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Abstract: The functionality of electric cables, being the safety components of plants, has to be ensured.
In nuclear power plants, when they are in the reactor building, these cables can suffer γ irradiation
even in normal operating conditions. Their ageing behaviour needs to be well understood to be
able to determine a precise end-of-life criterion. As polymers are the most radiosensitive material
of the cables, this paper focuses on the ageing of this kind of material and, more specifically, on
the ageing of silane-crosslinked polyethylenes (XLPEs). XLPEs are now one of the most employed
polymers to manufacture cables. We performed irradiation under oxidative conditions of several
model silane-crosslinked polyethylenes with different additives and filler: at three different doses (0,
67, 220 and 374 kGy) for one dose rate (78 Gy·h−1) and at one dose (67 kGy) for three dose rates (8.5,
78 and 400 Gy·h−1). Modifications in the organic materials were followed by X-ray photoelectron
spectroscopy. This analytical technique allows following the evolution of the different chemical
products formed under irradiation. A better understanding at the atomic scale of the effect of
additives on the degradation of polymers is proposed as a function of the ageing conditions.

Keywords: formulated polyethylene; γ irradiation; radio-oxidation; antioxidants; flame retardant;
dose effect; dose-rate effect

1. Introduction

Whatever the industry, plants contain thousands of kilometres of electric cables of
any type and size. This is also true in the case of nuclear power plants (NPPs), for which
specific ageing has to be taken into account: the ageing under γ irradiation. Cables are
complex materials; each cable is composed of an electrical conductor, an insulator, a shield
and a sheath. Each layer behaves differently under irradiation, with polymer parts (sheath
and insulating layer) being the most vulnerable to radio-oxidation. Prediction of polymers’
end-of-life criterion still remains a major challenge in the NPPs’ safety [1–6].

To date, the most generally employed end-of-life criterion concerns the loss of me-
chanical property, often a sufficient condition to lose functional properties. Commonly,
the chosen one is a failure criterion of 100% residual maximum elongation [7]. However,
with the extension of the lifespan of nuclear power plants and since this type of criterion
requires a large amount of aged material to be estimated, studies are now focusing on other
parameters that would need a less important quantity of material but could still be related
to the mechanical properties of the polymer studied. Non-exhaustively, the following
parameters can be cited: electrical measurements [8,9], electron spin resonance [10–13],
oxygen consumption [14], mean average molar mass [15,16] and spectroscopic measure-
ments [17–20]. To ascertain the chosen end-of-life criterion, in-depth knowledge of the
ageing mechanism must be achieved.
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Keeping this objective in mind, the purpose of this article is to obtain a deeper knowl-
edge on polymers ageing in conditions representative of those encountered in NPPs (50 ◦C
and 0.1 Gy·h−1 in the reactor building during normal operations). To complete a se-
ries of studies [21–27], we decided to evaluate the ageing of different silane-crosslinked
polyethylenes (XLPEs) at the atomic scale. To understand the role of each additive on
the ageing mechanisms, formulated model XLPEs with an increasing number of added
additives and fillers were irradiated under oxidative conditions at three different doses for
one dose rate and at one dose for three dose rates. X-ray photoelectron spectroscopy (XPS)
was applied to determine the surface compositions of the XLPE polymers. This analytical
technique is widely used to identify and quantify specific carbon forms of polymers and is
complementary to other techniques, such as FTIR. Thus, in this current study, film surface
analyses were performed by XPS to highlight the different chemical moieties generated
during the γ irradiation.

2. Experimental Section
2.1. Materials

Synthesis of crosslinked polyethylene XLPE has already been presented in a previous
article [21]. The LLDPE chosen for this study has a density of 0.918 g·cm−3, a melting point
of 120 ◦C and contains a very small quantity of antioxidants (mainly BHT and Irganox
1076 [28]). Two antioxidants and one flame retardant were added to the XLPE during
its process:

• primary antioxidant Irganox 1076 (chemical formula given Figure 1A)

Energies 2022, 15, x FOR PEER REVIEW 2 of 14 
 

 

Keeping this objective in mind, the purpose of this article is to obtain a deeper 

knowledge on polymers ageing in conditions representative of those encountered in NPPs 

(50 °C and 0.1 Gy·h−1 in the reactor building during normal operations). To complete a 

series of studies [21–27], we decided to evaluate the ageing of different silane-crosslinked 

polyethylenes (XLPEs) at the atomic scale. To understand the role of each additive on the 

ageing mechanisms, formulated model XLPEs with an increasing number of added addi-

tives and fillers were irradiated under oxidative conditions at three different doses for one 

dose rate and at one dose for three dose rates. X-ray photoelectron spectroscopy (XPS) 

was applied to determine the surface compositions of the XLPE polymers. This analytical 

technique is widely used to identify and quantify specific carbon forms of polymers and 

is complementary to other techniques, such as FTIR. Thus, in this current study, film sur-

face analyses were performed by XPS to highlight the different chemical moieties gener-

ated during the γ irradiation. 

