultrafast spontaneous emission source using plasmonic nanoantennas," Nat. Commun. 6, 7788 (2015).
- G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. 5. 581 Mikkelsen, "Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas," Nature 582 Photon. 8, 835-840 (2014).
- 583 6. Y. Luo, E. D. Ahmadi, K. Shayan, Y. Ma, K. S. Mistry, C. Zhang, J. Hone, J. L. Blackburn, and S. Strauf, 584 "Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities," Nat. 585 Commun. 8, 1413 (2017).
- 586 7. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, "Plasmonic Antennas for 587 Directional Sorting of Fluorescence Emission," Nano Lett. 11, 2400-2406 (2011).
- 588 8. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," 589 Phys. Rev. Lett. 96, 113002 (2006).

590	9.	H. Leng, B. Szychowski, MC. Daniel, and M. Pelton, "Strong coupling and induced transparency at room
591		temperature with single quantum dots and gap plasmons," Nat Commun 9, 4012 (2018).
592 593	10.	A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photon. 3 , 654–657 (2009).
594 595	11.	S. Khatua, P. M. R. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, "Resonant Plasmonic Enhancement
596	12.	of Single-Molecule Fluorescence by Individual Gold Nanorods," ACS Nano 8 , 4440–4449 (2014). K. J. Russell, TL. Liu, S. Cui, and E. L. Hu, "Large spontaneous emission enhancement in plasmonic
597 598	13.	nanocavities," Nature Photon. 6, 459–462 (2012). R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O.
599	15.	Hess, and J. J. Baumberg, "Single-molecule strong coupling at room temperature in plasmonic nanocavities,"
600 601	14.	Nature 535 , 127–130 (2016). T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, "Ultrafast Room-Temperature Single Photon Emission
602	14.	from Quantum Dots Coupled to Plasmonic Nanocavities," Nano Lett. 16, 270–275 (2016).
603	15.	T. Ming, L. Zhao, Z. Yang, H. Chen, L. Sun, J. Wang, and C. Yan, "Strong polarization dependence of
604 605	16.	plasmon-enhanced fluorescence on single gold nanorods," Nano Letters 9 , 3896–3903 (2009). SY. Liu, L. Huang, JF. Li, C. Wang, Q. Li, HX. Xu, HL. Guo, ZM. Meng, Z. Shi, and ZY. Li,
606	10.	"Simultaneous Excitation and Emission Enhancement of Fluorescence Assisted by Double Plasmon Modes of
607		Gold Nanorods," J. Phys. Chem. C 117, 10636–10642 (2013).
608	17.	A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, "Scanning Single Quantum
609 610		Emitter Fluorescence Lifetime Imaging: Quantitative Analysis of the Local Density of Photonic States,"
611	18.	Nano Lett. 14 , 2623–2627 (2014). H. Groß, J. M. Hamm, T. Tufarelli, O. Hess, and B. Hecht, "Near-field strong coupling of single quantum
612	10.	dots," Sci. Adv. 4, eaar4906 (n.d.).
613	19.	M. P. Busson, B. Rolly, B. Stout, N. Bonod, and S. Bidault, "Accelerated single photon emission from dye
614	20	molecule-driven nanoantennas assembled on DNA," Nat. Commun. 3 , 1–6 (2012).
615 616	20.	X. Lan, X. Zhou, L. A. McCarthy, A. O. Govorov, Y. Liu, and S. Link, "DNA-Enabled Chiral Gold Nanoparticle–Chromophore Hybrid Structure with Resonant Plasmon–Exciton Coupling Gives Unusual and
617		Strong Circular Dichroism," J. Am. Chem. Soc. 141, 19336–19341 (2019).
618	21.	A. T. M. Yeşilyurt and JS. Huang, "Emission Manipulation by DNA Origami-Assisted Plasmonic
619		Nanoantennas," Adv. Opt. Mater. 9, 2100848 (2021).
620 621	22.	M. Loretan, I. Domljanovic, M. Lakatos, C. Rüegg, and G. P. Acuna, "DNA Origami as Emerging Technology for the Engineering of Fluorescent and Plasmonic-Based Biosensors," Materials 13 , 2185 (2020).
