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Abstract

The Riemann Hypothesis (RH) - that all nonreal zeros of Riemann’s
zeta function shall have real part 1/2 - remains a major open problem.
Its most concrete equivalent is that an infinite sequence of real numbers,
the Keiper—Li constants, shall be everywhere positive (Li’s criterion). But
those numbers are analytically elusive and strenuous to compute, hence
we seek simpler variants. The essential sensitivity to RH of that sequence
lies in its asymptotic tail; then, retaining this feature, we can modify
the Keiper—Li scheme to obtain a new sequence in elementary closed
form. This makes for a more explicit analysis, with easier and faster
computations. We can moreover show how the new sequence will signal
RH-violating zeros if any, by observing its analogs for the Davenport—
Heilbronn counterexamples to RH.

It is a great honor and pleasure to dedicate this talk to Professor Yoshitsugu
Takei, for his major contributions to exact asymptotic analysis throughout his
career since the early 90’s, [16] and surely for many more years to come. I am
most grateful to the RIMS! and the Organizers for their invitation - and many
past ones.

After a digression on why and how (precisely 40 years ago!) we met exact
asymptotic analysis, which was to be the source of our durable link and friend-
ship with Y. Takei (§ 1), we will mainly survey our recent work on the Keiper—Li
approach to the Riemann Hypothesis - referring to [40] for any further detail. In
§ 2 we review the original but elusive Keiper—Li sequence, and then (§ 3) a dis-
cretization step (from derivatives to finite differences) which leads to a modified
sequence in elementary closed form; its n — oo behavior provides a new, very
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concrete, asymptotic criterion for the Riemann Hypothesis. Finally, in § 4 we
test that criterion in generalized form, transposed to the Davenport—Heilbronn
functions which are counterexamples to the Riemann Hypothesis (with some
new material here: more data and discussions).

Riemann’s zeta function has the equivalent definitions, for Re z > 1: [30]

dof o 1 >~ 1
= kP = —— z—1 d 1
0 S [ )
= H(l - p—:c)—l over all the prime numbers p; (2)
{r}

the last form (Euler product) is just quoted to recall why ( is a crucial function
in number theory (log ¢ encodes the primes).
Standard actions upon the integral (Mellin) representation in (1) yield:

- that ¢ is meromorphic in all of C, with the only pole {(x) = ﬁ + ey

- the explicit values
¢(—n) = (-1)"Bpt1/(n+1), n=0,1,2,... (B, : Bernoulli numbers); (3)

- and Riemann’s Functional Equation, best written as

26(x) =2¢(1 —x), where 2{(x) o w(x — 1)~ %/0(z/2) ¢(2); (4)
2¢ is dubbed “completed zeta function” (£ is the classic choice, but 2¢ is better
normalized for us, with 2£(0) = 2¢(1) = 1). The Functional Equation and (3)
imply the further explicit values

_ |BQ7rL|

¢(2m) = 2am)] (2m)?" = 2£(2m) =

|B27n|
(2m—3)!!

@m)™ (m=1,2,...) (5)

where k!l = 2+D/2T (1 4+ 1) /\/7 for k odd (the usual double factorial).

1 Aside: our first use of an exact WKB method

Our strong link with Y. Takei and the Japanese school of complex analysis
stems from the growth of an exact form of asymptotics around 1980, itself much
inspired and encouraged by M. Sato, T. Kawai, M. Kashiwara. [27] (Other
precursors included Leray, Boutet de Monvel-Krée, Bender—Wu, Dingle, Balian—
Bloch, Sibuya, Zinn-Justin, as detailed in [37, § 1.2].) But since our main topic
will only touch standard (as opposed to exact) asymptotics, it may be timely
here to share our personal recollection of why we met exact asymptotics at all,
as this was by quite an accidental circumstance, not much told, and moreover
sharing the preliminaries (1)—(5) of our later main topic: we wanted to generalize
an asymptotic form of Riemann’s Functional Equation (4), and that needed an
exact complex-WKB treatment!



