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ABSTRACT

Context. Asteroseismology has revealed small core-to-surface rotation contrasts in stars in the whole Hertzsprung–Russell diagram.
This is the signature of strong transport of angular momentum (AM) in stellar interiors. One of the plausible candidates to efficiently
carry AM is magnetic fields with various topologies that could be present in stellar radiative zones. Among them, strong axisymmetric
azimuthal (toroidal) magnetic fields have received a lot of interest. Indeed, if they are subject to the so-called Tayler instability, the
accompanying triggered Maxwell stresses can transport AM efficiently. In addition, the electromotive force induced by the fluctu-
ations of magnetic and velocity fields could potentially sustain a dynamo action that leads to the regeneration of the initial strong
axisymmetric azimuthal magnetic field.
Aims. The key question we aim to answer is whether we can detect signatures of these deep strong azimuthal magnetic fields. The
only way to answer this question is asteroseismology, and the best laboratories of study are intermediate-mass and massive stars with
external radiative envelopes. Most of these are rapid rotators during their main sequence. Therefore, we have to study stellar pulsations
propagating in stably stratified, rotating, and potentially strongly magnetised radiative zones, namely magneto-gravito-inertial (MGI)
waves.
Methods. We generalise the traditional approximation of rotation (TAR) by simultaneously taking general axisymmetric differential
rotation and azimuthal magnetic fields into account. Both the Coriolis acceleration and the Lorentz force are therefore treated in a
non-perturbative way. Using this new formalism, we derive the asymptotic properties of MGI waves and their period spacings.
Results. We find that toroidal magnetic fields induce a shift in the period spacings of gravity (g) and Rossby (r) modes. An equatorial
azimuthal magnetic field with an amplitude of the order of 105 G leads to signatures that are detectable in period spacings for high-
radial-order g and r modes in γDoradus (γDor) and slowly pulsating B (SPB) stars. More complex hemispheric configurations are
more difficult to observe, particularly when they are localised out of the propagation region of MGI modes, which can be localised in
an equatorial belt.
Conclusions. The magnetic TAR, which takes into account toroidal magnetic fields in a non-perturbative way, is derived. This new
formalism allows us to assess the effects of the magnetic field in γDor and SPB stars on g and r modes. We find that these ef-
fects should be detectable for equatorial fields thanks to modern space photometry using observations from Kepler, TESS CVZ, and
PLATO.

Key words. magnetohydrodynamics (MHD) – waves – stars: rotation – stars: magnetic field – stars: oscillations –
methods: analytical

1. Introduction

Space-based asteroseismology has made Eddington’s dream ‘to
see’ inside stars a reality (e.g. García & Ballot 2019; Aerts
2021). One of the major discoveries of the Kepler space mis-
sion (Borucki et al. 2010; Howell et al. 2014) is the signature
of a strong extraction of angular momentum (AM) operating
in the radiative zones of stars of all types throughout their
evolution, leading to weak core-to-surface rotation contrasts
(e.g. Beck et al. 2012; Deheuvels et al. 2014; Kurtz et al. 2014;
Triana et al. 2015; Aerts et al. 2017; Van Reeth et al. 2018;

Li et al. 2020; Saio et al. 2021). Understanding such efficient
transport of momentum in stellar interiors, and the related chem-
ical mixing, is one of the major unsolved questions of modern
stellar astrophysics (Dumont et al. 2021; Pedersen et al. 2021).
These mechanisms must be taken into account to get a com-
plete and coherent understanding of stars, their evolution, age,
and remnants, and the impact on their galactic environment (e.g.
Meynet & Maeder 2000; Heger et al. 2005; Suijs et al. 2008;
Maeder 2009; Bouchaud et al. 2020). State-of-the-art stellar
structure and evolution codes that take rotation and the merid-
ional flows into account, as well as the shear instabilities they
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trigger, predict internal AM that is two orders of magnitude too
high compared to asteroseismic observations (Eggenberger et al.
2012; Marques et al. 2013; Cantiello et al. 2014; Ouazzani et al.
2019).

Magnetic fields in stellar radiative zones are one of the
plausible candidates to efficiently carry AM. The best labo-
ratory to study these fields are early-type stars, which have
an outer radiative envelope. This allows us to characterise the
properties of the fields at the stellar surface (Morel et al. 2014;
Neiner et al. 2015; Wade et al. 2016) using ground-based high-
resolution spectropolarimetric surveys. Two types of fields have
been detected. On the one hand, 10% of early-type stars host
large-scale, generally high-amplitude, stable fields. Since they
seem to present no correlations between their properties and stel-
lar mass, age, and rotation (Shultz et al. 2019), these magnetic
fields are supposed to have a fossil origin. This means that they
result from the relaxation of fields generated by a dynamo during
pre-main-sequence (PMS) convective phases when convective
layers convert into stably stratified ones (Braithwaite & Spruit
2004; Duez & Mathis 2010; Arlt 2014; Emeriau-Viard & Brun
2017). As shown by Tayler (1980), Braithwaite (2009), and
Duez et al. (2010a), axisymmetric fields are only stable over
long periods when they consist of a poloidal and toroidal com-
ponent in the meridional plane and azimuthal direction, respec-
tively, since pure toroidal or poloidal fields are unstable in
stellar radiative zones (Tayler 1973; Markey & Tayler 1973). On
the other hand, the remaining 90% of intermediate-mass and
massive stars can host other types of fields detected as small-
scale weak fields at the stellar surface (Lignières et al. 2009;
Petit et al. 2011; Blazère et al. 2016a,b). Three possibilities have
been suggested to explain their origin. First, they could be gener-
ated by a dynamo action in the thin sub-surface convective layer
(Cantiello & Braithwaite 2019; Jermyn & Cantiello 2020). Sec-
ond, they might result from a failed relaxation due to the action
of the rapid rotation (Braithwaite & Cantiello 2013). Finally,
they can be the signature of fields resulting from instabilities due
to deep-seated axisymmetric toroidal magnetic fields at the stel-
lar surface (Aurière et al. 2007; Gaurat et al. 2015).

Both types of fields are able to transport AM very efficiently
(e.g. Mestel & Weiss 1987; Charbonneau & MacGregor 1993;
Gough & McIntyre 1998; Spruit 1999, 2002; Garaud 2002;
Mathis & Zahn 2005; Strugarek et al. 2011; Fuller et al. 2019;
Petitdemange et al. 2022). However, since the seminal work by
Spruit (2002), a strong interest has been devoted to magnetic
fields resulting from the Tayler instability of an axisymmet-
ric toroidal magnetic field. Spruit (2002) indeed suggested that
such a field could trigger a dynamo action in radiative convec-
tively stable layers and that the resulting magnetic torque allows
a very efficient transport of AM (e.g. Maeder & Meynet 2003;
Heger et al. 2005; Eggenberger et al. 2019). The scenario of an
efficient dynamo loop in stellar radiative zones has been strongly
debated in the literature Braithwaite (2006), Zahn et al. (2007),
Gellert et al. (2008, 2011), Fuller et al. (2019). Recent global 3D
numerical simulations by Petitdemange et al. (2022) provide the
first convincing proof of how such a dynamo can be driven by a
combination of the action of differential rotation and its related
shear instability and the action of the Tayler instability. In this
work, we consider that a strong axisymmetric toroidal field is
present in the radiative envelope but does not emerge at the stel-
lar surface, implying that spectropolarimetry will not be able to
detect and characterise it. The key question to answer is thus,
given the importance of potentially unstable strong axisymmet-
ric toroidal fields for stellar magnetism and rotation, how they
can be detected and characterised.

Asteroseismology is the key to addressing this prob-
lem. More specifically, magneto-asteroseismology (Neiner et al.
2015; Mathis et al. 2021) is the best diagnostic tool. As it
stands, magneto-asteroseismology consists in searching for the
characteristic signatures of magnetic field strengths and con-
figurations in the observed frequency spectra of stellar oscil-
lations. Although this method is still in its infancy, with
only a few studies for the Sun (Goode & Thompson 1992;
Kiefer & Roth 2018) and early-type stars (Takata & Shibahashi
1994; Shibahashi & Aerts 2000), it has recently seen a
strong development motivated by the simultaneous use of
space-based asteroseismology and ground-based spectropo-
larimetry (Briquet et al. 2012, 2013; Neiner & Lampens 2015;
Neiner et al. 2017; Buysschaert et al. 2018). First, Prat et al.
(2019, 2020) studied the modification of the frequency spectrum
of gravito-inertial modes by axisymmetric and inclined mixed
(i.e. poloidal plus toroidal) dipolar fossil fields. Gravito-inertial
modes are the oscillation modes that propagate in rotating stellar
radiative zones under the combined action of the buoyancy and
the restoring Coriolis forces. The authors treated the field as a
perturbation as a first step. They showed how the behaviour of
the so-called period spacing (i.e. the difference in period between
two modes of the same degree and azimuthal order but of con-
secutive radial order as a function of the period of these modes)
is modified by the presence of the field. They identified saw-
tooth patterns that cannot be produced by chemical stratification
or by differential rotation (Miglio et al. 2008; Van Reeth et al.
2018). Van Beeck et al. (2020) made a systematic exploration
of this magnetic signature along the evolution of intermediate-
mass pulsating γDoradus (γDor hereafter) and slowly pulsat-
ing B (SPB) stars and showed that the magnetic signatures dif-
fer appreciably from those due to rotation alone. They found
that these signatures are measurable for dipolar gravity mode
oscillations in terminal-age main-sequence (TAMS) stars for a
magnetic field with a near-core strength larger than 105 G. Next,
Bugnet et al. (2021) and Loi (2021) studied the perturbation of
mixed gravito-acoustic modes propagating in evolved low- and
intermediate-mass stars by axisymmetric and non-axisymmetric
inclined mixed dipolar fossil fields, respectively. They identi-
fied asymmetries in the frequency splittings induced by the field.
Finally, Mathis et al. (2021) derived the asymptotic theory for
the perturbation of low-frequency gravito-acoustic and gravito-
inertial modes by such an axisymmetric field. This theory is
in excellent agreement with direct numerical computations cou-
pled to state-of-the-art stellar oscillation codes. The asymptotic
expressions obtained for frequency splittings open the path to the
potential inversion of the internal distribution of magnetic fields
in stellar radiative zones.

