

Laboratory HAXPES of GaN structures for power electronic

Eugénie Martinez, Tarek Spelta, Pedro Fernandes Paes Pinto Rocha, Marc Veillerot, Bérangère Hyot, William Vandendaele, Laura Vauche, Bassem Salem

▶ To cite this version:

Eugénie Martinez, Tarek Spelta, Pedro Fernandes Paes Pinto Rocha, Marc Veillerot, Bérangère Hyot, et al.. Laboratory HAXPES of GaN structures for power electronic. HAXPES 2022 - The 9th International Conference on Hard X-ray Photoelectron Spectroscopy, May 2022, Himeji, Japan. cea-03689191

HAL Id: cea-03689191 https://cea.hal.science/cea-03689191

Submitted on 7 Jun2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LABORATORY HAXPES OF GAN STRUCTURES FOR POWER ELECTRONICS

E. Martinez¹, T. Spelta¹, P. Fernandes Paes Pinto Rocha¹, M. Veillerot¹, B. Hyot¹, W. Vandendaele¹, L. Vauche¹, B. Salem²

¹Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France ²Univ. Grenoble Alpes, CNRS, LTM, 38000 Grenoble, France

NEW TECHNOLOGY FOR THE FUTURE

HIGH ELECTRON MOBILITY TRANSISTOR (HEMT)

• Maximum voltage (~ 650V)

leti

Ceatech

- Low energy loss at ON-state = Low R_{ON}
- OFF-state = negative V_{Gate} → Normally-On

Normally-Off by depleting the 2DEG → MOSc-HEMT

- AIGaN etch = 2DEG depletion
- Dielectric deposition (e.g. Al₂O₃)
- Metal deposition
- ✓ Positive Threshold voltage (V_{TH})

CRITICAL BURIED AL₂O₃/GAN INTERFACE

- Ga oxydation \Rightarrow GaO_x
- Defects ⇒ dangling bonds, vacancies (Ga, N), impurities
- Roughness
- ✓ Impact on electrical properties (V_{TH}, ∆V_{TH}, R_{ON})

The Al₂O₃/GaN interface quality needs to be improved for good transistors performances

IMPACT OF PROCESS STEPS

The AlGaN etching, GaN cleaning, Al₂O₃ deposition and annealing must be optimized

INTEREST OF HAXPES FOR GAN

Eugénie Martinez – HAXPES 2022 - 06/02/2022

Eugénie Martinez – HAXPES 2022 - 06/02/2022 8

IMPACT OF AL2O3 THICKNESS ON GAN OXIDATION

O. Renault et al., Faraday Discuss. (2022), https://doi.org/10.1039/D1FD00110H

Eugénie Martinez – HAXPES 2022 - 06/02/2022 9

CORRELATION WITH TOF-SIMS

Reduction of –OH groups in Al₂O₃ with increasing PDA temperature

Better stoichiometry of Al₂O₃ with PDA temperature

P.M. Deleuze et al., Surf. Sci. Spectra 29, 014003 (2022)

Eugénie Martinez – HAXPES 2022 - 06/02/2022 | 13

leti Ceatech

CORRELATION WITH C(V) MEASUREMENTS

| 14

- Gate-first MOSc-HEMT technology is currently optimized for power electronics
- Final devices properties rely on the quality of the Al₂O₃/GaN interface
- Non destructive HAXPES is particularly interesting:
 - Remove Ga LMM Auger lines from N1s
 - Get closer to the real buried interface (Al₂O₃ 30 nm)

• HAXPES main results:

- Increase of GaN oxydation with Al₂O₃ thickness as confirmed by ToF-SIMS
- Reduction of -OH groups in AI_2O_3 with increasing PDA temperature

• Strong interest in developping laboratory HAXPES for such devices technology

leti

Thank you for your attention

Some questions ?

CEA-Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 avenue des Martyrs | 38054 Grenoble Cedex | France www.leti-cea.com

Tof SIMS Analysis conditions :

Analyze gun : Bi^{3+} 15 KeV current : 0.6 ± 0,02pA Sputter gun : Cs 500 eV current: 24.3 ± 0.2 nA Sputter area : 300µm Analysis area : 80µm Incidence angle : 45° Ion Mirror Analysis gun Detector Dual sputter gun ransport Optics Pulsing Focusing Extractor Raster Electron flood gun

Target

HAXPES Analysis conditions :

FIT OF GA2p – ANALYSIS OF REFERENCES

SOME EXAMPLES OF OTHER SPECTRA

Some STEM-EELS results

leti

ToF-SIMS results

From the above depth profiles we can suppose from the Ga₂O₃ reference sample that :

- Al₂O₃ 10 nm GaO_x 4 nm GaN interface is poorer of ¹⁶O and richer in ⁶⁹Ga
- Al₂O₃ 10 nm GaN etched interface is really poor in 16O and richer in 69Ga
- Same observation for the etched sample

Al₂O₃ H₂O 10 nm - GaO_x 4 nm - GaN as-epi

AI_2O_3 10 nm O_3/H_2O – GaN etched	~ 0.2 nm
AI_2O_3 10 nm H_2O – GaN etched	~ 0.6 nm
Al ₂ O ₃ 10 nm H ₂ O – GaN as-epi	~ 0.8 nm

Eugénie Martinez – HAXPES 2022 - 06/02/2022 | 22