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Self-Consistent Ab-Initio Lattice Dynamics package (QSCAILD) is a python library that computes tem
ctive 2nd and 3rd order interatomic force constants in crystals, including anharmonic effects. QSCAILD’s
e quantum statistics of a harmonic model. The program requires the forces acting on displaced atoms of
h can be obtained from an external code based on density functional theory, or any other calculator. Th
AILD’s implementation, clarifies its connections to other methods, and illustrates its use in the case of th

ite structure.

ttice dynamics

UMMARY
QSCAILD
sions: GNU General Public License version 3.0
nguage: Python

es/libraries: MPI, NumPy, SciPy, spglib, phonopy,

lem: Calculation of effective interatomic force con-
mperature

d: Regression analysis of forces from density func-
upled with a harmonic model of the quantum canonical
rmed in an iterative way to achieve self-consistency of
trum

on

rmonicity is at the origin of basic phenomena in
sics, such as thermal expansion, displacive phase
ntrinsic thermal resistivity. In the quasi-harmonic
, the volume dependence of lattice vibrations is

ount to model thermal expansion and as a conse-
onon spectrum becomes temperature-dependent.
definition of phonons in an anharmonic poten-
ing quasiparticles with a temperature-dependent
o implies that even at constant volume their en-
nd on temperature. The last decade has seen a
provement in the quantitative description of such

ependent phonon properties in solids based on
ional Theory. A precursor of current methods is
stent Ab-Initio Lattice Dynamics (SCAILD) ap-
ed by Souvatzis et al. in 2008 [1], which is based
istent calculation of phonon frequencies using a

g author.
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collection of supercells in which atoms were displace
ing to the thermal mean square displacement in the
limit. Subsequent developments are the Temperatur
dent Effective Potential (TDEP) method [2], based
effective force constants to the results of ab initio mole
namics; and the Stochastic Self-Consistent Harmonic
imation (SSCHA) [3], which aims at mimizing the fre
of the system within a harmonic density matrix ansatz.
cently, other methods and implementations have appe
for instance Refs. [4–8]), showing that the field is b
broader and raising increasing interest. The approac
describe in this paper was first implemented in 2016 [9
been refined and improved since then. A similar pro
also described in Ref. [10]. It is directly related to th
SCAILD approach, the main difference being that i
approximation to the statistics of atomic displacement
the time. This is why we name it QSCAILD, for Quan
Consistent Ab-Initio Lattice Dynamics. Below we des
technical details of the implementation that we public
and show a selection of results obtained with the code

2. Methodology

2.1. Basic principle
For N ions with a harmonic HamiltonianH , let ρH

probability of finding the system in a configuration
each ion i is displaced in Cartesian direction α by u
probability is proportional, up to a normalization
exp
(
− 1

2 uTΣ−1u
)
, where Σ (iα, jβ) is the quantum cova

atoms i, j and directions α, β:[9]

Σ (iα, jβ) =
ℏ

2
√

MiM j

∑

m

ω−1
m (1 + 2nB (ωm; T )) ϵm

Here, Mi is the i-th atomic mass, ωm the phonon freq
mode m (comprising both wavevector and branch d
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freedom), ϵm the corresponding eigenvector and nB the Bose-
Einstein distribution at temperature T . The method obtains a
self-consistent
ing iterative pr
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set of interatomic force constants by the follow-
ocedure:

ix Σ is computed from the phonon frequencies
nvectors and used to generate a random set of
isplacements

{
u(n)

iα

}
, with iα indexing each atom

tion in the supercell and n denoting each given
onfiguration.

s
{
f (n)
iα

}
acting on each atom of the supercell gen-

this set of displacements
{
u(n)

iα

}
are used to fit

tomic force constants of a model potential, using
ares minimization.

s depicted in Fig. 1.