622	23.	K. Hübner, M. Pilo-Pais, F. Selbach, T. Liedl, P. Tinnefeld, F. D. Stefani, and G. P. Acuna, "Directing
623		Single-Molecule Emission with DNA Origami-Assembled Optical Antennas," Nano Lett. 19, 6629–6634
624		(2019).
625 626	24.	R. Chikkaraddy, V. A. Turek, N. Kongsuwan, F. Benz, C. Carnegie, T. van de Goor, B. de Nijs, A. Demetriadou, O. Hess, U. F. Keyser, and J. J. Baumberg, "Mapping Nanoscale Hotspots with Single-
627		Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami," Nano Lett. 18, 405–411
628		(2018).
629	25.	H. Zhang, M. Li, K. Wang, Y. Tian, JS. Chen, K. T. Fountaine, D. DiMarzio, M. Liu, M. Cotlet, and O.
630 631		Gang, "Polarized Single-Particle Quantum Dot Emitters through Programmable Cluster Assembly," ACS Nano 14, 1369–1378 (2020).
632	26.	G. P. Acuna, F. M. Möller, P. Holzmeister, S. Beater, B. Lalkens, and P. Tinnefeld, "Fluorescence
633	20.	Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas," Science 338, 506–510
634		(2012).
635 636	27.	J. Heintz, N. Markešević, E. Y. Gayet, N. Bonod, and S. Bidault, "Few-Molecule Strong Coupling with
637	28.	Dimers of Plasmonic Nanoparticles Assembled on DNA," ACS Nano 15 , 14732–14743 (2021). C. Shen, X. Lun, X. Lu, T. A. Meyer, W. Ni, Y. Ke, and Q. Wang, "Site-Specific Surface Functionalization
638	20.	of Gold Nanorods Using DNA Origami Clamps," J. Am. Chem. Soc. 138, 1764–1767 (2016).
639	29.	F. Wang, S. Cheng, Z. Bao, and J. Wang, "Anisotropic Overgrowth of Metal Heterostructures Induced by a
640 641	20	Site-Selective Silica Coating," Adv. Opt. Mater. 52 , 10344–10348 (2013).
642	30.	I. Tijunelyte, I. Kherbouche, S. Gam-Derouich, M. Nguyen, N. Lidgi-Guigui, M. L. de la Chapelle, A. Lamouri, G. Lévi, J. Aubard, A. Chevillot-Biraud, C. Mangeney, and N. Felidj, "Multi-functionalization of
643		lithographically designed gold nanodisks by plasmon-mediated reduction of aryl diazonium salts," Nanoscale
644		Horiz. 3 , 53–57 (2017).
645 646	31.	VQ. Nguyen, Y. Ai, P. Martin, and JC. Lacroix, "Plasmon-Induced Nanolocalized Reduction of
647	32.	Diazonium Salts," ACS Omega 2, 1947–1955 (2017). P. Zijlstra, P. M. R. Paulo, K. Yu, QH. Xu, and M. Orrit, "Chemical Interface Damping in Single Gold
648		Nanorods and Its Near Elimination by Tip-Specific Functionalization," Angew. Chem. Int. Ed. 124 , 8477–
649		8480 (2012).
650 651	33.	D. Ge, S. Marguet, A. Issa, S. Jradi, T. H. Nguyen, M. Nahra, J. Béal, R. Deturche, H. Chen, S. Blaize, J. Plain, C. Fiorini, L. Douillard, O. Soppera, X. Q. Dinh, C. Dang, X. Yang, T. Xu, B. Wei, X. W. Sun, C.
652		Couteau, and R. Bachelot, "Hybrid plasmonic nano-emitters with controlled single quantum emitter
653		positioning on the local excitation field," Nat. Commun. 11, 3414 (2020).

654 655 656 657	34.	X. Zhou, J. Wenger, F. N. Viscomi, L. Le Cunff, J. Béal, S. Kochtcheev, X. Yang, G. P. Wiederrecht, G. Colas des Francs, A. S. Bisht, S. Jradi, R. Caputo, H. V. Demir, R. D. Schaller, J. Plain, A. Vial, X. W. Sun, and R. Bachelot, "Two-Color Single Hybrid Plasmonic Nanoemitters with Real Time Switchable Dominant Emission Wavelength," Nano Lett. 15 , 7458–7466 (2015).
