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From asymptotic to closed forms for the Keiper/Li approach to the Riemann Hypothesis

The Riemann Hypothesis (RH) -that all nonreal zeros of Riemann's zeta function shall have real part 1/2 -remains a major open problem. Its most concrete equivalent is that an infinite sequence of real numbers, the Keiper-Li constants, shall be everywhere positive (Li's criterion). But those numbers are analytically elusive and strenuous to compute, hence we seek simpler variants. The essential sensitivity to RH of that sequence lies in its asymptotic tail; then, retaining this feature, we can modify the Keiper-Li scheme to obtain a new sequence in elementary closed form. This makes for a more explicit analysis, with easier and faster computations. We can moreover show how the new sequence will signal RH-violating zeros if any, by observing its analogs for the Davenport-Heilbronn counterexamples to RH.

It is a great honor and pleasure to dedicate this talk to Professor Yoshitsugu Takei, for his major contributions to exact asymptotic analysis throughout his career since the early 90's, [START_REF] Kawai | Algebraic Analysis of Singular Perturbation Theory[END_REF] and surely for many more years to come. I am most grateful to the RIMS 1 and the Organizers for their invitation -and many past ones.

After a digression on why and how (precisely 40 years ago!) we met exact asymptotic analysis, which was to be the source of our durable link and friendship with Y. Takei ( § 1), we will mainly survey our recent work on the Keiper-Li approach to the Riemann Hypothesis -referring to [START_REF] Voros | Discretized Keiper/Li approach to the Riemann Hypothesis[END_REF] for any further detail. In § 2 we review the original but elusive Keiper-Li sequence, and then ( § 3) a discretization step (from derivatives to finite differences) which leads to a modified sequence in elementary closed form; its n → ∞ behavior provides a new, very concrete, asymptotic criterion for the Riemann Hypothesis. Finally, in § 4 we test that criterion in generalized form, transposed to the Davenport-Heilbronn functions which are counterexamples to the Riemann Hypothesis (with some new material here: more data and discussions).

Riemann's zeta function has the equivalent definitions, for Re x > 1: [START_REF] Titchmarsh | The Theory of the Riemann Zeta-Function, 2nd ed. revised[END_REF] ζ(x) 

def = ∞ k=1 k -x ≡ 1 Γ(x) ∞ 0 1 e u -1 u x-1 du (1) 
2ξ is dubbed "completed zeta function" (ξ is the classic choice, but 2ξ is better normalized for us, with 2ξ(0) = 2ξ(1) = 1). The Functional Equation and (3) imply the further explicit values

ζ(2m) = |B 2m | 2(2m)! (2π) 2m ⇐⇒ 2ξ(2m) = |B 2m | (2m-3)!! (2π) m (m = 1, 2, . . .) (5)
where k!! = 2 (k+1)/2 Γ( 1 2 k + 1)/ √ π for k odd (the usual double factorial).

1 Aside: our first use of an exact WKB method

Our strong link with Y. Takei and the Japanese school of complex analysis stems from the growth of an exact form of asymptotics around 1980, itself much inspired and encouraged by M. Sato, T. Kawai, M. Kashiwara. [START_REF] Sato | Microfunctions and pseudodifferential equations[END_REF] (Other precursors included Leray, Boutet de Monvel-Krée, Bender-Wu, Dingle, Balian-Bloch, Sibuya, Zinn-Justin, as detailed in [37, § 1.2].) But since our main topic will only touch standard (as opposed to exact) asymptotics, it may be timely here to share our personal recollection of why we met exact asymptotics at all, as this was by quite an accidental circumstance, not much told, and moreover sharing the preliminaries (1)-( 5) of our later main topic: we wanted to generalize an asymptotic form of Riemann's Functional Equation (4), and that needed an exact complex-WKB treatment!

A pending problem in the 70's was the 1D quantum quartic oscillator (the Schrödinger operator -d 2 /dq 2 + q 4 , q ∈ R) and specially its spectrum, only known to be discrete ({E } =0,1,... ; E > 0, E ↑ +∞) and to solve an asymptotic condition of the form

∞ n=0 b n E 3 4 (1-2n) ∼ 2π( + 1 2 ) for integer → +∞ (6) 
(Bohr-Sommerfeld), with b 0 = {p 2 +q 4 =1} p dq (> 0) : a classical-action period.