A pending problem in the 70’s was the 1D quantum quartic oscillator (the
Schrédinger operator —d2/dg? + ¢*, ¢ € R) and specially its spectrum, only
known to be discrete ({E¢}r=0,1,...; E¢ > 0, By T 4+00) and to solve an asymptotic
condition of the form

ib B Con(0+ 1) for integer ¢
W, ~ 5 ger { — 400 (6)

(Bohr-Sommerfeld), with by = f{p2+q4:1} pdg (> 0) : a classical-action period.
In 1979, following [22, § 7][25], we considered the spectral zeta function

Z(x) def ZE[*’” (Rez > 3): (7)
¢

a Dirichlet series like (1) for {(z), but with the thoroughly unknown eigenvalues
E, in place of the integers k. Remarkably though, Z(z) kept many (of the
non-arithmetic) explicit properties present in Riemann’s ((z): [31][32]
- a Mellin representation, implying that Z(x) is meromorphic in all of C and all
its polar singularities can be written out;
- explicit finite values: all Z(—n), (n=10,1,2,...), [25] plus Z'(0) and Z(1).
There is just no functional equation for Z(x) to generalize Riemann’s eq. (4)
for ((x) (which links to the harmonic (¢?) oscillator, of spectral zeta function
(1 —=27")¢(x)). But if we only watch x — +o0 asymptotics then ¢(x) ~ 1 for
z — o0 reducing (4) to: ((z) ~ I'(1 — z)(27)” sin(7z) /7 for  — —o0. Now
this remnant of (4), just an explicit (x — —o0) asymptotic formula, may gener-
alize to other Mellin transforms: such a function [ ©(u)u®~'du potentially has
its © — —oo behavior dictated, and thus described, by the nearest singularities
of ©(u) in C* - i.e., provided the latter are isolated and computable. And all
that worked for Z(x), under the specific Mellin representation

Z % / O3/4(u u*tdu, O3/4(u Zexp u) (Re u > 0),
(8)

because this function ©3,, had a curious (and novel, at the time) analytic
structure depicted in [5, § 4], and here in Fig. 1, using a rescaled variable s:
©3/4 was a ramified function, with branch points all on a square lattice, and
up to the rescaling, its discontinuity functions were: at 0, a Borel transform of
the Bohr—Sommerfeld series (6), and at other lattice points, Borel transforms
of various ezponentials of that same Bohr—Sommerfeld series (essentially). In
particular that gave the nearest discontinuity functions, at s = %(1 +1), to all
orders, [5, eq.(4.12)] implying this asymptotic expansion for Z(zx), [31, § V][32
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Figure 1: Cut plane (principal branch) for the multivalued function ©3/4(u), in the
rescaled and negated variable s = —b; 'u. (Based on [5, Fig. 11].)

with {a;} “bootstrapped” in terms of {b,} through the generating function

iaj(;;)j = exp{(bzlv-l-SZU )— (%Usﬁ-%iﬂ) +-- ] (e.g., ap =1). (10)
=0

Yet we noted that our crucial description of the function ©3,, (later un-
derstood as resurgent [13]) stayed somewhat empirical and incomplete. And
however fast eq. (9) grew for x — —oo, it still eluded a standard asymptotic ap-
proach. So, to confirm (9)-(10) we needed tools able to fully describe ©3,4. For
that (encouraged also by Balian, Malgrange) we had to do WKB calculations
with complex Planck’s constant as in [4], using microfunction techniques [27]
and a whole convolution algebra of Borel transforms; thus, from 1981 onwards
[33, § 5.3][34][35][36] we ended up with exact WKB results. .. initially all for the
sake of that © — —oo behavior in the spectral zeta function Z(z). (For which
[36, p.281-286] fully analyzed the function ©3,4 - named Z therein.)

As we also use (5) later, we mention that even without a functional equa-
tion for Z(x), our further exact-WKB study of the potential ¢* extended the
formulae (5) for ¢(2m), to explicit identities for Z(3m), m = 1,2,...; e.g.,
Z(3) = +Z(1)* = 1Z(1)Z(2). [34] And similarly for higher-degree potentials
¢*™ (M > 2), and for parity-twisted zeta functions Y (—1)*E, * as well; then,

¢

one such zeta-value exceptionally reduces almost as far as (5):
Z(fl)zE[2 = oz [7T($)]1?/T($)*  for the sextic potential ¢° (11)
[

by merging [34, eq. (16)] (exact-WKB) and [31, eq. (12)][32] (Weber—Schafheitlin)
at < (2M +2)"1 =1/8.



Still, in our own work, for us several gaps remain to be filled: e.g., proof of
full resurgence for the WKB solutions [18], validation of a very gentle behavior
at infinity seen on Borel transforms [35, p.102-103], regularity and contractivity
of an exact-quantization map beyond the case of homogeneous potentials which
was settled by Avila [2] ([37, § 4.2][38, end §]), broader inclusion of nonpolyno-
mial potentials [37, § 5.3]...

