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ABSTRACT

A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for
large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic
spin model with an ML-IAP. Together they represent a potential energy surface from which the mechanical forces on the
atoms and the precession dynamics of the atomic spins are computed. Both the atomic spin model and the ML-IAP are
parametrized on data from first-principles calculations. We demonstrate the efficacy of our data-driven framework across
magneto-structural phase transitions by generating a magneto-elastic ML-IAP for α-iron. The combined potential energy
surface yields excellent agreement with first-principles magneto-elastic calculations and quantitative predictions of diverse
materials properties including bulk modulus, magnetization, and specific heat across the ferromagnetic-paramagnetic phase
transition.

Introduction

Magnetism strongly influences thermomechanical properties
in a large variety of materials, such as single-element mag-
netic metals1, 2, steels3, high-entropy alloys4, 5, nuclear fuels
such as uranium dioxide6, magnetic oxides7, 8, and numerous
other classes of functional materials9. Despite the critical
role of magnetism in the aforementioned materials classes,
modeling efforts to study the interplay between structural and
magnetic properties have been notably lacking. Furthermore,
there are unanswered scientific questions regarding the signif-
icance of magnetism in matter that is shock-compressed10, 11

or exposed to strong electromagnetic fields such as in coher-
ent lights sources12, 13, pulsed power and high magnetic fields
facilities14, 15. Properties of interest include phase transitions,
thermal stability of magnetic defects, magneto-mechanical
couplings, but many of these subjects are challenging or pro-
hibited by state of the art computational tools.

A prime but simple example of the computational advance
made herein is the heat-capacity of α-iron displayed in Fig-
ure 1. The experimental measurement of the heat capacity Cp
diverges at the magnetic Curie transition, characteristic of a
second-order phase transition18. Without a scalable coupled
spin-lattice dynamics simulation environment, that properly
accounts for thermal expansion and magnetic contribution
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Figure 1. Constant pressure heat capacity of α-iron versus
temperature. The black triangles denote experimental mea-
surements16, 17, the red squares our simulation results, and
black dashed line indicates the experimental Curie transition
temperature. This illustrates the well-known ferromagnetic-
paramagnetic phase transition, where the heat capacity di-
verges at the Curie temperature.

to the pressure, reproducing the divergence of Cp (and of
other thermomechanical properties) at the critical point is not
possible.

Accurate numerical simulations are critical for enabling
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technological advances, as they shape our fundamental un-
derstanding of the underlying solid state physics that dictates
material behavior. Developing high fidelity models however
is challenging, because it necessitates capturing physical phe-
nomena that occur across several length and time scales. This
can only be achieved with sufficiently accurate multiscale
simulation tools19, 20, which is the focus of this work.

Classical molecular dynamics (MD) simulations21 provide
a useful framework for multiscale modeling by leveraging in-
teratomic potentials (IAPs) to represent the dynamics of atoms
on a Born-Oppenheimer potential energy surface (PES)22. By
utilizing massively parallel algorithms23 and long time-scale
methodologies24, MD enables bridging first-principles with
continuum-scale simulations25.

The absorption of machine learning (ML) techniques into
the creation of interatomic potentials has lead to classical
MD simulations that approach the accuracy of first-principles
methods. A large number of these highly accurate ML-
IAPs26–32 have been developed. In general, they are parame-
terized on training data (configuration energy, atomic forces)
from first-principles methods like density functional theory
(DFT)33 and utilize different flavors of ML model forms to
construct the PES. While they have proven to be useful for
large-scale simulations of materials properties34, 35, further
progress in multiscale modeling is hampered by the limitation
of ML-IAPs to non-magnetic materials phenomena. Even
with highly accurate ML-IAPs, state-of-the-art MD simula-
tions cannot reproduce the divergent behavior of Cp near the
critical point (Figure 1) because they fail to account for the
magnetic degrees of freedom36.