In 1979, following [22, § 7][25], we considered the spectral zeta function

Z(x) def = E -x (Re x > 3 4 ) : (7) 
a Dirichlet series like (1) for ζ(x), but with the thoroughly unknown eigenvalues E in place of the integers k. Remarkably though, Z(x) kept many (of the non-arithmetic) explicit properties present in Riemann's ζ(x): [START_REF] Voros | Oscillateur quartique et méthodes semi-classiques[END_REF][32] -a Mellin representation, implying that Z(x) is meromorphic in all of C and all its polar singularities can be written out; -explicit finite values: all Z(-n), (n = 0, 1, 2, . . .), [START_REF] Parisi | Trace identities for the Schrödinger operator and the WKB method[END_REF] plus Z (0) and Z [START_REF] Arias De Reyna | Asymptotics of Keiper-Li coefficients[END_REF].

There is just no functional equation for Z(x) to generalize Riemann's eq. ( 4) for ζ(x) (which links to the harmonic (q 2 ) oscillator, of spectral zeta function

(1 -2 -x )ζ(x)). But if we only watch x → ±∞ asymptotics, then ζ(x) ∼ 1 for x → +∞ reducing (4) to: ζ(x) ∼ Γ(1 -x)(2π) x sin( 1 2 
πx)/π for x → -∞. Now this remnant of (4), just an explicit (x → -∞) asymptotic formula, may generalize to other Mellin transforms: such a function Θ(u)u x-1 du potentially has its x → -∞ behavior dictated, and thus described, by the nearest singularities of Θ(u) in C * -i.e., provided the latter are isolated and computable. And all that worked for Z(x), under the specific Mellin representation

Z 3 4 x = 1 Γ(x) ∞ 0 Θ 3/4 (u) u x-1 du, Θ 3/4 (u) def = exp(-E 3/4 u) (Re u > 0), (8) 
because this function Θ 3/4 had a curious (and novel, at the time) analytic structure depicted in [5, § 4], and here in Fig. 1, using a rescaled variable s: Θ 3/4 was a ramified function, with branch points all on a square lattice, and up to the rescaling, its discontinuity functions were: at 0, a Borel transform of the Bohr-Sommerfeld series [START_REF] Bombieri | Around the Davenport-Heilbronn function, Uspekhi Mat. Nauk[END_REF], and at other lattice points, Borel transforms of various exponentials of that same Bohr-Sommerfeld series (essentially). In particular that gave the nearest discontinuity functions, at s = 1 2 (1 ± i), to all orders, [5, eq.(4.12)] implying this asymptotic expansion for Z(x), [START_REF] Voros | Oscillateur quartique et méthodes semi-classiques[END_REF] with {α j } "bootstrapped" in terms of {b n } through the generating function

, § V][32, § 7] Z( 3 4 x) ∼ sin 3 4 πx cos 1 2 πx b 0 √ 2 x x π ∞ j=0 α j Γ(-x -j) (x → -∞), (9) 
∞ j=0 α j v b 0 j ≡ exp b 1 2 v+ b 2 2 2 v 3 - b 3 2 3 v 5 + b 4 2 4 v 7 +• • • (e.g., α 0 = 1). ( 10 
)
Yet we noted that our crucial description of the function Θ 3/4 (later understood as resurgent [START_REF] Écalle | Les fonctions résurgentes I[END_REF]) stayed somewhat empirical and incomplete. And however fast eq. ( 9) grew for x → -∞, it still eluded a standard asymptotic approach. So, to confirm (9)- [START_REF] Coffey | New results concerning power series expansions of the Riemann xi function and the Li/Keiper constants[END_REF] we needed tools able to fully describe Θ 3/4 . For that (encouraged also by Balian, Malgrange) we had to do WKB calculations with complex Planck's constant as in [START_REF] Balian | Solutions of the Schrödinger equation in terms of classical paths[END_REF], using microfunction techniques [START_REF] Sato | Microfunctions and pseudodifferential equations[END_REF] and a whole convolution algebra of Borel transforms; thus, from 1981 onwards [33, § 5.3][34][35][36] we ended up with exact WKB results. . . initially all for the sake of that x → -∞ behavior in the spectral zeta function Z(x). (For which [36, p.281-286] fully analyzed the function Θ 3/4 -named Z therein.)