We conclude this digression by a salute to the impressive developments
further carried out on exact WKB analysis in Japan, encompassing higher-
order Ordinary Differential Equations, singular potentials, infinite-dimensional
problems, ODE/IM correspondence, nonlinear problems (Painlevé), cluster al-
gebras. . .

2 The Keiper—Li sequence

2.1 The Riemann zeros (basics) [30]

2.1.1 Known facts

By (4), £ is a real entire function, with the two symmetry axes R, and L def

{Re z = 1} called the critical line.

The zeros of & or Riemann zeros, classically denoted p (and counted with
multiplicities if any), all lie within the open strip {0 < Re # < 1}. They are
infinitely many and their counting function N(T'), defined as the number of p
in the rectangle (0,1) x (0,iT), obeys the Riemann-von Mangoldt asymptotic
law

N(T) = % (1og % - 1) +O(ogT) (T — +o0). (12)

2.1.2 The Riemann Hypothesis (RH) (1859) [26]
All the zeros p of () lie on the critical line {Re x = $}.

This conjecture, most important for number theory (to understand the primes)
has been neither proved nor disproved yet. On the other hand:

- Re p = 1 has been seen, and verified by computer, up to increasing ordinates
T = Im p: since 2004, up to the 10'3-th zero p; [14] that sets the largest
ordinate Ty up to which RH is verified to a current value ~ 2.4 - 10*2.

- numerous statements equivalent to RH, or criteria for RH, have been issued;
many are highly abstract, but our focus will be on a specially concrete and
simple-looking one.



2.2 The Keiper—Li tool to test RH

2.2.1 The Keiper vs Li sequences: generalities

Those sequences are defined: by the generating function (Keiper [17])

= K_n _ def — 1

ngzl)\nz = P(z) = log2§(x =1- z) (13)
K 1 dz - .

= A\ = ®(z), C = {|z] =e < 1} positively oriented; (14)

2mi C ZnJrl

resp. by sums over all Riemann zeros grouped symmetrically (Li [20])

A S n-1-1/p)", n=12... (15)
= Z[l —cosnb,), 6, def log(1 —1/p). (16)

Both are denoted A, in the literature, but beware: A\ = nAK; so in way of a pun,
Keiper’s \,, and Li’s \,, differ by their common notation. Neither normalization
is nicer on all counts, so we rather keep both and use disambiguation superscripts
K, L when the factor n matters.

Im x , Im z R
o | e p
p % | g,
Re>i Rea
0 1/2 1 o -1 1
L

Figure 2: Riemann zeros (e) depicted in the z (left) and z (right) upper half-planes
schematically (at mock locations, including a putative pair off the critical line L). The
symmetrical zeros in the lower half-planes are not plotted. Domains are shaded only
to mark which map to which.

A key element is the conformal mapping x = 1/(1 — z) in (13) which pulls
back the half-plane {Re z > 1} to the unit disk {|2| < 1} (Fig. 2). This makes
RH equivalent to: ®(z) is analytic in all of that disk - that is why its Taylor
coefficients \,, are RH-sensitive. In quantitative terms, d®/dz is meromorphic
with a simple pole of residue 1 at every preimage z, of a zero p, and by (14),

1 dz d®
A= = g E58 (17)
2ni Jo 2™ dz



Figure 3: Contour deformation in Darboux’s method for the asymptotics of (17).

Applying Darboux’s method (i.e., the method of steepest descent in the variable
log z [12, § 7.2]) we inflate C to {|z| = r} with r T 1~ (Fig. 3) and use the residue
theorem to get the contributions from the poles z, as

A= Z 2" oM poe  (Vr<1) (18)
{lz,/|<1}

where we assign the notation p’ to zeros (if any) having Re p’ > 1 (in violation
of RH, and amounting to |z,| < 1). If and only if RH is false, the sum in
(18) is nonempty and then, ordered according to nondecreasing |z,/| it forms an
asymptotic expansion in exponentially growing oscillations about 0.

2.2.2 Li’s criterion for the Riemann Hypothesis

- If RH is false, the last sentence about (18) implies that A\, < 0 will occur in
the asymptotic regime n — oo.
- If RH is true, this amounts to all 6, being real in the sums (16), which are
therefore termwise positive, for all n. [17]

That pair of statements entails Li’s criterion: [20]

RH true <= )\, > 0 for all n.
However: [24]
Re p = % holds up to a height Ty ==\, >0 as long as n < T?.