Coupling atomic spin dynamics with classical MD has been
pioneered by Ma et al.37–39. Herein, a classical magnetic spin
is assigned to each atom in addition to its position leading
to a 6N-dimensional PES (5N if the magnetic spin norms
are fixed), instead of the common 3N-dimensional PES in
classical MD:

E =
N

∑
i=1

ε ({rrri j,sssi}) , (1)

where rrri j = rrri−rrr j denotes the relative position between atoms
i and j, sssi the classical spin assigned to atom i, and N the num-
ber of atoms in the system. In most classical spin-lattice
calculations, the 6N-dimensional PES is constructed by intro-
ducing an atomic spin model on top of a mechanical IAP37.
For example, a common approach is to combine a distance-
dependent Heisenberg Hamiltonian with an embedded-atom-
method (EAM) potential39, 40.

While these prior approaches recover experimental proper-
ties on a qualitative level41, 42, their combined representation
of phononic and magnetic degrees of freedom is not suffi-
ciently consistent for providing quantitative predictions at the
level of first-principles results. More recently, Ma et al. devel-
oped a magneto-elastic IAP for magnetic iron based on data
from first-principles calculations43. However, this remained
an isolated attempt as there is no general methodology for

generating a magneto-elastic PES in a classical context that
enables large-scale spin-lattice dynamics simulations for any
magnetic material.

In this work, we overcome this methodological obstacle by
providing a data-driven framework for generating magneto-
elastic ML-IAPs that (1) provide a consistent representation
of both mechanical and magnetic degrees of freedom and (2)
achieve near first-principles accuracy. We refer to our new
class of IAPs as "magneto-elastic ML-IAPs" as they gener-
ate a consistent PES accurately representing the magnetic
degrees of freedom and the interplay between magnetic and
elastic phenomena. Our framework couples an atomic spin
model (Heisenberg Hamiltonian) with an ML-IAP and pro-
vides a unified magneto-elastic PES which yields the correct
mechanical forces on the atoms in the MD framework. The
Heisenberg Hamiltonian is parameterized with data from DFT
spin-spiral calculations at different degrees of lattice compres-
sion. In constructing the ML-IAP, we leverage the flexible
and data-driven spectral neighbor analysis potential (SNAP)
methodology32 which is trained on a database of magnetic
configurations generated using DFT calculations.

We apply our framework to generate a magneto-elastic
ML-IAP for the α phase of iron. We demonstrate that our
potential is transferable to an extended area of the phase dia-
gram, corresponding to a temperature and pressure range of
0 to 1200 K and 0 to 13 GPa (up to the α → γ and α → ε

transitions, respectively). The Curie temperature, which ex-
perimentally occurs at approximately 1045 K, lies within this
parameter space. After presenting our training workflow, the
"Results" section will probe the "quantum-accuracy" of our
magneto-elastic ML-IAP by performing magneto-static com-
parisons to first-principles measurements. We then stress
that our generated magneto-elastic ML-IAP can also be di-
rectly used in the LAMMPS package23 to perform magneto-
dynamic simulations that take into account both the thermal
expansion of the lattice and magnetic pressure due to spin dis-
order. This enables us to maintain a constant ambient pressure
throughout all calculations of thermomechanical properties,
consistent with conditions prevalent in experiments. As illus-
trated in Figure 1, our framework allows us to perform the
first pressure-controlled quantitative prediction of the criti-
cal behavior across a second-order phase transition within a
classical spin-lattice dynamics simulation.

Results
In this section we outline our advancements in magnetic ma-
terials modeling. We first present our training workflow and
subsequently assess our results by comparing both static and
dynamic properties in α-iron against first-principles calcula-
tions and experiments.

Figure 2 displays our training workflow. Further details to
each box in this diagram are presented as a subsection in the
"Methods" section. All atomic configurations in the training
set result from first-principles calculations performed with the
same DFT setup (same pseudo-potential and energy cutoff,
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Figure 2. Magneto-elastic ML-IAP training workflow. A
training set of DFT calculations is partitioned into those that
train the SNAP interatomic potential and those that train
the spin Hamiltonian, respectively. A non-magnetic inter-
atomic potential is fit to configuration energies and atomic
forces after the spin Hamiltonian contribution is subtracted
and is validated against magneto-elastic properties computed
in LAMMPS. Optimization of the spin Hamiltonian and inter-
atomic potential parameters is handled by DAKOTA.