As we also use ( 5) later, we mention that even without a functional equation for Z(x), our further exact-WKB study of the potential q 4 extended the formulae (5) for ζ(2m), to explicit identities for Z(3m), m = 1, 2, . . .; e.g., 2). [START_REF] Voros | Semiclassical correspondence and exact results: the case of the spectra of homogeneous Schrödinger operators[END_REF] And similarly for higher-degree potentials q 2M (M > 2), and for parity-twisted zeta functions (-1) E -x as well; then, one such zeta-value exceptionally reduces almost as far as ( 5):

Z(3) = 1 6 Z(1) 3 -1 2 Z(1)Z(
(-1) E -2 = 1 128 [π Γ( 1 4 )] 2 /Γ( 7 8
) 4 for the sextic potential q 6 (11)

by merging [34, eq. ( 16)] (exact-WKB) and [31, eq. ( 12)][32] (Weber-Schafheitlin)

at µ def = (2M + 2) -1 = 1/8.
Still, in our own work, for us several gaps remain to be filled : e.g., proof of full resurgence for the WKB solutions [18], validation of a very gentle behavior at infinity seen on Borel transforms [35, p.102-103], regularity and contractivity of an exact-quantization map beyond the case of homogeneous potentials which was settled by Avila [START_REF] Avila | Convergence of an exact quantization scheme[END_REF] ([37, § 4.2][38, end §]), broader inclusion of nonpolynomial potentials [37, § 5.3]. . . We conclude this digression by a salute to the impressive developments further carried out on exact WKB analysis in Japan, encompassing higherorder Ordinary Differential Equations, singular potentials, infinite-dimensional problems, ODE/IM correspondence, nonlinear problems (Painlevé), cluster algebras. . .

The Keiper-Li sequence

2.1 The Riemann zeros (basics) [START_REF] Titchmarsh | The Theory of the Riemann Zeta-Function, 2nd ed. revised[END_REF] 2.1.1 Known facts By (4), ξ is a real entire function, with the two symmetry axes R, and

L def = {Re x = 1
2 } called the critical line. The zeros of ξ or Riemann zeros, classically denoted ρ (and counted with multiplicities if any), all lie within the open strip {0 < Re x < 1}. They are infinitely many and their counting function N (T ), defined as the number of ρ in the rectangle (0, 1) × (0, iT ), obeys the Riemann-von Mangoldt asymptotic law

N (T ) = T 2π log T 2π -1 + O(log T ) (T → +∞). ( 12 
)
2.1.2 The Riemann Hypothesis (RH) (1859) [START_REF] Riemann | Über die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF] All the zeros ρ of ξ(x) lie on the critical line {Re x = 1 2 }. This conjecture, most important for number theory (to understand the primes) has been neither proved nor disproved yet. On the other hand: -Re ρ ≡ 1 2 has been seen, and verified by computer, up to increasing ordinates T = Im ρ : since 2004, up to the 10 13 -th zero ρ ; [START_REF] Gourdon | The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height[END_REF] that sets the largest ordinate T 0 up to which RH is verified to a current value ≈ 2.4 • 10 12 .

-numerous statements equivalent to RH, or criteria for RH, have been issued; many are highly abstract, but our focus will be on a specially concrete and simple-looking one.

The Keiper-Li tool to test RH

The Keiper vs Li sequences: generalities

Those sequences are defined: by the generating function (Keiper [17])

∞ n=1 λ K n z n ≡ Φ(z) def = log 2ξ x = 1 1 -z (13) ⇐⇒ λ K n = 1 2πi C dz z n+1 Φ(z), C = {|z| = ε
1} positively oriented; [START_REF] Gourdon | The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height[END_REF] resp. by sums over all Riemann zeros grouped symmetrically (Li [START_REF] Li | The positivity of a sequence of numbers and the Riemann Hypothesis[END_REF])

λ L n def = ρ [1 -(1 -1/ρ) n ], n = 1, 2, . . . ( 15 
) ≡ ρ [1 -cos nθ ρ ], θ ρ def = -i log(1 -1/ρ). ( 16 
)
Both are denoted λ n in the literature, but beware: λ L n ≡ nλ K n ; so in way of a pun, Keiper's λ n and Li's λ n differ by their common notation. Neither normalization is nicer on all counts, so we rather keep both and use disambiguation superscripts K, L when the factor n matters. A key element is the conformal mapping x = 1/(1 -z) in ( 13) which pulls back the half-plane {Re x > 1 2 } to the unit disk {|z| < 1} (Fig. 2). This makes RH equivalent to: Φ(z) is analytic in all of that disk -that is why its Taylor coefficients λ n are RH-sensitive. In quantitative terms, dΦ/dz is meromorphic with a simple pole of residue 1 at every preimage z ρ of a zero ρ, and by [START_REF] Gourdon | The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height[END_REF], Applying Darboux's method (i.e., the method of steepest descent in the variable log z [12, § 7.2]) we inflate C to {|z| = r} with r ↑ 1 -(Fig. 3) and use the residue theorem to get the contributions from the poles z ρ as