All these previous studies have assumed that the magnetic
field is a perturbation. This assumption becomes questionable
for the high amplitudes connected with strong axisymmetric
toroidal, initially fossil, fields that trigger Tayler instability
and potential Tayler-Spruit-like dynamos. It thus becomes nec-
essary to study the impact of moderate to strong amplitude
fields on stellar pulsation modes. Predictions of this impact
can then be used to detect and characterise the field. A first
step has been achieved by Loi (2020a,b) and Loi & Papaloizou
(2020) in the case of gravity modes (see also Schatzman
1993; Rudraiah & Venkatachalappa 1972; Barnes et al. 1998;
MacGregor & Rogers 2011; Asai et al. 2016; Lee 2018).

In this work, we study the case of gravito-inertial waves. In
the presence of a strong magnetic field, these waves are driven
by the buoyancy force, the Coriolis acceleration, and the Lorentz
force. Therefore, they become magneto-gravito-inertial (MGI)
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Fig. 1. Sketch of the set-up that we use to study the dynamics of MGI
waves in rotating, magnetic, stably stratified stellar radiative zones.

waves (e.g. Braginskiy 1967; Friedlander 1987, 1989). For this
purpose, we propose generalising the traditional approximation
of rotation (TAR) that was first introduced in geophysics (Eckart
1960) to study the dynamics of the shallow Earth atmosphere and
oceans. This formalism is intensively used in asteroseismology
for the study of low-frequency waves propagating in strongly
stratified zones (e.g. Bouabid et al. 2013; Van Reeth et al. 2016;
Aerts 2021). In the hydrodynamical case, the vertical compo-
nent of the Coriolis acceleration along the stratification direc-
tion can be neglected because it is dominated by the buoyancy
force. This leads to velocities that are mostly horizontal. There-
fore, the 2D non-separable wave propagation equation in the
general case (e.g. Dintrans et al. 1999) becomes separable (e.g.
Bildsten et al. 1996; Lee & Saio 1997), as in the non-rotating
case. It can be written as a combination of one equation that
describes the wave’s horizontal structure, named the Laplace
tidal equation (Laplace 1799), and one radial Schrödinger-like
equation for the radial propagation when assuming the Cowling
approximation (Cowling 1941), in which the Eulerian perturba-
tion of the gravitational potential is neglected.

The TAR, in its standard version, relies mainly on three
assumptions. First, the rotation is assumed to be uniform. Sec-
ond, the star is assumed to be spherical, so the centrifugal accel-
eration is neglected, namely Ω � ΩK, where ΩK ≡

√
GM/R3

is the Keplerian critical (breakup) angular velocity, and G, M,
and R are the universal constant of gravity, the mass of the
star, and the stellar radius, respectively. Finally, the magnetic
field is not taken into account. However, given recent findings
and observations, new theoretical developments of the standard
TAR have emerged. The uniform rotation assumption was aban-
doned by Ogilvie & Lin (2004) and Mathis (2009), who took
the effects of general differential rotation into account. More-
over, the centrifugal acceleration was taken into account first
for slightly deformed stars (Mathis & Prat 2019; Henneco et al.
2021) using a perturbative approach and then in the presence

of strong deformation with uniform (Dhouib et al. 2021a) and
differential (Dhouib et al. 2021b) rotation in a non-perturbative
way. These recent papers on the generalised TAR formulations
also treated the detectability and the signature of the centrifugal
acceleration and differential rotation on gravito-inertial modes
from modern space photometric data.

To introduce magnetic effects, Mathis & de Brye (2011,
2012) took into account an axisymmetric toroidal magnetic field
for a uniform Alfvén frequency (the so-called Malkus 1967 field)
in a non-perturbative way and weak radial differential rotation in
deep spherical shells to perform a global study of MGI waves
and the AM transport they trigger in stellar radiative regions
(a similar study was done by Asai et al. 2015). This approach
allows for a comparison between the effects of rotation and
magnetism. Heng & Spitkovsky (2009) and Zaqarashvili et al.
(2009) studied the cases of radial and azimuthal fields in shal-
low layers, respectively. Motivated by the observation of com-
plex axisymmetric toroidal fields from numerical simulations
(Zahn et al. 2007; Jouve et al. 2020; Petitdemange et al. 2022),
our goal is to achieve a new generalisation of the TAR, going
beyond the weak differential rotation approximation and the sim-
plest magnetic azimuthal field configuration that corresponds to
a uniform Alfvén frequency. To do so, we derive the magnetic
TAR, which includes a general axisymmetric toroidal magnetic
field (with a general Alfvén frequency), in a non-perturbative
way and general differential rotation (cf. Fig. 1). The objective
is to study the dynamics of MGI modes in the best asteroseis-
mic targets available to detect them and characterise their fre-
quency spectrum, namely γDor and SPB stars. In Sect. 2 we
present the linearised magnetohydrodynamics (MHD) system in
differentially rotating fluids in the presence of a general toroidal
axisymmetric magnetic field and the set of the adopted approxi-
mations.

Section 3 treats the derivation of the magnetic TAR in this
general configuration. Subsequently, we rewrite the MHD sys-
tem in the form of a new magnetic Laplace tidal equation
(MLTE) and deduce the asymptotic seismic diagnosis of MGI
oscillation modes (Sect. 4). As a proof of concept, we apply our
formalism to typical models of γDor and SPB stars that host
general axisymmetric toroidal magnetic fields as those observed
in numerical simulations to study their seismic signature and
their detectability (Sects. 5 and 6). Finally, we discuss our
results, draw conclusions, and present perspectives and future
applications of this work (Sect. 7).

2. Propagation equation for MGI in differentially
rotating magnetic stars

2.1. Ideal MHD equations system

To study the dynamics of MGI waves in differentially rotating
magnetic stars, we have to solve the ideal MHD non-dissipative
dynamical equations system formed by the induction equation,

∂t B = ∇ × (V × B), (1)

with ∇ · B = 0, where we neglect the ohmic diffusion, the conti-
nuity equation,

Dtρ + ρ∇ · V = 0, (2)

the momentum equation,

DtV = −
1
ρ
∇P − ∇Φ +

1
ρ

FL, (3)
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where the viscous friction is neglected, the energy transport
equation in the adiabatic limit (i.e. without heat diffusion and
viscous and ohmic heatings),

1
Γ1

Dt ln P − Dt ln ρ = 0, (4)

and Poisson’s equation for the gravitational potential, Φ,

∇2Φ = 4πGρ, (5)

with ρ the density, P the pressure, and G the universal grav-
itational constant. We introduce the notations for the macro-
scopic velocity field, V, the macroscopic magnetic field, B, the
Lagrangian derivative, Dt = ∂t + (V ·∇) and consider the Lorentz
force,

FL =
1
µ

(∇ × B) × B. (6)

Further, we denote the magnetic permeability of the medium as
µ, while Γ1 = (∂ ln P/∂ ln ρ)S (S being the macroscopic entropy)
is the adiabatic exponent. We can write the macroscopic velocity
field, V, as the sum of the large-scale azimuthal velocity, V0,
associated with the differential rotation, Ω(r, θ), and of the wave
velocity, u′:

V(r, t) = V0(r, θ) + u′(r, t), (7)

with V0(r, θ) = r sin θΩ(r, θ) eϕ, where t is the time, r is the posi-
tion vector, and (r, θ, ϕ) are the usual spherical coordinates with
their associated unit vector basis (er, eθ, eϕ).

2.2. Magnetic field topology

Generalising Mathis & de Brye (2011, 2012), we write the
macroscopic magnetic field as

B(r, t) = BT
0 (r, θ) + b′(r, t), (8)

with

BT
0 (r, θ) =

√
µρ0r sin θωA(r, θ) eϕ, (9)

a large-scale general axisymmetric toroidal (i.e. azimuthal) field
associated with the general Alfvén frequency ωAr, θ), ρ0 the
background hydrostatic density, and

b′(r, t) =
√
µρ0

[
ωA∂ϕξ −

r sin θ
√
ρ0

(
ξ · ∇

(√
ρ0ωA

))
eϕ

]
− (∇ · ξ) BT

0 , (10)

the wave-induced magnetic field. It is calculated using the induc-
tion equation (Eq. (1)), where we introduced the Lagrangian dis-
placement of the wave, ξ, defined as (Unno et al. 1989)

u′ =
(
∂t + Ω∂ϕ

)
ξ − r sin θ (ξ · ∇Ω) eϕ. (11)

Using Eq. (6), we retrieve the expression of the Lorentz force,

FL(r, t) = FL0(r, θ) + f T ′
L(r, t) + f P′

L(r, t) + f ′L2(r, t), (12)

with

FL0(r, θ) =
1
µ

(
∇ × BT

0

)
× BT

0 , (13)

the zero-order part of the Lorentz force that perturbs the stellar
hydrostatic balance,

f T ′
L(r, t) =

1
µ

[(
BT

0 · ∇
)

b′ + (b′ · ∇)BT
0

]
, (14)

the wave magnetic tension force,

f P′
L(r, t) = −

1
µ
∇

(
BT

0 · b
′
)
, (15)

the wave magnetic pressure force, and

f ′L2(r, t) =
1
µ

(
b′ · ∇

)
b′, (16)

the second-order part of the Lorentz force.

2.3. Linearised MHD equations

We linearise the MHD system around the rotating magnetic
steady-state. Each scalar field X ≡ {P, ρ,Φ} is expanded as the
sum of its hydrostatic value X0 and of the wave’s associated fluc-
tuation X′:

X(r, t) = X0(r, θ) + X′(r, t). (17)

We focus on first-order terms, implying that we neglect Eq. (16).
In addition, we neglect the non-spherical character of the hydro-
static background due to the deformation associated with the
centrifugal acceleration and the zero-order part of the Lorentz
force (Eq. (13)) following Duez et al. (2010b). This implies
that the background is independent of θ, so X0 = X0(r). This
approximations is well justified for MGI waves propagating
close to the convective core boundary in intermediate-mass stars
(Henneco et al. 2021; Dhouib et al. 2021a; Duez et al. 2010b).

