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Abstract

Quantization-Aware Training (QAT) has recently

showed a lot of potential for low-bit settings in the con-

text of image classification. Approaches based on QAT

are using the Cross Entropy Loss function which is the

reference loss function in this domain. We investigate

quantization-aware training with disentangled loss func-

tions. We qualify a loss to disentangle as it encourages the

network output space to be easily discriminated with linear

functions. We introduce a new method, Disentangled Loss

Quantization Aware Training, as our tool to empirically

demonstrate that the quantization procedure benefits from

those loss functions. Results show that the proposed method

substantially reduces the loss in top-1 accuracy for low-bit

quantization on CIFAR10, CIFAR100 and ImageNet. Our

best result brings the top-1 Accuracy of a Resnet-18 from

63.1% to 64.0% with binary weights and 2-bit activations

when trained on ImageNet.

1. Introduction

Many deep learning advances rely on increasing the

number of parameters and computation power to achieve

better performance. Also, the interest of deploying deep

neural networks on edge mushroomed in the past few

years. Critical applications with real-time constraints such

as memory, latency, energy/power consumption, with spe-

cific scarce resource hardware or with privacy issues, cannot

be inferred on Cloud. In this context, low-bit quantization

is an elegant solution to allow significant memory footprint

reduction, energy savings, and faster inference once engi-

neered with hardware accelerators, while preserving per-

formance and quality of results as close as possible to the

floating-point reference.

The latest proposals present approaches to quantization

aware training, where networks trained and quantized from

scratch showed promising results for settings from 8 bits

down to 2 bits [4, 9]. Those methods rely on the Cross

Entropy Loss (CEL) function, i.e., a combination of soft-

max and negative log likelihood, as it is the reference loss

function for classification. A variation of the softmax was

proposed by Liu et al. to encourage more discriminating

features for image classification [13]. This research led to

disruptive performance gains, especially in the face recog-

nition domain [12,18], where the number of classes is an or-

der of magnitude higher than academic image classification

tasks. Also, Wan et al. used Gaussian Mixtures to formalize

the classification space and encourage more discriminating

features [17].

To date, the effect of those loss functions on

quantization-aware training (QAT) remains unexplored.

Our paper studies the quantization aware learning with

disentangled loss functions for settings down to binary

weights. We empirically show that training a model to out-

put discriminative features improves its resilience to quan-

tization. Results on CIFAR10, CIFAR100 and ImageNet

datasets show the clear advantage of our approach, with sig-

nificant performance gains, especially for very low-bit set-

tings.

This paper is organized as follows. Section 2 presents

some previous work on QAT as well as the foundation

of disentangled loss functions. Section 3 introduces our

method that takes advantage of both AMS and GML to im-

prove the QAT procedure. Section 4 presents our experi-

mental setup and the results obtained on relevant datasets.

2. Previous Work

To better understand the intuition behind our approach,

we first give a brief review of the state-of-the-art techniques

on quantization-aware training and disentangled losses.

2.1. Quantization Aware Training

Given a network f : R
n ⇒ R with its parameters p,

an input x ∈ R
n and its corresponding label y, we refer

to quantization aware training (QAT) for classification as

finding the non-differentiable quantization function q with

the loss function L as

min
p

L[f(x, q(p)), y]. (1)

Bengio et al. proposed the Straight-Through-Estimator

(STE) to enable training with backpropagation [1]. The



STE method estimates the gradients of the quantized pa-

rameters assuming that the derivative of the quantization

function q is the identity function. Such approximation

error grows bigger as the bitwidth goes smaller hence de-

creasing the performance for low-bit settings. Esser et al.

tackled this issue by scaling dynamically the gradients with

a learnable step [4]. Following their method, the gradient

landscape is shaped to encourage the full precision param-

eters towards the quantized points. Doing so, the proposed

Learned Step Size Quantization (LSQ) method implicitly

reduces the approximation error introduced by the STE and

shows substantially better results over the previous quanti-

zation techniques. Alternatively, the Scaled Adjust Train-

ing (SAT) method introduced by Jin et al. directly scales

the weights instead of the gradients to control the training

dynamics, which yields state-of-the-art results [9]. We refer

the interested readers to [9] for a detailed presentation of the

quantization method.