orkflow

a Python library that can perform two tasks:

from a set of interatomic force constants and a
ructure, compute the thermal displacement matrix
rate a number of displaced configurations.
forces on the atoms in those configurations have
puted from DFT, collect the results and generate
tive force constants.

two tasks, the user has to perform the DFT cal-
a workflow that is system-dependent and is thus

ted by the code. This scheme has to be iter-
vergence is reached. The program keeps track
ive iterations and can monitor the convergence.
code is written to use input from the Vienna Ab-

on Package [11, 12] and Phonopy [13] force con-
ormat, but it can be adapted to use another DFT
uses a modified version of the thirdorder script
tput is natively compatible with the ShengBTE

TE [15] software packages, so that thermal con-
lations including anharmonic renormalization of

s can be performed in a straightforward way. This
ustrated in Fig. 2.

ther methods

tween the different methods cited in the introduc-
en discussed in depth in the literature, in particu-
he connection between methods based on fitting
IMD and methods based on minimizing the free
a harmonic Hilbert space. Here we show that the
QSCAILD method is equivalent to the solution

, and thus holds the same properties, notably the
of the free energy. For each iteration, a sample of
is generated with density matrix ρH . The forces
and fitted to a harmonic force constant matrix Φ
es minimization of the quantity S =

∑
k,n

(
s(n)

k

)2

force constants compatible with the symmetries,
)
+
∑

lΦklu
(n)
l , in which n is a given configuration,

ed indices for atom and Cartesian coordinates.

Figure 1: Simplified sketch of the QSCAILD method.

STORAGE

Positions Forces Interatomic
force constants

(IFCs)DFT

WORKFLOW

Estimate
of IFCS

Phonon
calculator

Frequencies,
polarizations

Thermodynamic
integrator

Thermal
displacement

matrix Gau
sam

S

confi

Least-squares
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Linear
mixer
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current forces,
weights
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Figure 2: Workflow of the published implementation. This work
wrapped in a driver that takes care of the optimization of lattice par
atomic positions.
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The solution of the least squares problem satisfies ∂S
∂Φi j
= 0 for

each i, j, so

⇒ 2
∑

k,n
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n
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2
∑

k,n

s(n)
k

∂s(n)
k

∂Φi j
= 0

s(n)
k

∂
∑

lΦklu
(n)
l

∂Φi j
= 0

⇒
∑

n

s(n)
i u(n)

j = 0

(n) − f (n)
Hnewi

)
u(n)

j = 0.

is the Hamiltonian of the next iteration and
Φklu

(n)
l is the harmonic force. In the limit of an

r of configurations, we have for all i, j:

ˆ

R3N

[
( fi − fHnewi) u j

]
ρH (u)du = 0 (1)

onsistency is achieved, Hnew = H , and the gra-
ee energy with respect to force constants coeffi-
nse of the SSCHA is zero, according to equation
6]. Together with equation (17) of Ref. [17], this
fixed point of the iteration (i.e., if and when con-
hieved), the least-square fitting of forces is equiv-
ming the average of second derivatives of the po-
us also equivalent to the approach described in
ilar fit can be done using AIMD atomic config-
ich case the harmonic density matrix is replaced
nsity matrix, which does not contain zero point
turn is not limited to a harmonic form. In the case
squares fit such as what is done with the LASSO
minimization of the free energy is balanced with
nt to obtain a sparse set of force constants [18].
te that including the 3rd order force constants in
res equation does not change the self-consistent
e s(n)

k = f (n)
k +

∑
lΦklu

(n)
l +

∑
lmΨklmu(n)

l u(n)
m , we

∑

k,n

s(n)
k

∂s(n)
k

∂Φi j
=
∑

n

r(n)
i u(n)

j = 0

(n) − f (n)
Hnewi

)
u(n)

j +
∑

lm,n

Ψilmu(n)
l u(n)

m u(n)
j = 0.