2. Experimental Section 

2.1. Materials 

Synthesis of crosslinked polyethylene XLPE has already been presented in a previous 

article [21]. The LLDPE chosen for this study has a density of 0.918 g·cm−3, a melting point 

of 120 °C and contains a very small quantity of antioxidants (mainly BHT and Irganox 

1076 [28]). Two antioxidants and one flame retardant were added to the XLPE during its 

process: 

• primary antioxidant Irganox 1076 (chemical formula given Figure 1A) 

• secondary antioxidant Irganox PS802 (chemical formula given Figure 1B) 

• flame retardant ATH (aluminium trihydrate, whose chemical formula is Al(OH)3). 

 

 

(A) (B) 

Figure 1. Chemical formula of antioxidants Irganox 1076 (A) and Irganox PS802 (B). 

The role of the primary antioxidant is to stabilise peroxide radicals [29], whereas the 

role of the secondary antioxidant is to reduce hydroperoxides [30]. Samples were fur-

nished by Nexans France under the form of tapes of about 500 µm thick. In this work, 

different formulations (with the same nomenclature as proposed in a previous paper [21]) 

were evaluated: 

• XLPE M1: XLPE “as received” 

• XLPE M2(Irg1076): XLPE + 1 phr of Irganox 1076 

• XLPE M3(IrgPS802): XLPE + 1 phr of Irganox PS802 

• XLPE M4(Irg1076-IrgPS802): XLPE + 1 phr of Irganox 1076 + 1 phr of Irganox PS802 

• XLPE M7(Irg1076-IrgPS802-ATH50): XLPE + 1 phr of Irganox 1076 + 1 phr of Irganox 

PS802 + 50 phr of ATH 

Figure 1. Chemical formula of antioxidants Irganox 1076 (A) and Irganox PS802 (B).

• secondary antioxidant Irganox PS802 (chemical formula given Figure 1B)
• flame retardant ATH (aluminium trihydrate, whose chemical formula is Al(OH)3).

The role of the primary antioxidant is to stabilise peroxide radicals [29], whereas
the role of the secondary antioxidant is to reduce hydroperoxides [30]. Samples were
furnished by Nexans France under the form of tapes of about 500 µm thick. In this work,
different formulations (with the same nomenclature as proposed in a previous paper [21])
were evaluated:

• XLPE M1: XLPE “as received”
• XLPE M2(Irg1076): XLPE + 1 phr of Irganox 1076
• XLPE M3(IrgPS802): XLPE + 1 phr of Irganox PS802
• XLPE M4(Irg1076-IrgPS802): XLPE + 1 phr of Irganox 1076 + 1 phr of Irganox PS802
• XLPE M7(Irg1076-IrgPS802-ATH50): XLPE + 1 phr of Irganox 1076 + 1 phr of Irganox

PS802 + 50 phr of ATH
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2.2. Irradiation Conditions

Accelerated ageing irradiations were performed at the UJV (Rez, Czech Republic),
equipped with 60Co source facilities. Depending on the required irradiation conditions,
two facilities were used: Panoza and Roza. In both of them, air flows inside the irradiator
chamber and the temperature is roughly constant (around 45 ◦C in the case of irradiations
performed in Panoza and around 21 ◦C for those performed in Roza). Formulated polymer
tapes were placed at a given and known distance from the source to obtain the desired
dose rate, while the dose was determined using alanine dosimeters, with the uncertainty
on these kinds of dosimeters being about 6.5%. Table 1 sums up the irradiation conditions
employed in this article. The dose effect was evaluated at a dose rate of 78 Gy·h−1 and
using three different doses. The dose-rate effect was evaluated using three different dose
rates, the common dose being equal to 67 kGy.

Table 1. Irradiation conditions employed in this work. Use of γ-rays under oxidative atmosphere.

Facility Panoza Panoza Roza

Irradiation temperature (◦C) 45 45 21
Dose rate (Gy·h−1) 8.5 78 400

Dose (kGy) 67 67, 220, 374 67

2.3. Characterisation Using XPS

X-ray photoelectron spectroscopy (XPS) analyses of XLPE samples were carried out
with a Thermofisher Escalab 250 XI spectrometer using a monochromatic Al Kα X-ray
source. The analysis depth of the XPS technique was assumed to be between 5–10 nm
depending on material density and electron kinetic energy. The instrument was calibrated
in energy to the silver Fermi level (0 eV) and to the 3d5/2 core level of metallic silver
(368.3 eV), the uncertainties on peaks energy being of 0.3 eV. The samples were analysed
with a dual-beam charge compensation flood gun due to the important charge effect.
The C-1s signal was used to correct the charge effect; the C-C/C-H component from the
XLPE on C-1s spectra was fixed at 285.0 eV. The analysis zone was a 900 µm diameter
spot for the monochromatic source. The pass energy for overview and high-resolution
spectra was 150 eV and 20 eV, respectively. The commercial Avantage software was used to
perform data processing. For the fitting procedure, a Shirley background was used, and
the Lorentzian–Gaussian (L/G) ratio was fixed at 30% for the peak shape.