We expand each vectorial field (x′ ≡ {u′, b′}) and fluctua-
tions of scalar quantities (X′ ≡ {ρ′, P′,Φ′}) into discrete Fourier
series both in time and in azimuth

x′(r, t) ≡
∑
ωin,m

{
x(r, θ) exp(iωint) exp(−imϕ)

}
, (18)

X′(r, t) ≡
∑
ωin,m

{
X̃(r, θ) exp(iωint) exp(−imϕ)

}
, (19)

where m is the azimuthal order and ωin is the wave eigenfre-
quency in an inertial reference frame. In a differentially rotating
region, the waves are Doppler shifted so we can define the wave
frequency ω in the rotating reference frame as

ω(r, θ) = ωin − mΩ(r, θ). (20)

This allows us to write the wave-induced magnetic field
(Eq. (10)) as

b(r, θ) =

√
µρ0

ω

[
−mωAu + ir sin θ

(
1
√
ρ0

(
u · ∇

(√
ρ0ωA

))
+ m

ωA

ω
(u · ∇Ω) + ωA

(
∇ · u −

im
r sin θ

uϕ
))

eϕ
]
,

(21)

and the wave magnetic tension force (Eq. (14)) as

f T
L(r, θ) = ρ0m

ω2
A

ω

[
imu − 2ez × u

]
+ mr sin θρ0

ω2
A

ω

[(
∇ · u −

im
r sin θ

uϕ
)

+
m
ω

(u · ∇Ω)
]

eϕ

−
ir sin θρ0

ω

[
mΛE

(
u · ∇Ω2

)
+

1
ρ0

(
u · ∇

(
ρ0ω

2
A

))
+ 2ω2

A

(
∇ · u −

im
r sin θ

uϕ
)]

es, (22)
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where ez = cos θ er − sin θ eθ is the unit vector along the rotation
axis, es = sin θ er + cos θ eθ is the radial unit vector of the cylin-
drical coordinates and u =

(
ur, uθ, uϕ

)
. With this, we derive the

linearised MHD system, where the continuity equation (Eq. (2))
becomes

iωρ̃ +
1
r2 ∂r

(
r2ρ0ur

)
+

ρ0

r sin θ

[
∂θ (sin θuθ) − imuϕ

]
= 0. (23)

We write the momentum equation (Eq. (3)) as

i
A

ω
u +
B

ω
ez × u +

r sin θ
ω

[
imΛE

(
u · ∇Ω2

)
+

i
ρ0

(
u · ∇

(
ρ0ω

2
A

))
+ 2iω2

A

(
∇ · u −

im
r sin θ

uϕ
)]

es

+
r sin θ
ω2

[
A (u · ∇Ω) + mω2

Aω
(
∇ · u −

im
r sin θ

uϕ
)]

eϕ

= −∇W̃ −
∇ρ0

ρ0
W̃ +

ρ̃

ρ0
g0 − ∇Φ̃, (24)

with
g0 = ∇P0/ρ0 = −∇Φ0 + γc (25)
the background effective gravity. We recover γc =
1
2 Ω2∇(r2 sin2 θ) the centrifugal acceleration, introducing
non-spherical perturbations of the hydrostatic background. They
are neglected here as already argued before. We introduce

ΛE(r, θ) =
ω2

A

Ωω
, (26)

the wave’s Elsasser number, and

W̃(r, θ) =
P̃ + P̃m

ρ0
+ Φ̃, (27)

the sum of the normalised total pressure fluctuations (gas pres-
sure fluctuation P̃ and magnetic pressure fluctuation P̃m =(
BT

0 · b
)
/µ) and the gravitational potential fluctuation. We intro-

duce the coefficients
A(r, θ) = ω2 − m2ω2

A (28)
and
B(r, θ) = 2

(
Ωω + mω2

A

)
. (29)

We rewrite the equation of energy (Eq. (4)) in the adiabatic limit
as

iω
 ρ̃
ρ0
−

P̃
Γ1P0

 =
N2

g0
ur, (30)

where

N2(r) = g0

(
1
Γ1

d ln P0

dr
−

d ln ρ0

dr

)
, (31)

is the squared Brunt-Väisälä frequency. Finally, the Poisson
equation (Eq. (5)) becomes

∇2Φ̃ = 4πGρ̃. (32)
From now on, we adopt the Cowling (1941) approximation
in which the wave’s gravitational potential fluctuation Φ̃ is
neglected. Thus, we do not solve Eq. (32) and neglect the term
∇Φ̃ in the momentum equation (Eq. (24)). Furthermore, because
we study the dynamics of low-frequency MGI waves, we adopt
the anelastic approximation in which magneto-acoustic waves
are filtered out. This means that the term iωρ̃ can be neglected in
the continuity equation (Eq. (23)) and Eqs. (24)) and (30) can be
simplified by neglecting the terms (∇ρ0/ρ0)W̃ and (1/Γ1)P̃/P0,
respectively.

3. Magnetic TAR in the differentially rotating case

By adopting the approximations introduced in the previous
section, we write the three components of the momentum equa-
tion (Eq. (24)) as

iAur − B sin θuϕ + ir sin2 θ
[
mΛE

(
u · ∇Ω2

)
+

1
ρ0

(
u · ∇

(
ρ0ω

2
A

))]
= −ω∂rW̃ + iN2ur, (33)

iAuθ − B cos θuϕ + ir sin θ cos θ
[
mΛE

(
u · ∇Ω2

)
+

1
ρ0

(
u · ∇

(
ρ0ω

2
A

))]
= −

ω

r
∂θW̃, (34)

iAuϕ + B cos θuθ + B sin θur +
A

ω
r sin θ (u · ∇Ω)

=
imω

r sin θ
W̃. (35)

The standard TAR imposes mainly two frequency hierar-
chies. The first one 2Ω � N comes from the fact that we work
in strongly stratified regions, which is the case for many stellar
radiative zones. The second ω � N comes from focusing on the
low-frequency regime. We now build the generalised framework
for the TAR in magnetic differentially rotating stars. In this case,
in addition to the two abovementioned hierarchies, we also have
A � N2 and B � N2 since ωA � N. Therefore, the radial
momentum equation (Eq. (33)) can be simplified to

N2ur + iω∂rW̃ = 0. (36)

Moreover, the strong stratification implies that the radial compo-
nents of the Coriolis force and the Lorentz force are dominated
by the buoyancy force. From this, we obtain a mostly horizon-
tal velocity field (|ur | � {|uθ|, |uϕ|}). Therefore, the latitudinal
momentum equation (Eq. (34)) can be reduced to

i
(
A + sin θ cos θ

(
ΛEm∂θΩ2 + ∂θω

2
A

))
uθ − B cos θuϕ =

−
ω

r
∂θW̃. (37)

Finally, the azimuthal momentum equation (Eq. (35)) can be
rewritten, for the same reasons, as(
B cos θ +

A

ω
sin θ∂θΩ

)
uθ + iAuϕ =

imω
r sin θ

W̃. (38)

As in the non-magnetic case (Lee & Saio 1997; Mathis 2009;
Dhouib et al. 2021a,b), we manage to decouple the radial and
the horizontal dynamics. In the radial direction the buoyancy
force balances the gradient of the total pressure fluctuations,
while in the horizontal direction, the Coriolis acceleration and
the Lorentz force tension counterbalance the horizontal gradient
of the total pressure. Therefore, by solving the system (36)–(38),
we can express the velocity field as a function of the normalised
pressure,

ur(r, x) = −i
ω

N2 ∂rW̃(r, x), (39)

uθ(r, x) = −i
ω

A

1
DM

1
r

1
√

1 − x2

[(
1 − x2

)
∂x + mνM x

]
W̃(r, x),

(40)
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uϕ(r, x) =
ω

A

1
DM

1
r

1
√

1 − x2

[(
1 − x2

) (
νM x −

(
1 − x2

) ∂xΩ

ω

)
∂x

+ m − m
1 − x2

x
1
A

(
mΛE∂xΩ

2 + ∂xω
2
A

)]
W̃(r, x),

(41)

where x = cos θ is the reduced latitudinal coordinate,

νM(r, x) =
B

A
= ν

ω2

A
+ 2m

ω2
A

A
(42)

is the magnetic spin parameter,

ν(r, x) =
2Ω

ω
(43)

is the standard rotation spin parameter, and

DM(r, x) = 1 − ν2
M x2 +

(
1 − x2

) x
A

[
∂xΩ

2 − ∂xω
2
A

]
(44)

is a coefficient depending on the rotation rate, on the Alfvén
frequency, and on their latitudinal gradient. We note that
these equations are singular at ω = 0, A = 0, x =
{±1, 0}, and DM = 0. The first two singularities are
potentially the hydrodynamic and hydromagnetic critical lay-
ers, where the waves can be damped (Booker & Bretherton
1967; Rudraiah & Venkatachalappa 1972). The first singular-
ity ω = 0 corresponds to a corotation resonance, which
is present in the hydrodynamic case (Booker & Bretherton
1967; Watts et al. 2003; Alvan et al. 2013; Astoul et al. 2021).
The second singularity, which appears only in the magnetic
case, adds two supplementary critical layers, ω = ±mωA,
thus called hereafter magnetic critical layers. They can lead
to MGI vertical trapping (Rudraiah & Venkatachalappa 1972;
Schatzman 1993; Barnes et al. 1998; Rogers & MacGregor
2010; MacGregor & Rogers 2011; Mathis & de Brye 2011).
This is a situation similar to those studied by Fuller et al. (2015)
and Lecoanet et al. (2017) in which MGI waves are converted
into Alfvén waves above a given critical field strength, pre-
venting them from forming a standing oscillation mode. The
difference is that we do not take into account any vertical
(poloidal) magnetic field in our work. The third singularity arises
at the poles and at the equator. Finally, DM = 0 is equiva-
lent to a Lindblad resonance in differentially rotating disks (e.g.
Goldreich & Tremaine 1979) but it is only an apparent singular-
ity (Ogilvie & Lin 2004). More details on this turning point for
the propagation of waves can be found in Sect. 5.5.

The above new theory generalises Mathis (2009) by tak-
ing into account axisymmetric toroidal magnetic fields and
Mathis & de Brye (2011) by accounting for general axisymmet-
ric Alfvén and rotation frequency distributions ωA (r, θ) and
Ω (r, θ) instead of a uniform ωA and a solid-body rotation
Ωs. Our derivations complete the pioneering general work by
Friedlander (1987, 1989) in geophysics, who studied MGI waves
with (ωA (r, θ) ,Ωs) and (ωA (r, θ) ,Ω (r, θ)), respectively. Com-
pared to these two earlier studies, we focused specifically on the
stratification-dominated regime relevant in stellar interiors for
which the TAR can be built and applied. It is also noteworthy that
we treated the case of deep spherical shells, while many previous
studies focused on the case of thin layers (e.g. Zaqarashvili et al.
2009; Heng & Spitkovsky 2009).

4. Dynamics of low-frequency MGI waves

In order to study the dynamics of low-frequency MGI waves,
we derive the MLTE for the normalised pressure. This equation
allows us to build seismic diagnostics of MGI waves by com-
puting the asymptotic frequencies as in Van Reeth et al. (2018),
Henneco et al. (2021), and Dhouib et al. (2021a,b).