λ L n = 1 2πi C dz z n dΦ dz . ( 17 
) C Re z Im z 0 -1 1 
z ρ′
λ L n = - {|z ρ |<1} z -n ρ + o(r -n ) n→∞ (∀r < 1) (18) 
where we assign the notation ρ to zeros (if any) having Re ρ > 1 2 (in violation of RH, and amounting to |z ρ | < 1). If and only if RH is false, the sum in ( 18) is nonempty and then, ordered according to nondecreasing |z ρ | it forms an asymptotic expansion in exponentially growing oscillations about 0.

Li's criterion for the Riemann Hypothesis

-If RH is false, the last sentence about (18) implies that λ n < 0 will occur in the asymptotic regime n → ∞.

-If RH is true, this amounts to all θ ρ being real in the sums [START_REF] Kawai | Algebraic Analysis of Singular Perturbation Theory[END_REF], which are therefore termwise positive, for all n. [START_REF] Keiper | Power series expansions of Riemann's ξ function[END_REF] That pair of statements entails Li's criterion: [START_REF] Li | The positivity of a sequence of numbers and the Riemann Hypothesis[END_REF] RH true ⇐⇒ λ n > 0 for all n. However: [START_REF] Oesterlé | Régions sans zéros de la fonction zêta de Riemann[END_REF] Re ρ ≡ 1 2 holds up to a height T 0 =⇒ λ n > 0 as long as n < T 2 0 . This means that low values of n are actually inessential for Li's criterion: we may focus on the asymptotic n → ∞ behavior of λ n instead.

Asymptotic alternative for RH

The n → ∞ form of λ n is already fixed by the sum in (18) for RH false, but not so for RH true when that sum is empty. Instead, in the RH true case the sum (16) defining λ L n identifies with the Stieltjes integral 2 ∞ 0 (1 -cos nθ) dN (T ) where T ≡ 1 2 cot 1 2 θ; then, integration by parts gives

λ K n = 2 π 0 sin nθ N ( 1 2 cot 1 2 θ) dθ. ( 19 
)
The large-T law [START_REF] Dingle | Asymptotic Expansions: their Derivation and Interpretation[END_REF] now gives the θ → 0 form of integrand in [START_REF] Lagarias | Li coefficients for automorphic L-functions[END_REF], which in turn converts to the large-n behavior of λ K n for RH true, as [START_REF] Oesterlé | Régions sans zéros de la fonction zêta de Riemann[END_REF] λ

K n = 1 2 [log n + (γ -log 2π -1)] + o(1) (γ : Euler's constant), (20) 
giving a tempered growth to +∞ (see [START_REF] Lagarias | Li coefficients for automorphic L-functions[END_REF][1] for stronger remainder estimates). The asymptotic forms (18), [START_REF] Li | The positivity of a sequence of numbers and the Riemann Hypothesis[END_REF] combine to give the (n → ∞) alternative

[39] λ L n ∼ - {|z ρ |<1} z -n ρ if RH false (21) 
vs λ L n ∼ 1 2 n [log n + (γ -log 2π -1)] if RH true. (22) 
In practice, a term z -n ρ from (21) will compete in size with [START_REF] Minakshisundaram | Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds[END_REF] if

n T 2 /t (for ρ = 1 2 + t ± iT, t > 0). ( 23 
)
This inequality (in order of magnitude) is also the uncertainty principle for the Fourier-conjugate variables θ and n in [START_REF] Lagarias | Li coefficients for automorphic L-functions[END_REF], which proves it a strict necessary condition as well. With t < 1 2 and T > T 0 ≈ 2.4 • 10 12 , (23) gives as concrete threshold: n 10 25 , for λ n to possibly sense violations of RH if any.