Sample handling and/or surface preparation can generate carbon surface pollution.
This surface pollution can present the same chemical forms as the radio-oxidative degra-
dation product of XLPE. Due to XPS high surface sensitivity, carbon surface pollution
can lead to incorrect quantification of the degradation products and/or oxygen content.
Therefore, in order to remove it, argon cluster cleaning using the commercial MAGCIS
ion gun was used prior to the XPS analysis. The etching conditions (etch time, cluster size
and energy) were obtained thanks to the unirradiated XLPE M1 sample. Soft Ar cluster
etching was performed until the minimum oxygen content was reached. Ar1000 clusters
with an incident energy of 6 keV were used for cleaning. After pollution removal, the C-1s
spectrum presents a characteristic polyethylene asymmetric C-C contribution (Figure 2A)
due to vibrational fine structure, as described by Beamson and Briggs [29,30]. The valence
band spectrum obtained (not shown) is also in good agreement (presence of two main C-2s
features at 13.8 and 19.0 eV) with the valence band of polyethylene, as presented in the
literature [31–33]. These measurements confirm that soft argon cluster etching preserves
the molecular structure of polyethylene, in opposition to classical argon ion etching (Ar+),
even at low energy. Argon cluster depth profiling was also employed to evaluate the
possible evaporation and/or diffusion of secondary antioxidant (Irganox PS802) following
the S atomic concentration with depth. Unfortunately, the information on the etched depth
remains qualitative, as the etching rate depends on a large number of parameters (ion
energy, ion flux, density of material, etc.) and can hardly be estimated.
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Figure 2. (A) XPS curve fitting spectra corresponding to C-1s spectra of XLPE M1 (non-irradiated
in red and irradiated at 374 kGy at medium dose rate in blue). Five fixed contributions were used
to fit the experimental spectra: (1) C-H at 285.0 ± 0.3 eV; (2) C-CO at 285.6 ± 0.3 eV; (3) C-O at
286.9 ± 0.3 eV; (4) C=O at 288.2 ± 0.3 eV; and (5) O-C=O at 289.5 ± 0.3 eV. (B) XPS curve fitting
spectra corresponding to S-2p spectra of XLPE M4(Irg1076-IrgPS802) (non-irradiated in red and
irradiated at 374 kGy at medium dose rate in blue). Three fixed contributions were employed to fit
the experimental spectra: (1) C-S at 163.4.0 ± 0.3 eV; (2) S=O at 165.9 ± 0.3 eV; and (3) SO2 and SO3

at 188.2 ± 0.3 eV for the S-2p3/2 level.

3. Results

Examples of the C-1s core-level curve fit procedure are presented in Figure 2A for
XLPE M1 non-irradiated in red and irradiated at 374 kGy at medium dose rate (78 Gy·h−1)
in blue. All the spectra are presented in the Supplementary Materials (Figures S1–S16).
A maximum of five fixed contributions were used to fit the experimental spectra for
irradiated samples [31]: (1) C-H at 285.0 ± 0.3 eV, (2) C-CO/CO-C=O at 285.6 ± 0.3 eV,
(3) C-O at 286.9 ± 0.3 eV, (4) C=O at 288.2 ± 0.3 eV and (5) O-C=O at 289.5 ± 0.3 eV.
Whatever the dose, the main contribution corresponds to the peak at 285.0 eV and is
representative of the XLPE polymer. For the XLPE C-1s contribution, the use of only a
single asymmetric lineshape rather than the use of a full (four peaks) vibrational structure
was chosen. These two approaches have been found equally effective [34]. The presence
of C-O, C=O and O-C=O components is consistent with previous XPS studies on oxidised
polyethylene [30,34,35]. These oxidised carbon chemical products are also coherent with
the radio-oxidation mechanism of polyolefin proposed by Rivaton et al. [36]. The addition
of the antioxidant Irganox PS802 and its evolution with irradiation conditions can be
followed by the acquisition of S-2p core levels, while for the antioxidant Irganox 1076, it
is more difficult, as it has no specific elements and/or carbon chemical forms compared
with irradiated XLPE. The XPS S-2p core-level spectra are presented in Figure 2B for XLPE
M4(Irg1076-IrgPS802) non-irradiated in red and irradiated at 374 kGy at a medium dose rate
in blue. One contribution is observed for the non-irradiated XLPE M4(Irg1076-IrgPS802),
while two additional contributions were necessary to fit the S-2p core-level spectrum
obtained on the irradiated XLPE M4(Irg1076-IrgPS802) sample. The low binding energy
S-2p contribution at 163.6 ± 0.3 eV (S-2p3/2 at 163.4 ± 0.3 eV and S-2p1/2 at 164.6 ± 0.3 eV)
is attributed at C-S-C [31,37,38], consistent with the chemical formula of Irganox PS802.
The two additional contributions are situated for S-2p3/2 and S-2p1/2, respectively, at
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165.9–167.0 eV for the second contribution and at 168.2–169.4 eV for the third contribution.
Their attributions are, respectively, sulfoxide S=O and sulfone SO2 or sulfonate SO3 [37,38].