rking with a harmonic density matrix, for each

ˆ

R3N

(
ulumu j

)
ρH (u)du = 0 (2)

ion (1) is recovered. For the third order part, we

∑

k,n

s(n)
k

∂s(n)
k

∂Ψhi j
=
∑

n

s(n)
h u(n)

i u(n)
j = 0,

∑

n

 f (n)
h +

∑

lm

Ψhlmu(n)
l u(n)

m

 u(n)
i u(n)

j

+
∑

l,n

Φhlu
(n)
l u(n)

i u(n)
j = 0.

and, similarly, the second term on the left-hand sid
dropped in the limit of an infinite number of configur
the above equation becomes:

ˆ

R3N

[(
fh − f (3rd)

Hnewh

)
uiu j

]
ρH (u)du = 0

More generally, and for the same reasons related to
metry of the density matrix, an expansion of fi to a
shows that, for fixed atomic positions, only even o
renormalize the second-order part while odd orders ren
the third order part of the effective Hamiltonian. Whe
atomic positions are not fixed by symmetry, their mo
due to odd-order anharmonicity can have an impact o
order effective force constants. These new average
can be computed by minimizing the average force, as
in Eq. (21) of Ref. [16]. A sample implementation is in
our code, although more complex workflows require th
write a more complete driver.. We also stress that here
sity matrix is computed solely based on the second-or
constants to stay harmonic, although in principle this
could be improved.

In spite of equation (2) showing that including only
order or both second and third-order terms in the fi
yield the same self-consistent effective harmonic fo
stants in the limit of an infinite number of configur
practice, and due to the necessarily finite number of
the inclusion of both second- and third-order terms
the stability and speed of convergence of the algorith
result is not necessarily intuitive since the number of u
in the system is clearly increased. In general, we reco
strongly overdetermined system with 5 to 10 times mo
than irreducible unknowns.

2.4. Potential and kinetic pressure

Below we show how we include the kinetic pressur
our static simulation and the relation with the quasi
approximation and with molecular dynamics.

A quantity that can be obtained from the DF
lations is the stress tensor for each configuration
contains only the derivative of the potential ener
obtain the value of the diagonal elements {u} in th
a potential with 2nd and 3rd order terms, and we
only the isotropic case for simplicity. When the
changes from V to V + ∆V , the positions of th
in the cell change from ri = req

i + ui to ri

(
1 + ∆3

3
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∆Ep =
1
2

∑

i j

Φi j

(
∆iu j + ui∆ j

)
+

1
6

∑

i jk

Ψi jk

(
∆iu juk + ui∆ juk + uiu j∆k

)

∑

i j

Φi j

(
req

i u j + uir
eq
j

)
+

1
6V

2
∑

i j

Φi juiu j

 +
1

18V

∑

i jk

Ψi jk

(
req

i u juk + uir
eq
j uk + uiu jr

eq
k

)
+

1
18V

3
∑

i jk

Ψi jkui

age of the diagonal elements of the stress tensor in the limit of infinite number of configurations is:
ˆ

R3N

∆Ep

∆V
ρH (u)du =

2
3V

ˆ

R3N
EpρH (u)du +

1
6V

ˆ

R3N

∑

i jk

Ψi jkreq
i u jukρH (u)du

term on the right-hand side of equation 4 corre-
partial derivative of the free energy with respect
he quasiharmonic approximation. The first term
nd side can be identified as a kinetic term using
irial theorem, which is missing if only the mean
rom DFT is taken, and reduces to the ideal gas
the limit of high temperature. This result can be
the case of an anharmonic and anisotropic poten-
he Cartesian directions α, β and the atomic index
in Ref. [19]):

αβ = ⟨σαβDFT ⟩ −
1

2V
⟨
∑

i

uαi f βi +uβi f αi ⟩ (5)

t version of the code only handles the diagonal
is stress tensor and thermal expansion is imple-
ice vectors along the cartesian directions or cubic
ctice, lattice parameters are iteratively modified
lated internal pressure equals the target pressure
n tolerance (of the order of kbar).