Unfortunately, the Keiper-Li numbers seem analytically quite challenging [START_REF] Bombieri | Complements to Li's criterion for the Riemann Hypothesis[END_REF][10] and the complexity of their numerical evaluation steeply grows with n, mainly because it needs derivatives (log ξ) (n) which are intricate to handle [START_REF] Keiper | Power series expansions of Riemann's ξ function[END_REF][21] [START_REF] Coffey | Toward verification of the Riemann Hypothesis: application of the Li criterion[END_REF][15] ( [START_REF] Johansson | Rigorous high-precision computation of the Hurwitz zeta function and its derivatives[END_REF] reached n = 10 5 ). Currently, only the behavior [START_REF] Minakshisundaram | Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds[END_REF] will show over the accessed ranges (Fig. 4 below), whereas values n 10 25 needed for new tests of RH appear way out of reach.

A closed-form variant of Keiper-Li [40]

The construction of the Keiper-Li sequence is not as inflexible as it may seem. Already, the unit disk of Fig. 2 can be remapped to itself by a (conformal)

Möbius transformation, z → z = z - z 1 -z * z def = H z (z) (for |z| < 1)
. Under the resulting composed map x → z → z , z = 0 can now correspond to an arbitrary point x 0 in the half-plane {Re x > 1 2 }, and the transposition of (13) will define generalized Keiper-Li numbers in terms of (log ξ)-derivatives now at x = x 0 instead of x = 1 [START_REF] Sekatskii | Generalized Bombieri-Lagarias' theorem and generalized Li's criterion with its arithmetic interpretation[END_REF] (which improves convergence if Re x 0 > 1). But log ξ stays differentiated all the same, only elsewhere. To progress further, the deformation can be made more general.

Construction of an explicit sequence

The unwelcome differentiations on log ξ relate to the multiplicity of the pole 1/z n+1 of the integrand in [START_REF] Gourdon | The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height[END_REF]. So we propose to split this pole into n + 1 simple poles 1/z, 1/(z -z 1 ), . . . 1/(z -z n ) by displacing each factor of z n+1 in [START_REF] Gourdon | The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height[END_REF] differently. As previously we use hyperbolic displacements, i.e., Möbius transformations z , again to keep the unit disk invariant (thus preserving asymptotic sensitivity to RH). The integral form ( 14) for Keiper's λ K n thus gives rise to

1 2πi C dz z H z 1 (z) • • • H z n (z) Φ(z) ≡ n m=1 1 z m [H z 1 (z) • • • H z n (z)] (z m ) Φ m
by the elementary residue calculus for simple poles, with Φ m def = Φ(z m ): i.e., a finite-difference formula replaces a differential one. Finally specializing to z m = 1 -(2m) -1 , the above reduces to

n m=1 (-1) m A nm Φ m def = Λ n , with (24) 
A nm = 2 m-n 2(n + m) -1 !! (2m -1) (n -m)! (2m)! , ( 25 
)
and

Φ m = log 2ξ(2m) ≡ log |B 2m | (2m-3)!! (2π) m ( 26 
)
thanks to (5); thus, ( 24) specifies a deformed Keiper's sequence {Λ n } in elementary closed form. E.g.,

Λ 1 = 3 2 log π/3 ≈ 0.0691764, Λ 2 = 5 24 log[(2/5) 7 3 11 /π 4 ] ≈ 0.2274543 .
In summary: the original λ n are elusive objects partly because the functions ζ hence ξ, log ξ, have unwieldy derivatives. By discretizing the latter to finite differences, we inversely use the best in those same functions: their special values -countably many -upon which explicit finite differences can be built -to all orders, just as needed here.

Asymptotic alternative for RH with the sequence {Λ n }

We only state our main result, in parallel to § 2.3: defining

F n (x) def = (-1) n - 1 A n0 log(x -1) + n m=0 (-1) m A nm log(x -2m) ( 27 
)
as single-valued in the cut plane C \ [0, 2n], then for n → ∞,

Λ n ∼ {Re ρ >1/2} F n (ρ ) if RH false (28)
where for each ρ = 1 2 + t + iT, t > 0 (with φ(ρ ): a known phase function),

F n (ρ ) ∼ e iφ(ρ ) (-1) n (2n) t+iT |T | 2+t log n for n |T | (29) 
(giving an oscillation of amplitude O(n t / log n) about 0);

vs Λ n ∼ log n + 1 2 (γ -log π -1) (mod o(1)) if RH true (30) (tempered growth to +∞).
(The derivations are similar to those sketched above for ( 21)-( 22) but elaborate; the explicit form (29) doesn't hold uniformly in T = Im ρ hence cannot be substituted all at once into the full sum [START_REF] Sekatskii | Generalized Bombieri-Lagarias' theorem and generalized Li's criterion with its arithmetic interpretation[END_REF]. [40, § 3])