Carbon, oxygen and sulphur atomic relative concentrations were obviously deter-
mined. All the XLPE of this study, being crosslinked with the vinyltrimethoxysilane and
XLPE M7(Irg1076-IrgPS802-ATH50) samples containing 50 phr of ATH, Si and Al atomic
concentrations in both materials, were also determined. Unfortunately, whatever the condi-
tions, the relative atomic concentration ([Si]/[Si + C] and [Al]/[Al + C]) of these elements
remained below 1 at.%, which means that no strong surface segregation is observed for
these two elements.

The results of the different relative quantifications obtained from the curve fitting
procedure for the different crosslinked polyethylenes are presented in Table 2 as a function
of dose rate and in Table 3 as a function of dose.

Table 2. Relative atomic ratio (at.%) obtained from curve-fitted XPS core-level spectra (C-1s, O-1s
and S-2p) for the five XLPE materials, non-irradiated and irradiated at 67 kGy. Irradiations realised
at three different dose rates, i.e., 8.5, 78 and 400 Gy·h−1, with γ-rays under oxidative atmosphere.
Cox refers to all oxidised carbon bonds, O-C=O, C-O and C=O.

XLPE M1 XLPE M2(Irg1076) XLPE M3(IrgPS802) XLPE
M4(Irg1076-IrgPS802)

XLPE M7(Irg1076-IrgPS802-
ATH50)

Dose rate
(Gy·h−1) - 8.5 78 400 - 8.5 78 400 - 8.5 78 400 - 8.5 78 400 - 8.5 78 400

[Otot]/[Otot+Ctot] 3.1 5.5 5.2 2.7 9.9 10.3 9.7 9.7 5.1 13.5 12.9 9.1 9.1 11.9 8.6 8.2 9.4 9.1 8.7 7.9
[Stot]/[Stot+Ctot] - - 0.4 2.7 2.9 1.8 <1 2.3 1.9 1.5 1.1 1.6 1.5 2.6

[Cox]/[Ctot] 0 2.4 1.8 0.2 6.4 8.2 5.7 3.9 0.4 6.7 6.1 3.5 5.0 5.9 4.0 3.6 4.5 4.0 5.9 5.3
[O-C=O]/[Ctot] 0 1.1 0.6 0.1 2.1 2.7 1.5 1.5 0.4 3.9 3.5 2.2 2.1 3.3 2.6 2.1 2.1 2.2 2.1 2.4

[C-O,
C=O]/[Ctot]

0 1.3 1.2 0.1 4.3 5.5 4.2 2.4 0 2.8 2.6 1.3 2.9 2.6 1.4 1.5 2.4 1.8 3.8 2.9

[C-S]/[Stot] 100 18.7 20.8 53.0 100 23.4 38.7 79.4 100 35.9 45.6 80.9
[S=O]/[Stot] - - 0 22.0 24.1 11.4 0 35.3 44.1 8.9 0 33.9 35.8 10.8

[SO2,
SO3]/[Stot]

0 59.4 55.1 35.6 0 41.3 17.2 11.7 0 30.2 18.6 8.3

Table 3. Relative atomic ratio (at.%) obtained from curve-fitted XPS core-level spectra (C-1s, O-1s and
S-2p) for the five XLPE materials, non-irradiated and irradiated at 67 kGy, at 220 kGy and at 374 kGy.
Irradiations realised at medium dose rate (78 Gy h−1) with γ-rays under oxidative atmosphere. Cox

refers to all oxidised carbon bonds, O-C=O, C-O and C=O.

XLPE M1 XLPE M2(Irg1076) XLPE M3(IrgPS802) XLPE
M4(Irg1076-IrgPS802)

XLPE M7(Irg1076-IrgPS802-
ATH50)

Dose (kGy) 0 67 220 374 0 67 220 374 0 67 220 374 0 67 220 374 0 67 220 374

[Otot]/[Ctot] 3.1 5.2 8.2 10.0 9.9 9.7 4.9 10.3 5.1 12.9 12.2 13.9 9.1 8.6 12.4 14.7 9.4 8.7 12.9 14.9
[Stot]/[Ctot] - - 0.4 2.9 2.4 2.6 <1 1.9 2.5 2.8 1.1 1.5 1.9 2.6

[Cox]/[Ctot] 0 1.8 4.6 6.3 6.4 5.7 3.2 4.0 0.4 6.1 6.6 7.5 5.0 4.0 7.3 9.8 4.5 5.9 6.4 9.8
[O-C=O]/[Ctot] 0 0.6 1.9 2.7 2.1 1.5 0.7 1.0 0.4 3.5 3.6 4.2 2.1 2.6 3.3 5.1 2.1 2.1 2.8 4.5