658 659	35.	S. Mitiche, S. Marguet, F. Charra, and L. Douillard, "Near-Field Localization of Single Au Cubes: A Group Theory Description," J. Phys. Chem. C. 121 , 4517–4523 (2017).
660 661	36.	A. Issa, I. Izquierdo, M. Merheb, D. Ge, A. Broussier, N. Ghabri, S. Marguet, C. Couteau, R. Bachelot, and S. Jradi, "One Strategy for Nanoparticle Assembly onto 1D, 2D, and 3D Polymer Micro and Nanostructures,"
662 663	37.	ACS Appl. Mater. Interfaces 13, 41846–41856 (2021). J. de Torres, P. Ferrand, G. Colas des Francs, and J. Wenger, "Coupling Emitters and Silver Nanowires to
664 665 666 667	38.	 Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer," ACS Nano 10, 3968–3976 (2016). C. Deeb, X. Zhou, R. Miller, S. K. Gray, S. Marguet, J. Plain, G. P. Wiederrecht, and R. Bachelot, "Mapping the Electromagnetic Near-Field Enhancements of Gold Nanocubes," J. Phys. Chem. C 116, 24734–24740 (2012).
668 669	39.	K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, and D. J. Hagan, "Two-photon absorption cross-sections of common photoinitiators," J. Photochem. Photobiol. A 162 , 497–502 (2004).
670 671	40.	C. Deeb, R. Bachelot, J. Plain, AL. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P. K. Jain, L. Huang, C. Ecoffet, L. Balan, and P. Royer, "Ouantitative Analysis of Localized Surface Plasmons Based on Molecular
672 673	41.	Probing," ACS Nano 4, 4579–4586 (2010). C. Deeb, X. Zhou, J. Plain, G. P. Wiederrecht, R. Bachelot, M. Russell, and P. K. Jain, "Size dependence of
674 675 676	42.	 the plasmonic near-field measured via single-nanoparticle photoimaging," J. Phys. Chem. C. 117, 10669–10676 (2013). E. Fišerová and M. Kubala, "Mean fluorescence lifetime and its error," Journal of Luminescence 132, 2059–
677		2064 (2012).
678 679 680	43.	B. Gökbulut and M. N. Incı, "Enhancement of the spontaneous emission rate of Rhodamine 6G molecules coupled into transverse Anderson localized modes in a wedge-type optical waveguide," Opt. Express, OE 27, 15996–16011 (2019).
681 682	44.	K. E. Knowles, E. A. McArthur, and E. A. Weiss, "A Multi-Timescale Map of Radiative and Nonradiative Decay Pathways for Excitons in CdSe Quantum Dots," ACS Nano 5 , 2026–2035 (2011).
683 684	45.	F. M. Gómez-Campos and M. Califano, "Hole Surface Trapping in CdSe Nanocrystals: Dynamics, Rate Fluctuations, and Implications for Blinking," Nano Lett. 12 , 4508–4517 (2012).
685 686	46.	O. Labeau, P. Tamarat, and B. Lounis, "Temperature Dependence of the Luminescence Lifetime of Single CdSe/ZnS Quantum Dots," Phys. Rev. Lett. 90 , 257404 (2003).
687 688	47.	P. Spinicelli, S. Buil, X. Quélin, B. Mahler, B. Dubertet, and JP. Hermier, "Bright and Grey States in CdSe-CdS Nanocrystals Exhibiting Strongly Reduced Blinking," Phys. Rev. Lett. 102 , 136801 (2009).
689 690 691	48.	Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, and R. Bachelot, "3D Photoluminescent Nanostructures Containing Quantum Dots Fabricated by Two-Photon Polymerization: Influence of Quantum Dots on the Spatial Resolution of Laser Writing," Advanced Materials Technologies 4 ,
692 693 694	49.	1800522 (2019). A. Khalid, K. Chung, R. Rajasekharan, D. W. M. Lau, T. J. Karle, B. C. Gibson, and S. Tomljenovic-Hanic, "Lifetime Reduction and Enhanced Emission of Single Photon Color Centers in Nanodiamond via
695 696 697 698	50.	Surrounding Refractive Index Modification," Sci Rep 5, 11179 (2015). Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T. C. Sum, C. M. Lieber, and Q. Xiong, "A room temperature low- threshold ultraviolet plasmonic nanolaser," Nature Communications 5, 4953 (2014).