In practice, a term from ρ as in [START_REF] Spira | Some zeros of the Titchmarsh counterexample[END_REF] will compete in size with [START_REF] Titchmarsh | The Theory of the Riemann Zeta-Function, 2nd ed. revised[END_REF] if n T 1+2/t ( T 5 0 ≈ 10 60 currently): sufficient condition; [START_REF] Voros | Oscillateur quartique et méthodes semi-classiques[END_REF] now the uncertainty principle is much more favorable than either [START_REF] Voros | Oscillateur quartique et méthodes semi-classiques[END_REF] or [START_REF] Misguich | calculations for n > 20000[END_REF]:

n 1 2 T e 1/t
( 1 2 T 0 e 2 ≈ 10 13 currently): necessary condition.

Still, current data (Figs. 45) will then only show the behavior [START_REF] Titchmarsh | The Theory of the Riemann Zeta-Function, 2nd ed. revised[END_REF]. 

λ Κ n ½ [log n + (γ -log(2π) -1)] Λ n log n + ½ (γ -log π -1)
Figure 4: Upper plot: the sequence {Λn} given by ( 24) displayed up to n = 4000 on a logarithmic n-scale (line segments connect data points only to aid the eye); straight line: the RH-true asymptotic form [START_REF] Titchmarsh | The Theory of the Riemann Zeta-Function, 2nd ed. revised[END_REF]. Lower plot: the same for the original Keiper sequence [START_REF] Gourdon | The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height[END_REF] in comparison (data by courtesy of K. Maślanka [START_REF] Maślanka | Li's criterion for the Riemann hypothesis -numerical approach[END_REF]).

The two behaviors [START_REF] Sekatskii | Generalized Bombieri-Lagarias' theorem and generalized Li's criterion with its arithmetic interpretation[END_REF], [START_REF] Titchmarsh | The Theory of the Riemann Zeta-Function, 2nd ed. revised[END_REF] are mutually exclusive asymptotically ("alternative"), but numerically they superpose (they add): the form (30) sums the bulk effect of the zeros on the critical line, but the remainder therein, δΛ n = Λ nlog n -1 2 (γ -log π -1) retains oscillations probably due to those zeros taken individually: e.g., the main oscillation is clearly synchronous with (-1) n n ρ , the same form as in [START_REF] Spira | Some zeros of the Titchmarsh counterexample[END_REF] but for the first Riemann zero (ρ = 1 2 + 14.134725 . . . i) (Fig. 5). Inversely, any growing oscillation (29) from an RH-violating zero ρ will rise on top, not in place, of the smooth trend [START_REF] Titchmarsh | The Theory of the Riemann Zeta-Function, 2nd ed. revised[END_REF], see later counterexample to RH (Fig. 6).

Computational aspects

Calculations on Λ n appear much simpler than for λ n . A handful of command lines suffice in Mathematica (for instance) [START_REF] Wolfram | Mathematica[END_REF] to readily obtain values up to n = 20, 000. G. Misguich has written a much faster parallel code for a 20-core machine, reaching Λ 500,000 ≈ 12.33812102688 in about 22 days. [START_REF] Misguich | calculations for n > 20000[END_REF] As a bonus, individual Λ n can be accessed directly without a recursive buildup from n = 1 every time as with λ n (evaluations of the Bernoulli numbers B 2m use recursion though, causing the major part of the workload).

An important fact is that the observed small Λ n follow from huge cancellations between positive and negative terms in [START_REF] Oesterlé | Régions sans zéros de la fonction zêta de Riemann[END_REF]. Here, this too can be described explicitly: for n 1 the Stirling formula shows max )n (at m ≈ n/ √ 2). This means that ≈ 0.76555 n decimal, or 2.5431 n binary, leading significant digits have to cancel in the summation [START_REF] Oesterlé | Régions sans zéros de la fonction zêta de Riemann[END_REF] to yield the final Λ n . Arbitrary-precision computing is thus mandatory. This high instability in the specification of Λ n (and already of λ n , to a lesser degree) may be a price to pay for real-axis data that will signal phenomena located at very high imaginary parts.