This means that low values of n are actually inessential for Li’s criterion: we

may focus on the asymptotic n — oo behavior of A, instead.

2.3 Asymptotic alternative for RH

The n — oo form of A, is already fixed by the sum in (18) for RH false, but not
so for RH true when that sum is empty. Instead, in the RH true case the sum
(16) defining AL identifies with the Stieltjes integral 2 [°(1 — cosnf) dN(T)
where T' = %cot %9; then, integration by parts gives

prage 2/0 sinnf N (5 cot 16) dé. (19)



The large-T law (12) now gives the # — 0 form of the integrand in (19), which
in turn converts to the large-n behavior of AX for RH true, as [24]

Al = S[logn + (v —log 27 — 1)] + o(1) (v : Euler’s constant), (20)

giving a tempered growth to +o0o (see [19][1] for stronger remainder estimates).

The asymptotic forms (18), (20) combine to give the (n — o0) alternative
[39]

N D if RH false  (21)
{lz,/|<1}

VS A~ Inflogn+ (y—log2m — 1)] if RH true. (22)
In practice, a term z," from (21) will compete in size with (22) if
n>T?/t  (for p' =L 4+t+il, t>0). (23)

This inequality (in order of magnitude) is also the uncertainty principle for the
Fourier-conjugate variables # and n in (19), which proves it a strict necessary
condition as well. With ¢ < % and T > Ty ~ 2.4 -10'2, (23) gives as concrete
threshold: n > 102°, for \,, to possibly sense violations of RH if any.

Unfortunately, the Keiper—Li numbers seem analytically quite challenging
[7][10] and the complexity of their numerical evaluation steeply grows with n,
mainly because it needs derivatives (logg)(") which are intricate to handle
[17][21][9][15] ([15] reached n = 10°). Currently, only the behavior (22) will
show over the accessed ranges (Fig. 4 below), whereas values n > 10?5 needed
for new tests of RH appear way out of reach.

3 A closed-form variant of Keiper—Li [40]

The construction of the Keiper—Li sequence is not as inflexible as it may seem.
Already, the unit disk of Fig. 2 can be remapped to itself by a (conformal)

Mébius transformation, z — 2/ = 1Z—_Zfz o H:(z) (for || < 1). Under the
resulting composed map x — z +— 2’, 2’ = 0 can now correspond to an arbitrary
point 2 in the half-plane {Re z > 1}, and the transposition of (13) will define
generalized Keiper—Li numbers in terms of (log¢)-derivatives now at © = xg
instead of z = 1 [28] (which improves convergence if Re 29 > 1). But log £ stays
differentiated all the same, only elsewhere. To progress further, the deformation

can be made more general.

3.1 Construction of an explicit sequence

The unwelcome differentiations on log ¢ relate to the multiplicity of the pole
1/2™%1 of the integrand in (14). So we propose to split this pole into n + 1 sim-
ple poles 1/z, 1/(z—z1),...1/(z — z,) by displacing each factor of 2”1 in (14)



differently. As previously we use hyperbolic displacements, i.e., Mobius trans-
formations Hz, again to keep the unit disk invariant (thus preserving asymptotic
sensitivity to RH). The integral form (14) for Keiper’s AX thus gives rise to

1 dz . 1
ﬁfc TSR R CUD Dl s poey 7 s T Rl

m=1

by the elementary residue calculus for simple poles, with ®,, def D(z): e,

a finite-difference formula replaces a differential one. Finally specializing to
zm =1 — (2m) ™1, the above reduces to

Xn: (=)™ Apm®m £ An, with (24)
m=1
o 2m(2(n4m) — !
Anm = (2m — 1) (n —m)! (2m)!’ (25)
Bom
and @, = log2¢(2m)=log (2|mQ—3)” 2mm (26)

thanks to (5); thus, (24) specifies a deformed Keiper’s sequence {A, } in elemen-
tary closed form. E.g., Ay = 2logm/3 ~ 0.0691764, Ay = 2 log[(2/5)73" /] ~
0.2274543 .

In summary: the original A\, are elusive objects partly because the functions
¢ hence &, log&, have unwieldy derivatives. By discretizing the latter to finite
differences, we inversely use the best in those same functions: their special values
- countably many - upon which explicit finite differences can be built - to all
orders, just as needed here.