4.1. JWKB approximation

Following Mathis (2009), we use the 2D Jeffreys-Wentzel-
Kramers-Brillouin (JWKB) approximation (Fröman & Fröman
1965) since we focus on rapidly oscillating waves along the
radial direction. In this case, we write the spatial structure of
the waves as

W̃(r, θ) =
∑

k

wωinkm(r, θ)
Aωinkm

k1/2
V;ωinkm

exp
[
i
∫ r

kV;ωinkmdr
] , (45)

u j(r, θ) =
∑

k

û j
ωinkm(r, θ)

Aωinkm

k1/2
V;ωinkm

exp
[
i
∫ r

kV;ωinkmdr
] , (46)

with j ≡ {r, θ, ϕ}, k the index of a latitudinal eigenmode, and
Aωinkm the amplitude of the wave. This approximation allows us
to rewrite the radial velocity (Eq. (39)) as

ûr
ωinkm(r, x) =

r2kV;ωinkm(r)ωkm(r, x)
N2(r)

wωinkm(r, x), (47)

so, the continuity equation (Eq. (23)) can be written as

1
ωkm

i
r sin θ

[
∂θ

(
sin θûθ

ωinkm

)
− imûϕ

ωinkm

]
=

r2k2
V;ωinkm

N2 wωinkm(r, x), (48)

where we neglect the terms 2
ρ0

r
ur and drρ0ur in front of the

dominant term ρ0∂rur since within the JWKB approximation the
highest order derivative term in the radial direction is the domi-
nant one.

4.2. Magnetic Laplace tidal equation (MLTE)

By inserting the horizontal components of the velocity (Eqs. (40)
and (41)) in the left-hand side of the continuity equation
(Eq. (48)), we get the magnetic Laplace tidal operator (MLTO),

L̃
magn.
ωinm =

1
ω
∂x

[
ω

A

1 − x2

DM
∂x

]
+

m
ωA

∂xΩ
1 − x2

DM
∂x +

m
ω
∂x

(
ωνM x
ADM

)
− m2 1

ADM
(
1 − x2) +

m2

A2

x
DM

(
mΛE∂xΩ

2 + ∂xω
2
A

)
, (49)

such that

L̃
magn.
ωinm

[
w

magn.
ωinkm

]
= −λ

magn.
ωinkm

(r)wmagn.
ωinkm

(r, θ) , (50)

where wωinkm are the magnetic generalised Hough functions and
λωinkm are the eigenvalues with dimension s2) linked to the radial
wave vector via the following dispersion relation deduced from
the left-hand side of Eq. (48),

k2
V;ωinkm (r) =

N2 (r) λmagn.
ωinkm

(r)

r2 · (51)
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Contrary to the standard case where we consider uniformly rotat-
ing non-magnetic stars, the eigenvalues and the Hough functions
are no longer independent of the radius. We also remark that the
MLTO is invariant with respect to the sign of the Alfvén fre-
quency ωA. With the dispersion relation (Eq. (51)), we differ-
entiate two wave regimes. The first one is the propagative one
(k2

V;ωinkm > 0) obtained in the stably stratified region (N2 > 0)
when λωinkm > 0 or in the convective region (N2 < 0) when
λωinkm < 0. The second regime is the evanescent one (k2

V;ωinkm <

0) obtained in the stably stratified region when λωinkm < 0 or in
the convective zone when λωinkm > 0. The magnetic TAR devel-
oped here is only applicable in stably stratified regions and it
assumes adiabatic oscillations, that is, we suppose that N2 = 0
in convective zones. Thus, we focus only on propagative waves
in stably stratified regions. In the non-magnetic case (ωA = 0),
the MLTO (Eq. (49)) reduces to the hydrodynamic generalised
Laplace tidal operator in the case of differential rotation derived
by Mathis (2009),

L̃ωinm =
1
ω
∂x

[
1
ω

1 − x2

D̃
∂x

]
+

m
ω3 ∂xΩ

1 − x2

D̃
∂x

+
m
ω
∂x

(
νx
ωD̃

)
−

m2

D̃ω2 (
1 − x2) , (52)

with

D̃ = DM |ωA=0 = 1 − ν2x2 + νx
(
1 − x2

) ∂xΩ

ω
· (53)

4.3. Asymptotic seismic diagnosis

The dispersion relation (Eq. (51)) is not yet suitable for astero-
seismic diagnosis because the radial wave number is not explic-
itly expressed as a function of the wave frequency. However, the
eigenvalues λωinkm can be expressed as a function of the wave fre-
quency and the dimensionless eigenvalues. In this case, it is nec-
essary to assume that the local Doppler-shifted wave frequency
ω only depends on the radius.

4.3.1. Approximation on the differential rotation profile

As in Dhouib et al. (2021b), we have to perform a partial sep-
aration between the radial and latitudinal variables in the radial
velocity (Eq. (47)) to be able to derive the dimensionless MLTO.
In fact, the wave frequency in the rotating frame (Eq. (20))
depends on r and θ. This dependence comes from the differen-
tial rotation Ω(r, θ). Therefore, we assume that the rotation rate Ω
depends mainly on the radius Ω(r, θ) ≈ Ω(r) to obtain a wave fre-
quency that only depends on the radial coordinate ω(r, θ) ≈ ω(r).
In that case, the dimensionless MLTE can be expressed as

L
magn.
ωinm

[
w

magn.
ωinkm(r, θ)

]
= ω2(r)L̃magn.

ωinm

[
w

magn.
ωinkm(r, θ)

]
= −Λ

magn.
ωinkm(r)wmagn.

ωinkm(r, θ), (54)

with

L
magn.
ωinm = ω2∂x

[
1
A

1 − x2

DM
∂x

]
+ mω2∂x

(
νM x
ADM

)
− m2 ω2

ADM
(
1 − x2) + m2 ω

2

A2

x
DM

∂xω
2
A (55)

and

Λ
magn.
ωinkm(r) = ω2(r)λmagn.

ωinkm(r). (56)

In this way, the dispersion relation can be rewritten as

k2
V;ωinkm =

N2Λ
magn.
ωinkm

r2ω2 · (57)

The normalisation used here to obtain the dimensionless MLTE
is different from the one used in Mathis & de Brye (2011). These
authors normalise their tidal operator withA instead ofω2, since
A is independent of θ in their study (uniform angular veloc-
ity and Alfvén frequency). Here, A depends on r and θ, so we
design a new normalisation to be as general as possible in the
derivation of the dispersion relation (Eq. (57)). We achieve this
by performing an adequate partial variable separation. In this
way, no constraints need to be placed on the 2D Alfvén fre-
quency profile and on the corresponding field configuration to
derive seismic diagnosis.

4.3.2. Asymptotic frequency of low-frequency MGI waves

Following Van Reeth et al. (2018), Mathis & Prat (2019), and
Dhouib et al. (2021a,b), we derive the eigenfrequencies of low-
frequency MGI waves by applying the radial quantisation
(Unno et al. 1989; Gough 1993; Christensen-Dalsgaard 1997),∫ r2

r1

kV;ωinnkmdr = (n + 1/2)π, (58)

where r1 and r2 are the turning points of the Brunt-Väisälä fre-
quency N and n is the radial order. At this point, no further ana-
lytical work can be done without further assumptions. Therefore,
we have to solve Eq. (58) numerically in order to retrieve the
asymptotic frequency values.

5. Axisymmetric azimuthal magnetic field in
rotating intermediate-mass main-sequence stars

As a proof of concept, we apply the magnetic TAR to rep-
resentative stellar models of typical γDor and SPB stars
during their main-sequence (MS ) evolution because they
are gravity or gravito-inertial wave pulsators allowing us to
probe successfully mixing processes (Degroote et al. 2010;
Pedersen et al. 2021), rotation (Van Reeth et al. 2016, 2018;
Ouazzani et al. 2017, 2020; Pápics et al. 2017; Aerts et al.
2017, 2019; Saio et al. 2021) including centrifugal effects
(Henneco et al. 2021; Dhouib et al. 2021a), and potentially mag-
netic fields (Prat et al. 2019, 2020; Van Beeck et al. 2020).

5.1. Studied γDor and SPB stars

We use the stellar evolution code Modules for Experiments in
Stellar Astrophysics (MESA; Paxton et al. 2011, 2013, 2015,
2018, 2019) to compute non-rotating, non-magnetic stellar mod-
els for typical parameters used in asteroseismic modelling
of γDor and SPB stars, following Van Reeth et al. (2016),
Pápics et al. (2017), Buysschaert et al. (2018). We refer to the
controls section of the MESA inlist in Appendix A. We select
1.6 M� (γDor star) and 5 M� (SPB star) models near the zero-
age main sequence (ZAMS), near the middle of the main
sequence (mid-MS), and for the SPB model also near the TAMS.
With this choice, we ensure that the models occur in areas in the
Hertzsprung–Russell diagram where gravity modes are expected
to occur. We schematically show this region in Fig. 2, following
Appendix A in Aerts et al. (2010).
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Fig. 2. Main-sequence tracks of a M = 1.6 M� γDor star and a
M = 5 M� SPB star in the Hertzsprung–Russell diagram. The crossed
(respectively hatched) area roughly indicates the region where γDor
(respectively SPB) stars are expected to host gravity modes (Aerts et al.
2010, Appendix A). Yellow, blue, and purple stars indicate the chosen
models at ZAMS, mid-MS, and TAMS, respectively.