Analytical questions

Fine-tuned as it is, the construction (24) still has residual flexibility: e.g., in [40, App.] we exhibit a more symmetrical -algebraically less elementary -variant (hence the plural in our main title). Inversely then, we may hope for simpler or better conditioned variants of [START_REF] Oesterlé | Régions sans zéros de la fonction zêta de Riemann[END_REF] to emerge in some future. The right-hand side of (28) only shows the start of a double expansion in integer powers of 1/ log n and complex powers of n, thus constituting a transseries in the variable 1/ log n -whose analytical properties wholly remain to be inves-tigated.

The asymptotic alternative ( 28)-( 30) entails an asymptotic Li-like criterion for the sequence {Λ n }: RH true ⇐⇒ for some n 0 , Λ n > 0 (∀n > n 0 ). We cannot rule out n 0 = 0 (full Li's criterion), but we have no proof of this either.

The Davenport-Heilbronn counterexamples

They are "twisted zeta functions" defined by the Dirichlet series [START_REF] Davenport | On the zeros of certain Dirichlet series I, II[END_REF][6]

f ± (x) def = 1 1 x + τ ± 2 x - τ ± 3 x - 1 4 x + 0 5 x + • • • ( 33 
)
where τ ± = -φ ± 1 + φ 2 with φ = 1 2 (1 + √ 5) (the golden ratio), and the numerators are repeated periodically mod 5.

For those specific τ ± -values, f ± (x) retain some properties like those of Riemann's ζ(x), e.g., countably many explicit values, and functional equations similar to (4). However, they lose the arithmetical properties of ζ(x) such as [START_REF] Avila | Convergence of an exact quantization scheme[END_REF], and part of their (completed functions') zeros lie off the critical line L. [START_REF] Voros | Spectre de l'équation de Schrödinger et méthode BKW[END_REF], stopping Λ -,n at n = 480 before severe overflow occurs; straight line: the generalized-RH-true asymptotic form [START_REF] Voros | Semiclassical correspondence and exact results: the case of the spectra of homogeneous Schrödinger operators[END_REF]. The horizontal segment depicts the (log n)-wavelength l -of the leading oscillatory contribution ∝ n ρ --1/2 to Λ-,n (ignoring the factor (-1) n in ( 29)): l -≈ 2π/8.91836 ≈ 0.70452.

As with ζ(x), Keiper-Li sequences {λ ±,n } can be defined for f ± , and then, variants {Λ ±,n } in elementary closed form as well (now using Bernoulli-polynomial values at 1/5 and 2/5). These sequences {Λ ±,n } can then serve to numerically probe the RH-false branch (28) of our asymptotic alternative. The two functions f ± yield contrasting numerical results (Fig. 6). For (the completed function of) f + , its lowest-T zero off the line L is ρ + ≈ 0.808517+85.699348 i [START_REF] Spira | Some zeros of the Titchmarsh counterexample[END_REF]. To detect it through the sequence {Λ +,n }, [START_REF] Voros | Oscillateur quartique et méthodes semi-classiques[END_REF] gives a threshold n ≈ T 1+2/t ≈ (85.7) 7.48 ≈ 3 • 10 14 : accordingly, in our computed range Λ +,n sticks to the RH-true prediction as generalized to this case, Λ ±,n ≈ log n + 1 2 (γ -log π/5 -1). [START_REF] Voros | Semiclassical correspondence and exact results: the case of the spectra of homogeneous Schrödinger operators[END_REF] Whereas for the case of f -, the lowest-T zero off L is ρ -≈ 2.30862 + 8.91836 i ( [START_REF] Balanzario | Zeros of the Davenport-Heilbronn counterexample[END_REF], where our f -is denoted f 2 ). To detect it through {Λ -,n }, [START_REF] Voros | Oscillateur quartique et méthodes semi-classiques[END_REF] now gives a threshold n ≈ T 1+2/t ≈ (8.92) 2.11 ≈ 100. Indeed, Λ -,n briefly starts along [START_REF] Voros | Semiclassical correspondence and exact results: the case of the spectra of homogeneous Schrödinger operators[END_REF] on average, but the oscillating contribution like (29) from the zero ρ -quickly turns dominant. This actually models what one should see at much higher n for {Λ +,n }, and at some still higher n for {Λ n } itself (the Riemann case) if RH is ultimately false.