[C-O,
C=O]/[Ctot]

0 1.2 2.7 3.6 4.3 4.2 2.5 3.0 0 2.6 3.0 3.3 2.9 1.4 4.0 4.4 2.4 3.8 3.6 5.3

[C-S]/[Stot] 100 20.8 15.6 12.5 100 38.7 23.6 13.1 100 45.6 27.2 13.1
[S=O]/[Stot] - - 0 24.1 16.3 9.7 0 44.1 29.0 18.0 0 35.8 27.4 10.8

[SO2,
SO3]/[Stot]

0 55.1 67.8 77.8 0 17.2 47.4 68.9 0 18.6 45.4 76.1

4. Discussion
4.1. Dose-Rate Effect

For sake of clarity, the relative quantifications from Table 2 are drawn on Figure 3 for
the evolution of (A) [Cox]/[Ctot], (B) [CO-C=O]/[Ctot] and (C) [Sox]/[Stot] atomic ratio as a
function of the dose rate. Cox refers to all oxidised carbon atoms, i.e., O-C=O, C-O and
C=O.
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Figure 3. Evolution as a function of dose rate for XLPE M1, XLPE M2(Irg1076), XLPE M3(IrgPS802),
XLPE M4(Irg1076-IrgPS802) and XLPE M7(Irg1076-IrgPS802-ATH50) of (A) Cox, which refers to all
oxidised carbon atoms (i.e., O-C=O, C-O and C=O) and of (B) O-C=O. Evolution as a function of dose
rate for XLPE M3(IrgPS802), XLPE M4(Irg1076-IrgPS802) and XLPE M7(Irg1076-IrgPS802-ATH50) of
(C) the different sulphur compounds (Sox1 refers to S=O and Sox2 refers to SO2 and/or SO3).

The effect of the dose rate can be observed on the ageing of all the materials at the
common dose of the evaluation of the dose-rate effect. The higher the dose rate, the lower
the oxidation of the material. This kind of evolution with dose rate has already been
evidenced by Decker and Mayo [39]; they have shown that the oxidation of pure polyolefin
under homogeneous irradiation conditions is a function of 1√

d
, with d being the dose rate

in Gy·s−1. This evolution is because irradiation is mainly a radical formation phenomenon
(PH

γ→ P◦ + H◦) and the higher the dose rate, the higher the concentration of radicals in a
reduced volume. The probability of a reaction of two radicals together prior to a reaction
of one radical with one O2 molecule is, thus, increasing with the dose rate, leading to a
decrease in material oxidation at a high dose rate. Moreover, these radicals are reacting
with O2 molecules at a rate more important than O2 diffusion in the polymer thickness;
this phenomenon leading to oxygen depletion inside the material. The effect is less evident
when evaluating the effect of dose rate on XLPE M2(Irg1076), XLPE M4(Irg1076-IrgPS802)
and XLPE M7(Irg1076-IrgPS802-ATH50). For these materials, the oxidation decrease is
also observed, but oxidised carbon concentration evolutions are scattered. This result is
temptingly ascribed to a competition between consumption of the antioxidants (which
initially contain O-C=O/C-O bonds) and oxidation of the polymer chains. For instance, at
a high dose rate, the polymer oxidation is low, as is antioxidant degradation. This absence
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of a marked effect of the dose rate has already been explained in previous articles [23,25]
by the fact that at the dose of the study (67 kGy), the formulated polymers still contain
antioxidants: the effect of dose rate is delicate to evidence when an irradiated polymer is
still protected by this kind of molecule.

The dose-rate effect is slightly easier to observe on the sulphur bonds evolution
when Irganox PS802 is present in the polymer because oxidised S contributions present
a more important variation relative to C-S-C contribution than the C-O, C=O and O-
C=O contributions relative to C-C contribution (C-C contribution proportion remaining
higher than 90 at.% for all samples). In an equivalent way to what is observed for carbon
contributions, for the lower dose rate, higher oxidation of the C-S-C is observed with an
increase in the proportion of the highest oxidation degree of the sulphur atom (S=O, S(=O)2
. . . ). Hence, whatever the XLPE under study, degradation of Irganox PS802 is also dose-rate
dependent. All other conditions being equivalent, oxidation of this secondary antioxidant
seems more important in XLPE M3(IrgPS802) than in XLPE M4(Irg1076-IrgPS802) and
XLPE M7(Irg1076-IrgPS802-ATH50). This observation is surprising because no effect of
the sole presence of the organic thiocompound has been evidenced on the oxidised carbon
contributions of the crosslinked polyethylene XLPE M3(IrgPS802). It might be deduced that
Irganox 1076 protects Irganox PS802. This result is surprising and has, thus, been confirmed
because the reaction generally occurring between both antioxidants is a regeneration of
Irganox 1076 thanks to the organic thiocompound [40].