5.2. Studied magnetic topology

Intermediate-mass stars are descended from fully convective
PMS stars. Such a convective body is known to generate and
host dynamo-generated fields that might remain in the radia-
tive envelope once the convection ends (e.g. Mathis et al. 2011;
Arlt 2014; Neiner et al. 2015; Emeriau-Viard & Brun 2017).
Braithwaite & Spruit (2004) simulated the relaxation of stochas-
tic seed fields in a non-rotating radiative sphere. This can
be used to study the relaxation of dynamo-generated fields
once the plasma becomes stably stratified along the PMS
(Alecian et al. 2013). From these simulations, we deduce that
stochastic dynamo fields placed into a stably stratified region
might relax into large-scale, mixed poloidal and toroidal mag-
netic field configurations. The stability of such mixed poloidal
and toroidal fields has also been investigated. Purely toroidal and
purely poloidal magnetic configurations are highly unstable (e.g.
Tayler 1973; Markey & Tayler 1973; Braithwaite 2006, 2007).
However, the combination of toroidal and poloidal components
ensures the stability of the field (Tayler 1980). The topology and
energy of such a mixed (poloidal and toroidal) field has been
investigated numerically (Braithwaite 2008; Duez et al. 2010a),
and semi-analytically by Akgün et al. (2013). Duez & Mathis
(2010) provided a semi-analytic description of such stable mixed
toroidal and poloidal fields in the non-rotating axisymmetric
case:

B(r, θ) =
1

r sin θ

(
∇ψ(r, θ) ∧ eϕ + λ

ψ(r, θ)
R

eϕ
)
, (59)

where ψ is the magnetic stream function satisfying

ψ(r, θ) = µ0αλ
A(r)

R
sin2 θ , (60)

with µ0 the vacuum magnetic permeability, α a normalisation
constant fixed by the chosen magnetic-field amplitude, λ the
eigenvalue of the problem to be determined, R the radius of the
star, and

A(r) = −r j1
(
λ

r
R

) ∫ R

r
y1

(
λ

x
R

)
ρ0x3dx

− ry1

(
λ

r
R

) ∫ r

0
j1

(
λ

x
R

)
ρ0x3dx, (61)

with j1 (y1) the first-order spherical Bessel functions of the first
(second) kind (Abramowitz & Stegun 1972). Duez & Mathis
(2010) derived lowest energy confined equilibrium states with
λ the smallest positive eigenvalue such that B = 0 at the stel-
lar surface. Following Prat et al. (2019, 2020), Van Beeck et al.
(2020), Bugnet et al. (2021), and Mathis et al. (2021), we use
them to study the ability of asteroseismology to probe deep mag-
netic fields in stars. The resulting magnetic field configurations
along the evolution of γDor and SPB stars are represented in
Fig. 3.

In our study, we focus on the non-perturbative effect of
axisymmetric toroidal fields on MGI waves computed within the
TAR. We therefore chose here to extract the toroidal configura-
tion from the mixed configuration defined from Eq. (59) with the
following correspondences to match the Duez & Mathis (2010)
formalism:

B = B0

[
0, 0, b̃ϕ(r) sin θ

]
, (62)

with

B0 =
µ0αλ

R
(63)

and

b̃ϕ(r) =
λA
rR
· (64)

If the differential rotation remains weak the field will remain
stable and fossil-like. However, if a sufficient radial differential
rotation builds up, its shear will wind up the poloidal component
of the field into a supplementary toroidal field (Aurière et al.
2007; Gaurat et al. 2015; Jouve et al. 2020) that can become
unstable because of the Tayler instability. If an efficient dynamo
loop takes place, as first proposed by Spruit (2002) and iden-
tified by Petitdemange et al. (2022), the initial toroidal field can
be regenerated. In Petitdemange et al. (2022), this leads to a deep
confined equatorial toroidal field that can be mimicked as a first
rough approximation by Eq. (62) even if b̃ϕ(r) will be different
in this case because it is driven by the physics of the dynamo and
not of the initial MHD relaxation forming the seed fossil field.
More complex latitudinal dependences will be studied specifi-
cally in Sect. 6.

In Figs. 4 and 5, we represent the toroidal magnetic field
along the evolution of γDor and SPB stars with a chosen ampli-
tude B0 = 105 G. We can see that the magnetic field is the
strongest in the inner region of the radiative zone, whereas near
the surface it becomes very weak. Using Eqs. (9) and (62), we
derive the Alfvén frequency, which becomes independent of θ,

ωA(r) =
b̃ϕ
√
µ0ρ0r

, (65)

because of the sin θ dependence of the toroidal field. Here, we
assume that the magnetic permeability of the medium is equal to
the one in vacuum.
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Fig. 3. Magnetic field configurations: inside the 1.6 M� γDor star near ZAMS (a), at mid-MS (b), inside the 5 M� SPB near ZAMS (c), at
mid-MS (d), and near TAMS (e). Values are normalised by the maximum field amplitude, and mixed poloidal (black lines) and toroidal (colour
scale) magnetic fields are modelled using the formalism of Duez & Mathis (2010) (see our Eq. (59)). We focus here on the effects of the toroidal
component as discussed in the text.

Fig. 4. Fossil toroidal magnetic field profile at B0 = 105 G in the radia-
tive zone as a function of the normalised radius at different colatitudes
from near the pole (black) to the equator (yellow) for the 1.6 M� γDor
star model at ZAMS (top) and mid-MS (bottom). The dashed green line
indicates the radiative-convective interface.

5.3. Equations to solve: Uniform rotation case

Based on seismic constraints, the internal rotation of most
intermediate-mass MS stars highlights a weak core-to-surface
rotation contrast. Therefore, in this case, we can assume that the
rotation is (quasi-)rigid in their radiative zone (Kurtz et al. 2014;
Saio et al. 2015; Murphy et al. 2016; Aerts et al. 2017, 2019).
Such a (quasi-)rigid rotation state is coherent with the rotation
profiles resulting from the action of Maxwell stresses of unstable

Fig. 5. Same as Fig. 4, but for the 5 M� SPB model at ZAMS (top),
mid-MS (middle), and TAMS (bottom).

or dynamo-regenerated toroidal fields (Maeder & Meynet 2003;
Heger et al. 2005; Eggenberger et al. 2005; Fuller et al. 2019;
Petitdemange et al. 2022). In addition, given the topology of the
magnetic field that we consider here, the Alfvén frequency is
independent of the latitude (see Sect. 5.2). From now on, we
specifically focus on the case where the rotation is uniform and
the Alfvén frequency only depends on the radius. Thus, the
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MLTO simplifies to

L
magn.
νm =

ω2

A
∂x

 1 − x2

1 − ν2
M x2

∂x


+
ω2

A

mνM
1 + ν2

M x2(
1 − ν2

M x2
)2 −

m2(
1 − x2) (1 − ν2

M x2
)
 .
(66)

In the non-magnetic case, this operator reduces to the standard
Laplace tidal operator derived by Lee & Saio (1997)

Lstand.
νm = ∂x

[
1 − x2

1 − ν2x2 ∂x

]
+ mν

1 + ν2x2(
1 − ν2x2)2

−
m2(

1 − x2) (1 − ν2x2) . (67)

In the general case and specifically because of the differential
rotation, we indexed the operator and the variables by the wave
frequency in the inertial frame ωin because it is the only constant
frequency in that case. However, in the uniformly rotating case, it
is more convenient to use the spin parameter ν for the indexation.
In this specific case, we can derive the analytical expression of
the asymptotic frequencies in the rotating frame. Hence, from
Eq. (58)) we recover

ωnkm =
1

(n + 1/2)π

∫ r2

r1

N (r)
r

√
Λ

magn.
νnkm (r) dr, (68)

with

νn = νnkm =
2Ω

ωnkm
. (69)

We obtain here the same expression as in the non-magnetic case.
The only difference is that the eigenvalues are modified due to
the magnetic field so they are no longer constant but depend on
the radius. This expression is implicit because Λ

magn.
νnkm depends on

νn, which in turn depends on ωnkm. Therefore, Eq. (68) must be
solved numerically as explained in Sect. 5.6.

5.4. Frequency hierarchy

In order to ensure that we work within the validity domain of
the magnetic TAR, a set of frequency hierarchies must be ver-
ified. The most constraining one is N � 2Ω. In this perspec-
tive, we determine the maximal rotation rate that complies with
min

(
N/2ΩTAR

max

)
= β, with β a chosen threshold such that the

stratification dominates over the rotation. We found that the age
of the star and the maximal allowed rotation rate are inversely
proportional. We summarise the values of ΩTAR

max for the γDor and
SPB models at different life phases and for β = 10 in Table 1.

The spherical background assumption is fulfilled since
Ω/ΩK < 3%. In Fig. 6, we show the characteristic frequency
profiles in the case where these criteria are met. As is well
known, the radiative envelope gets bigger and the convective
core shrinks considerably as the star evolves. We find that the
Alfvén frequency is always lower or has the same order of mag-
nitude as the characteristic frequency of rotation 2Ω when the
amplitude B0 is smaller or around 105 G. This ensures that the
other hierarchies are also met if the low-frequency hierarchy
(ω � N) is fulfilled, which we check a posteriori.

Table 1. Maximal values of the rotation rate in which the (magnetic)
TAR is applicable, ΩTAR

max .

Star
Phase γDor SPB

near-ZAMS 22.19Ω� 11.38Ω�
mid-MS 15.56Ω� 3.94Ω�
near-TAMS . . . 1.18Ω�

Notes. Ω� ≈ 4.14 × 10−7 hz denotes the solar rotation.

5.5. Eigenvalues and Hough functions

The MLTE is an eigenvalue problem. To solve it numerically,
we use the Chebyshev collocation method, which was first
applied to solve the standard Laplace tidal equation by Boyd
(1976). As in Mathis & Prat (2019), Henneco et al. (2021), and
Dhouib et al. (2021a,b), we use an implementation similar to the
one used by Wang et al. (2016). We solve the MLTE for dif-
ferent radii r, spin parameters ν, rotation rates Ω and magnetic
field amplitude scaling factors B0. We focus on the impact of
the toroidal magnetic field on the eigenvalues and Hough func-
tions. As a representative example, we use the 1.6 M� γDor
model at the ZAMS to show these quantities in Figs. 7 and 8.
We obtain similar results with the other models. In these figures,
we can see the influence of the magnetic field when B0 = 105 G.
Figure 7 reveals that the eigenvalues are modified by the mag-
netic field, which introduces a strong radial dependence in the
inner region of the star (close to the interface between the radia-
tive envelope and the convective core). Close to the surface, the
influence of the magnetic field on the eigenvalues is very weak,
almost nonexistent. This is expected since the toroidal magnetic
field is weak far from the radiative-convection interface because
b̃ϕ (r)→ 0 when r → R (Figs. 4 and 5).

We use the convention mν > 0 (resp. mν < 0) for prograde
(resp. retrograde) modes. We can distinguish mainly two types of
solutions. The first ones are gravity-like solutions (k ≥ 0), which
exist in the non-rotating non-magnetic case. They correspond to
internal gravity modes (gmodes) modified by the Coriolis accel-
eration and the Lorentz force (MGI modes). The second type of
solutions are Rossby-like ones (k < 0), which exist only in the
rotating case when |ν| > 1. If they are retrograde and have pos-
itive eigenvalues, these solutions correspond to Rossby (quasi-
inertial) modes (r modes) modified by the Lorentz force and the
buoyancy (Saio et al. 2018). The third family of solutions are
those with negative eigenvalues. They correspond to evanescent
modes or rotationally stabilised convective modes. These modes
are out of the scope of this work since we focus here on the sta-
bly stratified regions only. We refer the reader to Lee (2019),
Lee & Saio (2020), and references therein for detailed discus-
sions of this third family of solutions.