On the other hand, f + is more suitable for practising to spot an early, hence weak, signal of RH-violation from ρ + within the remainder δΛ +,n in [START_REF] Voros | Semiclassical correspondence and exact results: the case of the spectra of homogeneous Schrödinger operators[END_REF]. (With f -, the signal from ρ -takes over too soon to allow that.) On f + , the uncertainty-principle bound [START_REF] Voros | The zeta function of the quartic oscillator[END_REF] for the first zero ρ + / ∈ L gives n 1100: that leaves a large n-interval ≈ [10 3 , 3 • 10 14 ] as training ground, to scan (-1) n δΛ +,n for an oscillation ∝ n ρ + -1/2 / log n (of (log n)-wavelength: l + = 2π/ Im ρ + ≈ 0.0733) (Fig. 7). At our highest data point n = 4000 its amplitude is ≈ 6 • 10 -5 by (29), still tiny, but it will grow like n 0.3085 / log n. Then, the faster the background part of δΛ +,n (= o(1), due to zeros of f + on L) would decrease, the sooner that signal from ρ + might stand out in the above interval. Such wishful thinking suffices to suggest what to seek next: higher-n data for sure, but also stronger bounds on the remainder δΛ +,n (δΛ n for the Riemann case, just as [START_REF] Lagarias | Li coefficients for automorphic L-functions[END_REF] did with λ n ), and refined signal processings -the end goal being to most efficiently use the sequence {Λ n } itself for tests of RH.

≡ {p} ( 1 -

 1 p -x ) -1 over all the prime numbers p;[START_REF] Avila | Convergence of an exact quantization scheme[END_REF] the last form (Euler product) is just quoted to recall why ζ is a crucial function in number theory (log ζ encodes the primes).Standard actions upon the integral (Mellin) representation in (1) yield: -that ζ is meromorphic in all of C, with the only poleζ(x) = 1 x -1 + • • • ; -the explicit values ζ(-n) = (-1) n B n+1 /(n + 1), n = 0,1, 2, . . . (B n : Bernoulli numbers); (3) -and Riemann's Functional Equation, best written as 2ξ(x) ≡ 2ξ(1 -x), where 2ξ(x) def = x(x -1)π -x/2 Γ(x/2) ζ(x);

Figure 1 :

 1 Figure 1: Cut plane (principal branch) for the multivalued function Θ 3/4 (u), in the rescaled and negated variable s = -b -1 0 u. (Based on [5, Fig. 11].)

Figure 2 :

 2 Figure 2: Riemann zeros (•) depicted in the x (left) and z (right) upper half-planes schematically (at mock locations, including a putative pair off the critical line L). The symmetrical zeros in the lower half-planes are not plotted. Domains are shaded only to mark which map to which.

Figure 3 :

 3 Figure 3: Contour deformation in Darboux's method for the asymptotics of (17).

Figure 5 :

 5 Figure 5: (-1) n times the remainder δΛ n in (30) (= o(1) iff RH is true). This oscillates with roughly the (log n)-wavelength of n ρ for the first Riemann zero ρ = 1 2 + 14.134725 . . . i; this wavelength, l = 2π/ Im ρ ≈ 0.44452, is depicted by a horizontal segment. Rightmost data: courtesy of G. Misguich (see § 3.3).
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Figure 6 :

 6 Figure6: As Fig.4, but for the two sequences {Λ±,n} associated with the Davenport-Heilbronn functions[START_REF] Voros | Spectre de l'équation de Schrödinger et méthode BKW[END_REF], stopping Λ -,n at n = 480 before severe overflow occurs; straight line: the generalized-RH-true asymptotic form[START_REF] Voros | Semiclassical correspondence and exact results: the case of the spectra of homogeneous Schrödinger operators[END_REF]. The horizontal segment depicts the (log n)-wavelength l -of the leading oscillatory contribution ∝ n ρ --1/2 to Λ-,n (ignoring the factor (-1) n in (29)): l -≈ 2π/8.91836 ≈ 0.70452.

Figure 7 :

 7 Figure 7: As Fig. 5, but for the remainder δΛ +,n . The horizontal segments depict the (log n)-wavelengths l+, l + of the expressions n ρ for ρ = 1 2 + 5.09416 i (the first zero of f + , on L), and ρ = ρ + (its first zero off L) respectively: l + ≈ 1.23341, l + ≈ 0.0733 .
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