Finally, it can be observed that the evolutions of sulphur atomic percentages are
equivalent for XLPE M4(Irg1076-IrgPS802) and XLPE M7(Irg1076-IrgPS802-ATH50). As it
has already been shown using high-resolution gas mass spectrometry, no effect of the ATH
presence is evidenced at the chemical level on the ageing of polymer materials [21].

4.2. Dose Effect

As for the dose-rate effect, the relative quantification results from Table 3 are sum-
marised on Figure 4 for the evolution of the (A) [Cox]/[Ctot], (B) [CO-C=O]/[Ctot] and (C)
[Sox]/[Stot] ratio as a function of dose. Cox refers to all oxidised carbon atoms, i.e., O-C=O,
C-O and C=O.

From the oxidised carbon evolution, it can be noticed that XLPE M1 was not oxidised
prior to irradiation, whereas this is not the case for XLPE M2(Irg1076), XLPE M3(IrgPS802),
XLPE M4(Irg1076-IrgPS802) and XLPE M7(Irg1076-IrgPS802-ATH50). The observation of
oxidised bonds in these last materials prior to irradiation can easily be attributed to both
antioxidants. In the case of XLPE M1, all the different oxidised carbon contributions of the
material increase with dose and then level off. This evolution has previously been observed
and can be attributed to the known tendency towards saturation commonly observed in
non-protected polymers irradiated at high doses and attributed to an equilibrium between
bonds destroyed and created upon further irradiation [41–43]. A similar kind of evolution
is evidenced for XLPE M3(IrgPS802); this polymer contains the secondary antioxidant
alone, and it can be assumed that Irganox PS802 is not efficient when inserted in the
material without any primary antioxidant. It can even be observed in Figure 4A,B that
whatever the dose, the oxidised carbon concentration is higher for XLPE M3(IrgPS802) than
for unprotected XLPE M1. This could imply a sensitisation of the polymer when organic
thiocompounds are mixed. The behaviour of XLPE M2(Irg1076) is completely different. The
initial O-C=O contribution (cf. Figure 4B), which can be attributed mainly to the presence
of Irganox 1076 (cf. Figure 1A), decreases up to almost zero at 220 kGy; this evolution is
temptingly attributable to the primary antioxidant consumption upon irradiation. If this
hypothesis is correct, the slight O-C=O carbon concentration increase between 200 and
374 kGy comes from the acceleration of the formation of highly oxidised defects when
Irganox 1076 is consumed. Total oxygen concentration follows the same trend as the O-C=O
ones, which implies that even at its expense, the protection conferred by this antioxidant
is efficient: no or little oxidation of the polymer chains happens when Irganox 1076 is
present. Evolutions of oxidised carbon are roughly the same for XLPE M4(Irg1076-IrgPS802)



Energies 2022, 15, 1631 8 of 13

and XLPE M7(Irg1076-IrgPS802-ATH50), whereby a slight increase at low doses and an
acceleration at higher doses is due to the progressive consumption of the antioxidant(s).
This evolution has already been observed during the study of radiolysis gases, particularly
on the evolutions of oxygen consumption and of carbon dioxide release [21].
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Figure 4. Evolution as a function of dose for XLPE M1, XLPE M2(Irg1076), XLPE M3(IrgPS802), XLPE
M4(Irg1076-IrgPS802) and XLPE M7(Irg1076-IrgPS802-ATH50) of (A) Cox, which refers to all oxidised
carbon atoms, (i.e., O-C=O, C-O and C=O) and of (B) O-C=O. Evolution as a function of dose for
XLPE M3(IrgPS802), XLPE M4(Irg1076-IrgPS802) and XLPE M7(Irg1076-IrgPS802-ATH50) of (C) the
different sulphur compounds (Sox1 refers to S=O and Sox2 refers to SO2 and/or SO3).

Comparison between materials is interesting too. Total oxidation is more important for
XLPE M1 and XLPE M3(IrgPS802) than for XLPE M2(Irg1076), XLPE M4(Irg1076-IrgPS802)
and XLPE M7(Irg1076-IrgPS802-ATH50). This observation is in concordance with the
principal component analysis (PCA) realised by Maléchaux et al. [23] on the same materials,
who observed that the most effective additive against radiolytic oxidative ageing is Irganox
1076. This confirms the protective effect of Irganox 1076 and maybe of Irganox PS802
if in mixture with a primary antioxidant. In this work, it has also been shown that the
evolution shapes of the oxidised bonds concentration are also different between polymers
as a function of dose. This observation has been explained by the absence of primary
antioxidant in XLPE M1 and XLPE M3(IrgPS802), leading to an important increase followed
by a tendency towards saturation with dose. When Irganox 1076 is present as in XLPE
M2(Irg1076), XLPE M4(Irg1076-IrgPS802) and XLPE M7(Irg1076-IrgPS802-ATH50), the
evolution of oxidized bonds with dose is showing a slow increase or even decrease. It can
even be remarked that the protection conferred by Irganox 1076 seems more efficient when
used solely than when used with the secondary antioxidant Irganox PS802. In fact, oxidised
carbon concentration decreases when the dose increases for XLPE M2(Irg1076), whereas
the concentration increases slowly at a low dose and then an acceleration is observed
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at higher doses for XLPE M4(Irg1076-IrgPS802) and XLPE M7(Irg1076-IrgPS802-ATH50)
when Irganox 1076 is used in combination with Irganox PS802. The first explanation that
comes to mind is an antagonistic effect between antioxidants, hindrance existing between
some antioxidants [44]. Nonetheless, this hypothesis can be ruled out by results from
the literature.