In Fig. 8, we show the magnetic Hough functions for gravity
like-solutions (retrograde sectoral gmode with {k = 0,m = −1})
and Rossby like-solutions (r mode with {k = −2,m = −1}).
The yellow curve represents the Hough functions at the surface
of the star, which is nearly the same as in the non-magnetic
case due to the weak surface magnetic field. The behaviour of
these eigenfunctions changes the most in the inner regions (blue
curve). More specifically, the magnetic Hough functions migrate
inwards, towards the equator (x = 0), causing a narrowing of
their overall shape. Furthermore, the gravity like-solutions are
trapped near the equatorial plane in the regime (νM > 1). In fact,
regions where DM ≥ 0 correspond to regions where the gravity
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Fig. 6. Profiles of the Brunt-Väisälä (N), inertial (2Ω), and Alfvén (ωA) frequencies for the 1.6 M� γDor (top) and 5 M� SPB (bottom) models at
different evolutionary stages rotating at the rotation rates specified in Table 1 for B0 = 105 G.

like-solutions are propagative, whereas they become evanescent
where DM < 0. Therefore, when νM > 1, the gravity-like
solutions become trapped in an equatorial belt (Mathis 2009;
Mathis & de Brye 2011). In contrast to gravity-like solutions,
Rossby-like solutions are found in the whole spherical domain
and they have in general no tendency to be trapped in the equa-
tor but rather become concentrated towards mid-latitudes. The
Rossby-like solution {k = −1,m = −1}, however, is trapped
at equator due to its large eigenvalue (Saio et al. 2018; Saio
2018). Under the effect of the magnetic field, the trapping of
the gmodes becomes more efficient as the critical reduced colat-
itude xc = cos θc = |νM |

−1 (Mathis & de Brye 2011), which cor-
responds to the turning point of DM , decreases. Thus, as the
magnetic spin parameter νM increases, these modes tend to be
more confined around the equator.

5.6. Asymptotic period spacing pattern

The goal of this section is to assess the asymptotic period spac-
ing of the modes as a function of their period, which is a stan-
dard tool used to interpret oscillations spectra, of g and r modes
(Miglio et al. 2008; Bouabid et al. 2013; Van Reeth et al. 2015;
Aerts 2021). The period spacing is defined as the period differ-
ences between modes of consecutive radial orders n with the
same azimuthal order m and latitudinal index k (linked to the
latitudinal order ` = |m| + k (Lee & Saio 1997), which is used in
the non-rotating non-magnetic case),
∆Pnkm = Pn+1km − Pnkm. (70)

To evaluate this quantity, we first compute the asymptotic
frequencies by solving the Eq. (68) numerically as we dis-
cussed in Sect. 5.3. To do so, we use the method developed by
Henneco et al. (2021, more details on this method can be found
in their Appendix B) as in Dhouib et al. (2021a,b). We focus
our attention on three modes that are most often observed in
γDor and SPB stars (Pápics et al. 2017; Saio et al. 2018; Li et al.
2020): gmodes with {k = 0,m = 1} and {k = 0,m = 2}, and
r modes with {k = −2,m = −1}. The modes that we compute
here have radial orders between 20 and 80. The minimum order
is chosen to make sure that the Cowling approximation is met
since this approximation is only valid for high radial orders (see
for instance Dhouib et al. 2021b). Li et al. (2020) found that the
majority (more than 68%) of the observed modes in γDor stars
have radial orders between 20 and 70 (their Fig. 17).

Figures 9 and 10 show the magnetic period spacing pattern
with their standard non-magnetic counterpart. We find that, for
g modes, the spacing values decrease under the influence of the
toroidal magnetic field. This decrease is largest at the highest
radial orders (longest mode periods) for which the action of the
Lorentz force is strongest. For the r modes, the spacing values
decrease for short periods (high radial orders) and increase for
long periods (low radial orders). We also find that the toroidal
magnetic field does not have a distinctive signature on the period
spacing pattern, rather that it introduces a shift. Such an effect
can also be introduced by other physical effects, such as the cen-
trifugal acceleration or differential rotation. Using a perturbative
approach, Prat et al. (2019, 2020) and Van Beeck et al. (2020)
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Fig. 7. Spectrum of the Laplace tidal equation in the non-magnetic (top)
and magnetic (bottom) cases as a function of the radius for m = −1,
ν = 10, and Ω = 22.19 Ω� using the 1.6 M� γDor model at ZAMS. Blue
(respectively, orange) dots correspond to modes with even (respectively,
odd) Hough functions.

found that the signature of a fossil poloidal-toroidal magnetic
field in the period spacing morphology of g modes differs appre-
ciably from the signature due to rotation. In addition to the fre-
quency shifts that increase with increasing the radial order, they
found characteristic magnetic sawtooth-like features for high-
radial-order modes. We provide a few plausible explanations
for the absence of such features in the period spacings for the
few stellar models considered in this work. The features may be
the signature of the poloidal component of the magnetic field.
On the other hand, the features may have been introduced by
the limitation of the perturbative approach. Finally, and most
plausibly, the difference in saw-tooth features could be related
to dips in the period spacing patterns due to mode trapping
caused by chemical gradients left behind by the shrinking con-
vective core, as predicted theoretically by Miglio et al. (2008)
and Bouabid et al. (2013), found numerically by Pedersen et al.
(2018) and Michielsen et al. (2019), and observed in many γDor
(Mombarg et al. 2021) and SPB (Pedersen et al. 2021) stars.
Future dedicated analyses are planned to unravel these hypothe-
ses as follow-up studies of the current theoretical work.

5.7. Detectability of the magnetic signature

To quantify the theoretical detectability of the toroidal magnetic
field, we compare the frequency differences between asymptotic
frequencies calculated with the standard TAR and those calcu-

Fig. 8. Hough functions (normalised to unity) in the non-magnetic (top)
and magnetic (bottom) cases as a function of the horizontal coordinate
x at different radii from the radiative-convective interface (dark blue) to
the surface (orange) for m = −1, ν = 10, and Ω = 22.19 Ω� at B0 =
105 G using the 1.6 M� γDor model at ZAMS. Solid lines correspond
to gravity-like solutions (k = 0), and dotted lines correspond to Rossby-
like solutions (k = −2).

Fig. 9. Period spacing pattern in the inertial frame for g modes {k =
0,m = 1} computed using the standard TAR (red line) and the magnetic
TAR (blue line) with the 1.6 M� γDor model at ZAMS. Bottom panel:
the differences with respect to the standard TAR period spacing pattern.
The vertical green bar represents an average error of measured period
spacings for a sample of 40 γDor stars (Van Reeth et al. 2015).
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Fig. 10. Same as Fig. 9, bust for r modes {k = −2,m = −1}.

Fig. 11. Detectability of the toroidal magnetic field effect on the g
modes {k = 0,m = 1} (top) and the r modes {k = −2,m = −1} (bottom)
as a function of the radial order n using the 1.6 M� γDor model at
the ZAMS based on the frequency resolution of Kepler (indigo line),
PLATO (blue line), and TESS CVZ (brown line).

lated with the magnetic TAR for each radial order,

∆ f (n) = | fmagn.(n) − fstand.(n)|, (71)

to the one-year Transiting Exoplanet Survey Satellite Continu-
ous Viewing Zone (TESS CVZ; Ricker et al. 2015), the two-
year PLAnetary Transits and Oscillations of stars (PLATO;
Rauer et al. 2014, 2016), and the four-year Kepler (Borucki et al.
2010; Howell et al. 2014) frequency resolutions fres = 1/Tobs,

with Tobs the observation time. In this way, we are able to deduce
the range in radial orders ndetect,min for which the frequency dif-
ferences are expected to be detectable:

∆ f (n) > fres. (72)

We show these results in Fig. 11 for g {k = 0,m = 1} and
r {k = −2,m = −1} modes using the 1.6 M� γDor model with
B0 = 2×105 G located at the ZAMS. We can see that in this case
the magnetic effect is in principle detectable for all radial orders
using nominal TESS CVZ, Kepler and PLATO light curves. The
signature of the magnetic effect increases as the radial order of
the mode increases. To get a consistent idea on the magnetic sig-
nature, we explore a wide range of parameters within the valid-
ity domain of the magnetic TAR using our equilibrium models.
This exploration is summarised in Tables B.1 and B.2. We find
that magnetic fields with amplitudes up to about 104 G have no
detectable signature on g and r modes. A most important con-
clusion of our work is that, for all stronger magnetic fields, its
signatures are predicted to be detectable in observations.

High values of B0 can produce a magnetic critical layer for
which A = 0, which limits the formation of the modes. The
r modes undergo this resonance for lower B0 values than the
g modes (B0 ∼ 5 × 105 G for g modes while for r modes
B0 ∼ 105 G). Nevertheless, Rossby modes can still be detectable
for some radial orders at these amplitudes. For low rotation rates
(Ω/Ω� = 1.18), no resonant r modes were found. This trans-
lates into the opportunity to deduce strong constraints on the
free parameters of the field and the rotation to avoid a magnetic
critical layer. In particular, we find that an increase in the ampli-
tude of the magnetic field limits the propagation of some modes
because of the presence of the resonance (nmax decreases with
increasing B0). In addition, increasing the rotation rate of the
star allows us to increase the magnetic field amplitude, but the
rotation rates listed in Table 1 cannot be exceeded. We empha-
sise that the validity of the theory at low frequency decreases for
advanced evolutionary stages (TAMS) for some gmodes, where
the wave frequency gets closer to the Brunt-Väisälä frequency
such that the TAR is no longer reliable. This is potentially caused
by the fact that the radiative zone expands, leading to higher val-
ues of N as shown in Fig. 6. In the earlier evolutionary stages, the
validity tends to be fulfilled for the high radial orders (N/ω > 10)
but less so for low radial orders (n ∼ 20) since (N/ω ∼ 10) of
some gmodes. However, the TAR is still reliable in these cases.
We found it to be fulfilled (N/ω � 10) for r modes in all the
cases.

If strong fossil toroidal fields (B0 ≥ 105G) exist in MS stars,
they should readily be detectable from current TESS CVZ and
Kepler and future PLATO photometric light curves of g-mode
pulsators. For r modes, this is even the case for weaker magnetic
fields (B0 ∼ 6 × 104) since at higher amplitudes we encounter
magnetic critical layers (ω = ωA). The observational challenge
is to unravel the magnetic influence from other uncalibrated
astrophysical effects occurring in stellar interiors models, such
as the presence of rotational mixing and atomic diffusion, which
also induce signatures in predicted period spacing values (Aerts
2021; Mombarg et al. 2022).