3.2 Asymptotic alternative for RH with the sequence {A,}

We only state our main result, in parallel to § 2.3: defining

o 1 n
Folo) ™ (1"~ g logo = 1) 4 Y- (<) Ay ot 20| (21)
AnO m=0
as single-valued in the cut plane C\ [0, 2n], then for n — oo,
A~ Y Falp) if RH false (28)
{Re p'>1/2}

where for each p' = 1 +t+1iT, t > 0 (with ¢(p'): a known phase function),

o) (ZD"(2n)
[T |2+t logn

(giving an oscillation of amplitude O(n'/logn) about 0);

F.(p') ~ for n > |T| (29)

Vs A, ~ logn+i(y—logm—1) (mod o(1)) if RH true (30)
(tempered growth to 4+00).



(The derivations are similar to those sketched above for (21)—(22) but more
elaborate; the explicit form (29) doesn’t hold uniformly in 7" = Im p’ hence
cannot be substituted all at once into the full sum (28). [40, § 3])

In practice, a term from p’ as in (29) will compete in size with (30) if

n > T2/t (= Ty ~ 10% currently): sufficient condition; (31)

now the uncertainty principle is much more favorable than either (31) or (23):

n>irel/t (> 1T, ~ 10" currently): necessary condition. (32)
Still, current data (Figs. 4-5) will then only show the behavior (30).
rleg¥2(y —log 1t -1)

T

8 —r e

Y[logn+ (y —log(2m) +1)]

| | I B

1 10 100 1000 4000 10000

n
Figure 4: Upper plot: the sequence {A,} given by (24) displayed up to n = 4000 on
a logarithmic n-scale (line segments connect data points only to aid the eye); straight
line: the RH-true asymptotic form (30). Lower plot: the same for the original Keiper
sequence (14) in comparison (data by courtesy of K. Maslanka [21]).

The two behaviors (28), (30) are mutually exclusive asymptotically (“alter-
native”), but numerically they superpose (they add): the form (30) sums the
bulk effect of the zeros on the critical line, but the remainder therein, A, = A,,—
logn — %(’y —logm — 1) retains oscillations probably due to those zeros taken
individually: e.g., the main oscillation is clearly synchronous with (—1)"n”, the
same form as in (29) but for the first Riemann zero (p = 1 + 14.134725... i)
(Fig. 5). Inversely, any growing oscillation (29) from an RH-violating zero p’
will rise on top, not in place, of the smooth trend (30), see later counterexample
to RH (Fig. 6).

3.3 Computational aspects

Calculations on A,, appear much simpler than for A,. A handful of command
lines suffice in Mathematica (for instance) [41] to readily obtain values up to

10
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_0047.”@ T T T A
950100 1000 10000 100000 500000

Figure 5: (—1)" times the remainder dA, in (30) (= o(1) iff RH is true). This
form oscillates with roughly the (logn)-wavelength of n” for the first Riemann zero
p = % + 14.134725 ... i; this wavelength, I = 27/Im p = 0.44452, is depicted by a
horizontal segment. Rightmost data: courtesy of G. Misguich (see § 3.3).

n = 20,000. G. Misguich has written a much faster parallel code for a 20-core
machine, reaching Asgo 000 &~ 12.33812102688 in about 22 days. [23]

As a bonus, individual A,, can be accessed directly without a recursive build-
up from n = 1 every time as with \,, (evaluations of the Bernoulli numbers By,
use recursion though, causing the major part of the workload).

An important fact is that the observed small A, follow from huge cancel-
lations between positive and negative terms in (24). Here, this too can be
described explicitly: for n > 1 the Stirling formula shows max |Apm| to grow

like e3+2V2)" (at m & n/y/2). This means that ~ 0.76555 n decimal, or 2.5431 n
binary, leading significant digits have to cancel in the summation (24) to yield
the final A,,. Arbitrary-precision computing is thus mandatory. This high in-
stability in the specification of A,, (and already of \,, to a lesser degree) may
be a price to pay for real-axis data that will signal phenomena located at very
high imaginary parts.

3.4 Analytical questions

Fine-tuned as it is, the construction (24) still has residual flexibility: e.g., in [40,
App.] we exhibit a more symmetrical - algebraically less elementary - variant
(hence the plural in our main title). Inversely then, we may hope for simpler or
better conditioned variants of (24) to emerge in some future.

The right-hand side of (28) only shows the start of a double expansion in in-
teger powers of 1/logn and complex powers of n, thus constituting a transseries
in the variable 1/logn - whose analytical properties wholly remain to be inves-

11



tigated.