2.2. Disentangled Losses

We qualify a loss to disentangle as it encourages the

network output space to be easily discriminated with lin-

ear functions. Inspired by Large-Margin Softmax [13] and

Sphereface [12], Wang et al. proposed an intuitive formu-

lation of the margin softmax loss function called Additive

Margin Softmax (AMS) [18]. The authors considered the

propagation of features fi (from the i-th sample with tar-

get yi) in the linear layer without bias as scalar products for

each column j of the weight matrix W . They used the ge-

ometric definition of the scalar product of Eq. (2), coupled

with feature and weight normalization to rewrite the loss

function applying a margin m on the target logit WT
yi
fi and

a scaling factor s, following Eq. (3).

fi ·Wj = ‖Wj‖‖fi‖cos(θj) (2)

LAMS = −
1

n

n∑

i=0

log
es·(cos θyi−m)

es·(cos θyi−m) +
∑c

j=1, j 6=yi
es·(cos θj)

(3)

The softmax output probabilities can be interpreted as a vec-

tor of dimension n, n being the number of classes. The one-

hot vectors encoding the different classes are the orthogonal

vectors that construct the canonical basis of Rn. Here, the

subtracted margin m acts as a classification boundary off-

set, forcing the network to output features that are closer to

the orthogonal vector corresponding to their label, thus re-

ducing the intra-class variance of each class cluster in the

network.

Wan et al. proposed to model the classification layer

with Gaussian mixtures [17]. The Gaussian Mixture Loss

(GML) draws the distances dk between features f and the

learned means µk to minimize the distance to the mean as-

sociated to the true label dzi . A positive margin factor α

artificially inflates the distance dzi to help regulate the con-

vergence of the network. Under the assumption that the co-

variance matrix is isotropic, the GML can be rewritten as

LGM = −
1

n

n∑

i=0

log
e−dzi

(1+α)

e−dzi
(1+α) +

∑
k=1, k 6=zi

e−dk

(4)

with dk =
1

2
(f − µk)

2 (5)

3. Disentangled Loss Quantization Aware

Training

Considering that features can be more discriminative

than with CEL, we assume that low-bit quantization-aware

training can benefit from a disentangled loss. Indeed, a

smaller intra-class variance and a bigger inter-class differ-

ence should be more robust to the quantization noise. With

CEL, the inter-class features are optimized to be orthogo-

nal without constraint on their actual distance in the output

space. While it is also true for AMS, it still allows for an

additional margin on the orthogonality. On contrary, GML

directly minimizes the distance between the features and

their corresponding centroids, thus, minimizing the intra-

class variance. The use of learned centroids instead of or-

thogonal features ensures that the distance between inter-

class features is constrained by the distance of their respec-

tive centroids, as the features are attracted to their corre-

sponding centroids. To reformulate, while AMS loss en-

courages a smaller intra-class variance than CEL, GML en-

sures both a smaller intra-class variance and a bigger inter-

class difference than CEL. This is why our hypothesis is

that there is a possibility to investigate the combination of

several state-of-the-art methods: the presented disentangled

loss functions with the SAT procedure [9]. In order to as-

sess our hypothesis, we introduce Disentangled Loss Quan-

tization Aware Training (DL-QAT), a method applying the

intuitive formulation of AMS or GML loss function with

the quantization-aware training method SAT [9].

4. Experiments

4.1. Training setups

All experiments use a Resnet-18 [7] with the CIFAR10,

CIFAR100 [10] and ILSVRC 2012 ImageNet dataset [3].

The batch size is 768 for CIFAR and 1024 for ImageNet.

We use the same learning strategy as [9]. When training on

CIFAR, the learning rates are 0.01 for SAT using CEL &

DL-QAT using AMS loss and 0.2 for DL-QAT using GML.

When training on ImagNet, the learning rate is 0.02 for both

SAT using CEL and DL-QAT using GML. All networks

are trained over 150 epochs. Finally, we use m = 0.35
from Eq. (3) andα = 0.7 from Eq. (4) for CIFAR andα = 0
for ImageNet as they give best results.
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