The amplitudes of the magnetic fields whose signatures
we expect to be detectable using our magnetic TAR formal-
ism are in agreement with the ones found by Heger et al.
(2005), Maeder & Meynet (2005), Fuller et al. (2019), and
Petitdemange et al. (2022). These authors found the toroidal
magnetic configurations in rotating early-type stars to have
strengths between 104 to 106 G in their numerical simulations.
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Fig. 12. Hemispheric toroidal magnetic field profile at B0 = 105 G with
r0 = 0.55, d = 0.1, and nt = 7 as a function of the normalised radius
at different colatitudes from the north pole (dark red) to the south pole
(dark blue).

Therefore, we expect that these fields can be detected and thor-
oughly investigated using the theoretical magnetic TAR formal-
ism developed in this work, with the potential to unravel the
internal magnetism of stars throughout their MS lifetime.

6. More general magnetic configuration:
Hemispheric field

Depending on the history of the differential rotation of the star,
other magnetic topologies than the configuration adopted in the
previous section could emerge in the radiative zone. For instance,
a radial differential rotation is likely to produce a strong toroidal
field in the inner region of the radiative zone, whereas cylindri-
cal differential rotation is expected to produce a strong toroidal
field at the upper region of the stably stratified zone (Jouve et al.
2020). Zahn et al. (2007) found a toroidal field resulting from the
interaction of the differential rotation of a solar-like tachocline
and an initial dipolar poloidal fossil magnetic field. The resulting
field will be composed of two magnetic distributions localised
in the northern and southern hemispheres and vanishing at the
equator. Such magnetic configurations can be modelled by the
following field distribution:

Bϕ(r, θ) = B0 exp
[
−

(r − r0)2

2d2

]
sinnt (2θ), (73)

where B0 is the magnetic field amplitude, r0 is the radial posi-
tion of the centre of distribution, d is its radial extension, and nt
parametrises its latitudinal extension. Figure 12 shows the radial
profile of such a field at different colatitudes for B0 = 105 G,
r0 = 0.55, d = 0.1, and nt = 7. To get a sense of each of these
parameters, Fig. 13 represents the hemispheric field configura-
tions for different sets of parameters to assess their influence.
We can see that for odd values of nt we obtain an antisymmetric
field with respect to the equator (positive in the northern hemi-
sphere and negative in the southern one) whereas for even val-
ues of nt the field is symmetric (positive in the two hemispheres).
Increasing nt allows us to obtain two well-separated distributions
in latitude.

Using Eq. (9), we extract the Alfvén frequency, which
depends on r and θ in this case:

ωA(r, θ) =
1

r sin θ
Bϕ(r, θ)√
µ0ρ0(r)

. (74)

For antisymmetric fields, ωA is negative in the southern hemi-
sphere, but this has no impact on the MLTO (Eq. (49)) since it is

invariant with respect to the sign of the Alfvén frequency, as we
discussed it in Sect. 4.2.

To perform seismic diagnosis or any other applications such
as AM transport or tidal dissipation by MGI waves in this more
general case, we have to solve the general MLTE (Eq. (54)). We
use the representative stellar model of the typical 1.6 M� γDor
star rotating uniformly at the ZAMS as presented in Sect. 5.1.
To apply the magnetic TAR using this hemispheric configura-
tion, we have to choose carefully the parameters that define the
field and its amplitude because we have to verify the hierarchy
of the frequencies imposed by the magnetic TAR for the entire
domain of parameters, as well as avoid the magnetic critical lay-
ers (singularity when A(r, θ) = 0). The magnetic field that we
take should have an amplitude B0 that does not exceed 105 G
with a radial position r0 smaller than 0.35, a maximal radial
extension of 0.2, and a latitudinal extension sufficiently far from
the equator (nt ≥ 2).

By solving the MLTE using the method described in Sect. 5.5
within the validity of our formalism, we find that the eigenvalues
and the Hough functions are hardly modified compared to the
non-magnetic ones (Fig. 14). As a consequence, the detectabil-
ity of such a field is limited (within our validity domain). An
important first conclusions is that the detectability is intrinsi-
cally linked to the magnetic configuration. We show in Fig. 15
the effect of the magnetic distribution on the detectability of
the hemispheric magnetic field’s signature on the g modes {k =
0,m = 1} for different sets of parameters. We find that the
detectability increases with the radial position r0 (third and
fourth panels in Fig. 15) and extension d (first and second pan-
els in Fig. 15) of the distribution. This is caused by the fact that
the Alfvén frequency reaches a higher maximum far from the
centre because it is inversely proportional to the density which
decreases rapidly towards the stellar surface. Moreover, increas-
ing the parameter nt implies decreasing (second and third panels
in Fig. 15) the latitudinal extension and reduces the detectabil-
ity. Hence, the more the Alfvén frequency is localised, the less
detectable it becomes.

So even if hemispheric fields are present in intermediate-
mass stars, the detectability of such complex magnetic fields is
low, even in the most favourable cases. The magnetic topology
considered in Sect. 5.2 (b̃ϕ(r) sin θ) is more favourable in terms
of detectability because, in that case, the Alfvén frequency, ωA,
is distributed in all latitudes (independent of θ), whereas here
it is latitudinally localised. A simple physical interpretation fol-
lows: an equatorial field is always in the propagation region of
MGI modes that can be equatorially trapped; this is not the case
of hemispheric fields, which are potentially strongly localised at
given latitudes. This conclusion is only valid within the scope of
our validity domain.

To examine more extended and stronger magnetic fields we
should go beyond the magnetic TAR, in order not to limit to
its restricted domain of validity. Other than the limitation of the
TAR, another point to consider in future work is the role of the
magnetic critical layers, resulting in dissipated waves. An ade-
quate formalism and technique should be developed and adopted
to tackle such a resonant phenomenon because it prevents the
modes from occurring.

7. Discussion and conclusions

In this work we investigate the effects of an axisymmetric, purely
toroidal deep internal large-scale magnetic field of fossil ori-
gin or generated by a dynamo action on the oscillation frequen-
cies of gravito-inertial modes. We carry out a new generalisation
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Fig. 13. Hemispheric toroidal magnetic configuration (normalised by its amplitude) for different sets of parameters (the isolines are represented in
black).

Fig. 14. Same as Fig. 7 (top) and Fig. 8 (bottom) but for a magnetic
hemispheric field with B0 = 105 G, r0 = 0.2, d = 0.15, and nt = 2.

of the standard TAR that abandons the non-magnetic and the
uniformly rotating assumptions. The magnetic TAR developed
here takes the general differential rotation, Ω(r, θ), and axisym-
metric toroidal magnetic field, Bϕ(r, θ), into account in a non-
perturbative way.

As a first asteroseismic application of this general formal-
ism, we apply the magnetic TAR to representative stellar mod-
els of typical γ Dor and SPB stars during their MS evolution.
These gravity or gravito-inertial wave pulsators hold to potential
to probe mixing processes (Degroote et al. 2010; Pedersen et al.

2021), rotation (Van Reeth et al. 2016, 2018; Ouazzani et al.
2017, 2020; Pápics et al. 2017; Aerts et al. 2017, 2019;
Saio et al. 2021; Henneco et al. 2021; Dhouib et al. 2021a,b),
and magnetic fields (Prat et al. 2019, 2020; Van Beeck et al.
2020). We find that the toroidal magnetic field affects the theoret-
ical description of gravito-inertial modes, forming MGI modes.
The Laplace tidal equation is altered and gets a radial depen-
dence, propagating into solutions that are modified relative to
those of the standard TAR. More precisely, the magnetic field
implies a shift in the extrema of the Hough functions towards the
equator of the star. For equatorial, initially fossil azimuthal mag-
netic fields, which can be regenerated through potential dynamo
action, this effect becomes more apparent towards the inner
radiative region since the magnetic field is the strongest at the
convective–radiative interface and the weakest near the surface.
The effect is much less discernible for the hemispheric fields
since the Alfvén frequency is latitudinally localised. Indeed,
since most g modes are trapped in the equatorial belt, the modes
are only weakly impacted by a hemispheric field because it is
localised far from the equator.

We find that a fossil magnetic field reduces the period
spacing values for g modes for all radial orders. For r modes,
the magnetic field increases the period spacings for low radial
orders (long pulsation periods) and decreases for high radial
orders (short pulsation periods). The mode frequency shifts are
potentially detectable using high-precision space-based photom-
etry for most of the modes when the magnetic field is suffi-
ciently strong at the inner radiative region (of order 105 G). The
detectability of the toroidal magnetic effects using observations
from modern space photometry decreases with increasing stellar
age (decreasing Xc) for γ Dor and SPB stars. Similar effects were
found for a more general and complex magnetic configuration
with an amplitude of the order of 105 G. We find that the more
the field is localised, especially at latitudes far from the equator,
the smaller the signature of the magnetic field on the waves. The
amplitudes that we test here, within the validity domain of the
magnetic TAR, are in agreement with the latest modelling and
simulations of magnetic fields in the radiative zones of early-
type stars (e.g. Fuller et al. 2019; Petitdemange et al. 2022).

Even though a toroidal magnetic field is in principle
detectable, it does not have a distinctive signature in the period
spacing pattern. Rather, it introduces mode period shifts that
occur simultaneously with those produced by other physi-
cal effects, such as the centrifugal acceleration or differential
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Fig. 15. Effect of the magnetic distribution on the detectability of the
hemispheric magnetic field signature on the g modes {k = 0,m = 1} as
a function of the radial order n using the 1.6 M� γDor model at ZAMS
rotating at Ω = 22.19 Ω� and B0 = 105 G.

rotation. In addition, these effects are of the order of (or smaller
than) the effects of other stellar physical processes in stellar mod-
els (e.g. rotational mixing, atomic diffusion, etc.). The degener-

acy among these astrophysical phenomena can mask the mag-
netic effect in forward asteroseismic modelling analyses. In
order to tackle this problem, work is being (Van Reeth et al.
2018; Dhouib et al. 2021a,b; Mombarg et al. 2022) and will be
done to improve the modelling of these processes, with the aim
to unravel and discern the different signatures. The inclusion of
magnetic effects deduced from oscillation frequencies will pro-
vide important observational constraints on the theory of stellar
interiors for early-type stars, which will subsequently lead to bet-
ter magneto-asteroseismic modelling.