As expected, the different oxidation evolutions of the five XLPE materials can be linked
to the absence/presence of both antioxidants. The sulphur compound content evolution
has, thus, been evaluated as a function of dose in the case of XLPE containing Irganox
PS802. From Table 3, it can be observed that total sulphur atom concentration increases
with dose. This can be explained by the migration/evaporation of the thiodipropionate
antioxidant with time, which has already been evidenced in the literature [45]. This physical
phenomenon is also confirmed for our samples (see, for instance, Figure 5, where the S-atom
concentration is presented for XLPE M4(Irg1076-IrgPS802) at two doses (0 and 374 kGy at
the dose rate of 78 Gy·h−1) and as a function of the etching time, i.e., of the depth).
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Figure 5. Sulphur relative concentration evolution for XLPE M4(Irg1076-IrgPS802) at two doses (0 

and 374 kGy) and as a function of the etching time, i.e., of depth. 

Figure 5. Sulphur relative concentration evolution for XLPE M4(Irg1076-IrgPS802) at two doses
(0 and 374 kGy) and as a function of the etching time, i.e., of depth.

The total concentration of sulphur increases with dose at the surface, but the nature of
the S-bond also changes (cf. Figure 4C). Prior to irradiation, the S-atom is obviously only
linked with carbon, as it is attended for XLPE containing pristine Irganox PS802 (Figure 1B).
At 67 kGy, there is an important increase in S(=O) bonds that then decreases when the dose
further increases. Finally, groups containing SO2 and SO3 increase monotonously with
dose. The evolution of the S-bonds observed by XPS in this study is perfectly explained by
the mechanism proposed by Richaud et al. [46] and redrawn in Figure 6. Under irradiation,
Irganox PS802 is degraded, and the nature of the S-containing bonds evolve with the
degradation level.
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Figure 6. Schematic reactional mechanism of thioesters action, redrawn from Figure 1 of the article of
Richaud et al. [46].

At 374 kGy, non-oxidised C-S-C bonds represent only 13 at.% of sulphur in the polymer,
whatever the XLPE. Knowing that there is an agglomeration of the sulphur atom at the
surface of the polymer ([45] and Figure 5), it can be concluded that the concentration
of remaining non-oxidised Irganox PS802 is probably even lower in material thickness.
Furthermore, it has been shown in the literature [23] that localised degradation of the C-S-C
bond is not the sole possible degradation pathway of organic thiocompounds. Thus, it can
probably be concluded that Irganox PS802 is totally consumed at the dose of 374 kGy.

Oxidation behaviour comparison of XLPE M2(Irg1076) containing only Irganox 1076,
XLPE M3(IrgPS802) containing only Irganox PS802 and of XLPE M4(Irg1076-IrgPS802)
containing both antioxidants allows to have a better idea of the role and the effectiveness of
both molecules. It has already been evidenced that XLPE M2(Irg1076) is very well protected
by the primary antioxidant, that the polymer in XLPE M3(IrgPS802) seems sensitised by the
presence of Irganox PS802 and that Irganox M4(Irg1076-IrgPS802) is well protected by both
antioxidants, but with a lower efficiency compared with XLPE M2(Irg1076). Degradation of
Irganox PS802 is observed whatever the sample, but the underlying mechanism seems to be
without any benefice or even perhaps at the expense of the polymer. Secondary antioxidant
Irganox PS802 is also called a “heat stabiliser” [23], which means that its action is known
to be efficient when the temperature is relatively high, commonly about 100 ◦C. Results
presented in this article seem to simply indicate that Irganox PS802 is not efficient at the
temperature of the study, that is, between 21 ◦C and 47 ◦C. As 47 ◦C is the temperature
encountered in NPPs building reactors, it can be concluded that there is will no protection
conferred by the presence of this molecule on the ageing of the insulating part of the cables.

Finally, an interesting point to note is that the evolutions of carbon and of sulphur
atomic percentages are equivalent for XLPE M4(Irg1076-IrgPS802) and XLPE M7(Irg1076-
IrgPS802-ATH50) after normalisation to the organic content in the material. This confirms
one of the conclusions of our previous study [21], i.e., ATH has no effect at the chemical
level on the ageing of polymer materials.