ing, mixing, and handling imaginary frequencies

ed for the SSCHA, one can reuse previously com-
rations with the help of a reweighting scheme.
ation u drawn at cycle B thus gets an associated
depends on the probability it would have to be
urrent cycle C based on the current thermal dis-
trix ΣC and on the probability it had to be drawn
ed on the matrix that was used to draw it ΣB:

w(u) =
PΣC (u)
PΣB (u)

(6)

hting scheme is implemented using the mem-
r, such that all configurations of cycles
ry
)⌋

to C are taken into account. We point out
e is formally valid only at constant volume, such
le it should not be used along with thermal ex-
es – although in practice a short memory can still
risk of slightly inaccurate converged values.

dle the imaginary frequencies that might show up
diate phonon spectra is a problem that dates back

to the original implementation of the SCAILD metho
time, it was chosen to switch them to the real axis with
modulus [1]. This option is implemented in the cod
also suggest another way to deal with those frequenci
is to arbitrarily fix them to a finite real value. Those op
available using the imaginary_freq parameter.

Finally, it is usually better to use a strong mixing
teratomic force constants to improve the stability of
consistency cycle, in particular close to phase transitio
small stochastic deviations might lead to strong div
We point out that this treatment is only a way to attain
point of the algorithm in certain cases. The obtaine
spectrum has physical meaning only if it is fully self-c
otherwise the persistent presence of imaginary frequ
the inability to find a fixed point only indicates a stro
hood of mechanical instability.

2.6. Symmetries and acoustic sum rules

In a first step, irreducible elements of the 2nd and
interatomic force constants are identified using the cry
metries. Within the matrix space that can be construc
those irreducible elements, we then identify eigenve
fulfill the acoustic sum rules using singular value de
tion, so that any force constants matrix generated by
nation of those eigenvectors respects the acoustic sum
construction. The operations that generate the full f
stants matrix from each of those final irreducible elem
then stored in sparse format. They are characteristic of
tal symmetry, so they can be used for compounds with
structure but different chemistry. This part of the code
run in parallel at present.

3. Example of SrTiO3

3.1. Convergence with respect to supercell size and wa
grid

We computed the phonon dispersions and equilib
tice parameters at 300 K for different supercells and
tor grid sizes, with convergence thresholds of ±0.2 GP
internal pressure and ±0.005 eV/A2 for the interatom
constants. The obtained spectra are displayed in Figs

4
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Figure 5: Temperature dependence of the phonon dispersion of cubi
obtained in the QSCAILD approach using the PBEsol exchange and
functional.

The exchange-correlation functional was set to PBEs
for a LDA calculation that is shown for the purposes
parison. The non-analytical correction is applied
ground-state Born charges and ion-clamped dielectric
but their temperature dependence could also be taken
count self-consistently [20]. One can see that the d
converges rather quickly within about 0.5 THz, and th
of a different exchange-correlation functional appears
stronger impact. All in all, we typically observe a spre
phonon frequencies between different calculations th
lates into a spread of estimated transition temperatur
order of 50 K to 100 K.

3.2. Temperature dependence and typical errors

In the following, calculations were performed with
supercell and a 30×30×30 wavevector grid. In Fig. 5 w
the phonon dispersion of SrTiO3 at different tempera
tained with the PBEsol exchange-correlation function
mal expansion is taken into account, with a threshold f
erage absolute pressure of 1 kbar. The temperature de
of the soft mode displays the typical Curie-Weiss beha
Fig. 6), which allows us to extrapolate the transition
ture to about 200 K. We also note that it is in good a
with the results obtained by Tadano and Tsuneyuki
same functional [4]. The average frequency squared v
standard deviations were estimated by restarting new
tions from the converged solutions, to obtain a total o
tions for each temperature. This also shows a typical
the phonon frequencies that can be interpreted in term
perature as a precision of the method of about 50 K t
for this particular system and convergence criteria.
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