In addition to the asteroseismic application, our new mag-
netic TAR theory opens the way to various applications in
stars and planets. One prominent example is the study of AM
transport induced by low-frequency MGI waves in differen-
tially rotating magnetic stars and planets. This allows us to
generalise the prescription developed by Mathis (2009), who
studied the action of the differential rotation on gravito-inertial
waves in non-magnetised radiative zones and its feedback on
the AM transport. Furthermore, the magnetic TAR can be used
to study the dissipation of stellar and planetary tides in rotat-
ing, magnetised, stably stratified regions. Stably stratified zones
in giant planets can be magnetised (Debras & Chabrier 2019;
Mankovich & Fuller 2021), and as such the magnetic TAR now
allows for the development of a new prescription of the dynami-
cal tide in non-convective zones. In this way, we can go beyond
the formalism developed by Ahuir et al. (2021), who tackled this
topic by assuming a non-rotating non-magnetised body. An addi-
tional possible next step of our work is to apply the magnetic
TAR to simulated toroidal magnetic configurations (Zahn et al.
2007; Jouve et al. 2020; Petitdemange et al. 2022) and compare
its signature and detectability with respect to the distribution of
the field.

Even though the toroidal configurations studied here are
unstable, we chose not to consider a complex helical field geom-
etry as a first step in constructing the magnetic TAR to unravel
the signature of magnetic fields on MGI waves. This is the
best road as we have shown that observational constraints on
the strength of the toroidal field can be deduced from modern
space data. Such an inference can then naturally guide theoret-
ical follow-up work via the study of the feasibility of carrying
out a new TAR generalisation with the inclusion of a poloidal
magnetic field. This would lead to a general magnetic TAR that
takes any mixed magnetic configurations into account in a non-
perturbative way while adhering to observed asteroseismic sig-
nals of stars.

Finally, another interesting perspective of this work is to go
beyond the magnetic TAR as was done by Valade et al. (2018),
who used a Hamiltonian ray-tracing method, and Asai et al.
(2015) (see also Asai et al. 2016; Lee 2018), who used general
series expansion on spherical harmonics to explore the impact
of different general magnetic field topologies on gravito-inertial
waves. Their formalism can be adapted to perform asteroseismic
modelling of observed stars.
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Appendix A: MESA controls inlist

In this appendix we report the control section of the MESA inlist
used to compute the stellar evolution models of the 1.6 M� and
5 M�, Z = 0.02 stars:

&controls

! starting specifications
initial_mass = 1.6 (GammaDor) and 5 (SPB) ! in Msun units
initial_z = 0.02
use_Type2_opacities = .true.
Zbase = 0.02

! stop criteria
xa_central_lower_limit_species(1) = ’h1’
xa_central_lower_limit(1) = 0.000001

!--------------------------------------- WIND
cool_wind_RGB_scheme = ’Reimers’
cool_wind_AGB_scheme = ’Blocker’
RGB_to_AGB_wind_switch = 1d-4
Reimers_scaling_factor = 0.2
Blocker_scaling_factor = 0.5
use_accreted_material_j = .true.
accreted_material_j = 0

!--------------------------------------- OVERSHOOTING
overshoot_scheme(1) = ’exponential’
overshoot_zone_type(1) = ’any’
overshoot_zone_loc(1) = ’any’
overshoot_bdy_loc(1) = ’any’
overshoot_f(1) = 0.015
overshoot_f0(1) = 0.004

!--------------------------------------- MESH
mesh_delta_coeff = 0.7
varcontrol_target = 0.7d-3
predictive_mix(1) = .true.
predictive_superad_thresh(1) = 0.005
predictive_avoid_reversal(1) = ’he4’
predictive_zone_type(1) = ’any’
predictive_zone_loc(1) = ’core’
predictive_bdy_loc(1) = ’top’
dX_div_X_limit_min_X = 1d-4
dX_div_X_limit = 5d-1
dX_nuc_drop_min_X_limit = 1d-4
dX_nuc_drop_limit = 1d-2

/ ! end of controls namelist
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Appendix B: Additional tables

Table B.1. Detectability of the signature of toroidal magnetic fields in the modelled 1.6 M� γDor star model during MS evolution for three modes
at different rotation rates, Ω, and magnetic field amplitude, B0. We also list the ranges of radial orders, n, and spin parameters, ν.

mode Evolution phase Ω B0 n ν ∆ fmax ndetect,min ∆ fmax/ fres ndetect,min ∆ fmax/ fres ndetect,min ∆ fmax/ fres
k m [Ω�] [c/d] [G] (min) (max) (min) (max) [c/d] (TESS) (PLATO) (Kepler)

0 1 near 22.19 0.79 6 × 104 20 80 1.54 6.7 0.0015 . . . 0.57 73 1.11 37 2.23
ZAMS 2 × 105 20 80 1.54 6.2 0.02 20 7.54 20 15.1 20 30.19

6 × 105 20 37 1.48 2.49 0.11 20 39.2 20 78.43 20 156.87
15.56 0.56 6 × 104 20 80 1.04 4.62 0.0015 . . . 0.55 73 1.1 35 2.21

2 × 105 20 80 1.04 4.29 0.02 20 7.39 20 14.78 20 29.57
6 × 105 20 37 0.99 1.69 0.11 20 41.35 20 82.72 20 165.44

mid-MS 15.56 0.56 6 × 104 20 80 0.97 4.32 0.0009 . . . 0.34 . . . 0.67 60 1.34
2 × 105 20 80 0.96 4.16 0.01 20 3.87 20 7.74 20 15.48
6 × 105 20 76 0.94 2.89 0.11 20 41.72 20 83.44 20 166.88

0 2 near 22.19 0.79 6 × 104 20 80 0.8 3.35 0.003 73 1.12 37 2.23 20 4.46
ZAMS 2 × 105 20 80 0.79 3.1 0.04 20 15.12 20 30.23 20 60.47

6 × 105 20 37 0.76 1.25 0.21 20 79.6 20 159.2 20 318.41
15.56 0.56 6 × 104 20 80 0.55 2.32 0.003 73 1.1 36 2.21 20 4.43

2 × 105 20 80 0.54 2.15 0.04 20 14.84 20 29.67 20 59.35
6 × 105 20 36 0.52 0.85 0.21 20 76.36 20 152.73 20 305.45

mid-MS 15.56 0.56 6 × 104 20 80 0.51 2.17 0.0018 . . . 0.67 60 1.35 29 2.69
2 × 105 20 80 0.51 2.09 0.02 20 7.77 20 15.54 20 31.08
6 × 105 20 78 0.5 1.46 0.24 20 86.81 20 173.62 20 347.24

-2 -1 near 22.19 0.79 6 × 104 20 80 7.51 19.75 0.006 20 2.15 20 4.29 20 8.58
ZAMS 15.56 0.56 6 × 104 20 80 6.66 14.03 0.006 20 2.23 20 4.47 20 8.93

mid-MS 15.56 0.56 6 × 104 20 80 6.61 13.71 0.003 20 1.25 20 2.51 20 5.02
2 × 105 22 45 6.06 7.51 0.027 22 9.99 22 19.98 20 39.96
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Table B.2. Same as Table B.1, but for the modelled 5 M� SPB star.

mode Evolution phase Ω B0 n ν ∆ fmax ndetect,min ∆ fmax/ fres ndetect,min ∆ fmax/ fres ndetect,min ∆ fmax/ fres
k m [Ω�] [c/d] [G] (min) (max) (min) (max) [c/d] (TESS) (PLATO) (Kepler)

0 1 near 11.38 0.41 4 × 104 20 80 1.91 8.18 0.0005 . . . 0.18 . . . 0.35 . . . 0.71
ZAMS 105 20 80 1.91 7.95 0.003 69 1.22 37 2.43 20 4.86

5 × 105 20 27 1.81 2.36 0.036 20 13.05 20 26.1 20 52.2
3.94 0.14 105 20 80 0.59 2.6 0.003 68 1.19 31 2.39 20 4.77

5 × 105 20 24 0.56 0.65 0.042 20 15.29 20 30.59 20 61.17
1.18 0.04 105 20 80 0.16 0.68 0.004 54 1.51 26 3.02 20 6.05

5 × 105 20 23 0.15 0.17 0.047 2 17.17 20 34.35 20 68.69
mid-MS 3.94 0.14 105 20 80 0.54 2.41 0.0015 . . . 0.55 73 1.09 31 2.18

5 × 105 20 59 0.53 1.45 0.033 20 11.95 20 23.89 20 47.78
1.18 0.04 105 20 80 0.15 0.63 0.0019 . . . 0.68 57 1.36 27 2.71

5 × 105 20 50 0.15 0.33 0.036 20 13.33 20 26.67 20 53.34
near 1.18 0.04 105 20 80 0.04 0.17 0.008 27 3.07 20 6.14 20 12.3

TAMS 5 × 105 20 44 0.04 0.07 0.23 20 85.96 20 171.91 20 343.82
0 2 near 11.38 0.41 105 20 80 0.97 3.98 0.007 37 2.44 20 4.88 20 9.75

ZAMS 5 × 105 20 28 0.93 1.22 0.079 20 28.75 20 57.51 20 115.01
3.94 0.14 105 20 80 0.32 1.31 0.0065 35 2.39 20 4.77 20 9.54

5 × 105 20 24 0.3 0.35 0.066 20 24.19 20 48.38 20 96.75
1.18 0.04 105 20 80 0.09 0.37 0.007 33 2.6 20 5.19 20 10.38

5 × 105 20 25 0.09 0.1 0.078 20 28.6 20 57.2 20 114.42
mid-MS 3.94 0.14 105 20 80 0.29 1.22 0.0031 74 1.08 36 2.17 20 4.33

5 × 105 20 62 0.29 0.77 0.066 20 24.13 20 48.27 20 96.55
1.18 0.04 105 20 80 0.09 0.34 0.0032 69 1.17 34 2.34 20 4.68

5 × 105 20 53 0.08 0.19 0.061 20 22.4 20 44.79 20 89.58
near 1.18 0.04 105 20 80 0.02 0.09 0.013 20 4.82 20 9.64 20 19.27

TAMS 5 × 105 20 52 0.02 0.05 0.459 20 167.5 20 335 20 670.02
-2 -1 near 11.38 0.41 4 × 104 20 80 8.24 24.28 0.0018 . . . 0.67 64 1.34 20 2.68

ZAMS 105 20 31 7.93 10.18 0.005 20 1.97 20 3.94 20 7.88
3.94 0.14 4 × 104 20 79 6.08 9.15 0.0023 . . . 0.86 20 1.71 20 3.43

105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.18 0.04 4 × 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mid-MS 3.94 0.14 4 × 104 20 80 6.1 9 0.0012 . . . 0.45 . . . 0.9 . . . 1.8
105 40 63 6.1 6.98 0.006 20 2.28 20 4.55 20 9.1

1.18 0.04 4 × 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
near TAMS 1.18 0.04 4 × 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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