5. Conclusions

In the context of the NPPs safety, the modifications of crosslinked polyethylenes XLPE
have been evaluated upon irradiation under oxidative atmosphere. Different XLPEs were
irradiated under conditions representative of the ageing in the building reactor, and the
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effect of additives and filler were assessed at the atomic scale by X-ray photoelectron
spectroscopy (XPS).

Polymeric materials were irradiated at 67 kGy and at three different dose rates. It was
observed that dose-rate effect is observable for XLPE that are not protected by Irganox 1076,
i.e., XLPE M1 and XLPE M3(IrgPS802), but is scattered for polymers containing this primary
antioxidant, i.e., XLPE M2(Irg1076), XLPE M4(Irg1076-IrgPS802) and XLPE M7(Irg1076-
IrgPS802-ATH50). The secondary antioxidant degradation is dose-rate dependent and is
more degraded when alone in the polymer, that is, without Irganox 1076. The interaction
between polymer chains and Irganox PS802 seems to be an antagonist because XLPE
M3(IrgPS802) is more degraded than XLPE M1, all other conditions being equal.

Similar XLPEs were also irradiated at different doses for one of the dose rates. It was
evidenced that polymers without a primary antioxidant behave as they are not protected,
while those with a primary antioxidant are protected. Surprisingly, XLPE M2(Irg1076),
which contains only Irganox 1076, seems less degraded than XLPE M4(Irg1076-IrgPS802)
and XLPE M7(Irg1076-IrgPS802-ATH50), which contain the secondary antioxidant too.
Degradation of Irganox PS802 has been followed thanks to the S-bonds evolution, and the
global oxidation of the molecule has also been evidenced but without any protection given
to the polymer or maybe a slight sensitisation. Moreover, at the highest dose of the study,
it is probable that there is no remaining antioxidant in the polymer, that is, neither the
primary nor the secondary antioxidant.

There is no characteristic band of the primary antioxidant Irganox 1076 using XPS,
and definitive conclusion on the evolution of this molecule is impossible solely with this
technique; comparison with other results on similar materials and with data from the
literature was of great help to determine the behaviour of this molecule during cable
ageing [13,47–49]. We did not succeed to observe any benefice of the presence of the
secondary antioxidant during the ageing of the cables; its role is probably on the contrary of
primary importance during manufacturing. Finally, whatever the conditions employed in
this study, ATH has no observable effect on the degradation of XLPE M7(Irg1076-IrgPS802-
ATH50) at the atomic scale.
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67 kGy and at three dose rates (i.e., 8.5, 78 and 400 Gy/h). Figure S2: C-1s XPS spectra of XLPE M1
irradiated at 78 kGy/h and at three dose (0, 67, 220, 374 kGy). Figure S3: C-1s XPS spectra of XLPE
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Figure S5: C-1s XPS spectra of XLPE M3(IrgPS802) irradiated at 67 kGy and at three dose rates (i.e.,
8.5, 78 and 400 Gy/h). Figure S6: C-1s XPS spectra of XLPE M3(IrgPS802) irradiated at 78 kGy/h
and at three dose (0, 67, 220, 374 kGy). Figure S7: C-1s XPS spectra of XLPE M4(Irg1076-IrgPS802)
irradiated at 67 kGy and at three dose rates (i.e., 8.5, 78 and 400 Gy/h). Figure S8: C-1s XPS spectra of
XLPE M4(Irg1076-IrgPS802) irradiated at 78 kGy/h and at three dose (0, 67, 220, 374 kGy). Figure
S9: C-1s XPS spectra of XLPE M7(Irg1076-IrgPS802-ATH50) irradiated at 67 kGy and at three dose
rates (i.e., 8.5, 78 and 400 Gy/h). Figure S10: C-1s XPS spectra of XLPE M7(Irg1076-IrgPS802-ATH50)
irradiated at 78 kGy/h and at three dose (0, 67, 220, 374 kGy). Figure S11: S-2p XPS spectra of XLPE
M3(IrgPS802) irradiated at 67 kGy and at three dose rates (i.e., 8.5, 78 and 400 Gy/h). Figure S12: S-
2p XPS spectra of XLPE M3(IrgPS802) irradiated at 78 kGy/h and at three dose (0, 67, 220, 374
kGy). Figure S13: S-2p XPS spectra of XLPE M4(Irg1076-IrgPS802) irradiated at 67 kGy and at three
dose rates (i.e., 8.5, 78 and 400 Gy/h). Figure S14: S-2p XPS spectra of XLPE M4(Irg1076-IrgPS802)
irradiated at 78 kGy/h and at three dose (0, 67, 220, 374 kGy). Figure S15: S-2p XPS spectra of XLPE
M7(Irg1076-IrgPS802-ATH50) irradiated at 67 kGy and at three dose rates (i.e., 8.5, 78 and 400 Gy/h).
Figure S16: S-2p XPS spectra of XLPE M7(Irg1076-IrgPS802-ATH50) irradiated at 78 kGy/h and at
three dose (0, 67, 220, 374 kGy)..
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