The asymptotic alternative (28)—(30) entails an asymptotic Li-like criterion
for the sequence {A,}: RH true <= for some ng, A, > 0 (Yn > ng). We
cannot rule out ng = 0 (full Li’s criterion), but we have no proof of this either.

4 The Davenport—Heilbronn counterexamples

They are “twisted zeta functions” defined by the Dirichlet series [11][6]

def 1 T+ T+ 1 0
et m e (33)

fe(@)
where 74 = —¢ + /1 + ¢? with ¢ = (1 4+ v/5) (the golden ratio), and the
numerators are repeated periodically mod 5.

For those specific 7-values, fi(x) retain some properties like those of Rie-
mann’s ((x), e.g., countably many explicit values, and functional equations
similar to (4). However, they lose the arithmetical properties of {(x) such as
(2), and part of their (completed functions’) zeros lie off the critical line L.

20 T T T T T s'g““‘! T T
15

10 m/5-1)

.\.\.\.\I\.\.\.\.\tg\.\.\.\.\

|

a
LI B

<

101 10 1r(])O 1000 400010000

Figure 6: As Fig. 4, but for the two sequences {A+ »} associated with the Davenport—
Heilbronn functions (33), stopping A_, at n = 480 before severe overflow occurs;
straight line: the generalized-RH-true asymptotic form (34). The horizontal segment

—1/2

depicts the (logn)-wavelength I’ of the leading oscillatory contribution o< n” - to

A_, (ignoring the factor (—1)" in (29)): I’ ~ 27/8.91836 =~ 0.70452.

As with ¢(z), Keiper-Li sequences {A1 ,,} can be defined for fi, and then,
variants {A 1 , } in elementary closed form as well (now using Bernoulli-polynomial
values at 1/5 and 2/5). These sequences {AL ,,} can then serve to numerically
probe the RH-false branch (28) of our asymptotic alternative. [40, § 4.4]

12
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-0.01~ N ]
002 - '._:". v |+ |i_ .
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50 100 N 1000 4000

Figure 7: As Fig. 5, but for the remainder §Ay ,,. The horizontal segments depict the
(log n)-wavelengths [, I, of the expressions n” for p = § +5.094161i (the first zero of
f+,on L), and p = py (its first zero off L) respectively: 14 = 1.23341, I’, =~ 0.0733.

The two functions fi yield contrasting numerical results (Fig. 6).

For (the completed function of) f,, its lowest-T" zero off the line L is p/, ~
0.808517+85.6993481 [29]. To detect it through the sequence {A4 ..}, (31) gives
a threshold n ~ T'*t2/t ~ (85.7)748 ~ 3. 10': accordingly, in our computed
range A4 , sticks to the RH-true prediction as generalized to this case,

Ay, ~logn+ i(y—logm/5—1). (34)

Whereas for the case of f_, the lowest-T zero off L is p’ ~ 2.30862 + 8.918361
([3], where our f_ is denoted f3). To detect it through {A_ ,,}, (31) now gives a
threshold n ~ T2/t ~ (8.92)2'~ 100. Indeed, A_,, briefly starts along (34)
on average, but the oscillating contribution like (29) from the zero p’_ quickly
turns dominant. This actually models what one should see at much higher n
for {A4 .}, and at some still higher n for {A,,} itself (the Riemann case) if RH
is ultimately false.

On the other hand, fi is more suitable for practising to spot an early,
hence weak, signal of RH-violation from p’, within the remainder 6A ,, in (34).
(With f_, the signal from p’ takes over too soon to allow that.) On f,, the
uncertainty-principle bound (32) for the first zero p/, ¢ L gives n 2 1100: that
leaves a large n-interval ~ [103, 3 - 10'4] as training ground, to scan (—1)"5A; ,
for an oscillation o n”+~'/2/logn (of (logn)-wavelength: U, =2r/Im p/, =
0.0733) (Fig. 7). At our highest data point n = 4000 its amplitude is ~ 6-107°
by (29), still tiny, but it will grow like n%3%%5 /logn. Then, the faster the
background part of §A ,, (= o(1), due to zeros of fi on L) would decrease, the
sooner that signal from p/, might stand out in the above interval. Such wishful
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thinking suffices to suggest what to seek next: higher-n data for sure, but also
stronger bounds on the remainder dAy , (dA, for the Riemann case, just as
[19] did with A,), and refined signal processings - the end goal being to most
efficiently use the sequence {A,} itself for tests of RH.
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