similar k-point densities) as detailed in the "Methods" sec-
tion. In contrast to traditional force-matching approaches in
the development of classical IAPs, we treat the magnetic and
phononic degrees of freedom in the PES in a consistent and
unified manner, as indicated by the exchange of information
between spin Hamiltonian and SNAP potential parametriza-
tion steps. After parameterizing our atomic spin Hamiltonian
by leveraging DFT spin-spiral results, its energy, forces, and
stress contributions are subtracted from each atomic config-
uration in the first-principles training set. The ML-IAP is
then trained to reproduce the non-magnetic component of
the first-principles data. Finally, both components of the
magneto-elastic PES are recombined to construct a unified

magneto-elastic ML-IAP that is consistently trained on first-
principles data. Optimization is handled by the DAKOTA
software package44 in both fitting steps. For the SNAP com-
ponent of the potential, DAKOTA optimizes the radial cutoff
of the interaction along with the weights of each training data
set (energy and force weights) to generate different candidate
potentials. Those candidates potentials are then recombined
with the spin Hamiltonian and tested against selected objective
functions (mean-absolute errors (MAEs) in lattice constants,
cohesive energies, elastic constants, forces and total energies).
Table 1 summarizes the different groups of training data, the
optimal weights obtained for each of those groups, and the
corresponding energy and force MAEs. The target values
for the objective functions are based on both experimental
and DFT data, as outlined in Table 2. Objective function
evaluations are done within LAMMPS23.

Herein, the critical innovation that enables a leap forward
in predictive simulations of magnetic materials is this data-
driven workflow. Magnetic and phononic contributions to the
PES are taken into account explicitly and any miscounting
is avoided (for example, no double counting of the magnetic
energy or contribution to the pressure). The obtained magneto-
elastic ML-IAP can directly be used to run spin-lattice calcu-
lations in LAMMPS23, 40, 45.

Magneto-Static Accuracy
We first assess the quantitative agreement of our magneto-
elastic ML-IAP by comparing with DFT results where mag-
netic order and elastic deformations are coupled. This is
done by leveraging a particular subset of spin configurations
referred to as spin-spirals, for which the energy and corre-
sponding pressure can be evaluated from both DFT and clas-
sical magneto-elastic potential calculations. Details about
definition and computation of spin-spirals can be found in
the "Methods" section. Equation-of-state calculations (en-
ergy and pressure versus volume) are performed at the Γ

point (corresponding to the purely ferromagnetic state) and
for spin-spirals corresponding to q-vectors along the ΓH and
ΓP high-symmetry lines. The calculations at the Γ point rep-
resent the magnetic ground state and, hence, serve as a point
of reference for the spin spiral calculations. The geometric
orientation of the various computed spin spirals is visualized
in Figure 3. The first set (q = 0.01 along ΓH and q = 0.07
along ΓP) represents "long" spirals, close to the Γ point, the
second set (q = 0.1 along ΓH and q = 0.14 in ΓP) repre-
sents spirals with intermediate periodicity, and the last set
(q = 0.2 along ΓH and q = 0.21 along ΓP) is chosen close to
the borders of the magnetic training set (see red demarcation
lines in Figure 5 in the "Methods" section). The DFT results
are obtained by leveraging the generalized Bloch theorem,
whereas our classical spin-lattice calculations were performed
by generating the corresponding supercells (details given in
the "Methods" section).

Excellent agreement between our classical spin-lattice
model and DFT is achieved at the Γ point and for the two first
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Figure 3. Plots of the equation of state data from first-principles calculations (VASP computations) and our magneto-elastic
ML-IAP (LAMMPS computations) for seven different spin-spirals: a) Γ point b) vectors along the ΓH high-symmetry line, and
c) vectors along the ΓP high-symmetry line. Visualizations of the corresponding spin-spiral supercells and associated q-vectors
are shown to the right of and above each plot, respectively.

q-vectors on each high-symmetry line (q = 0.01 and q = 0.1
along ΓH, q = 0.07 and q = 0.14 along ΓP) in the pressure
range relevant for the α-phase of iron (up to 13 GPa which cor-
responds to the α → ε transition). At higher q-vector values,
the energy and pressure predictions of our atomic spin-lattice
model still agree reasonably well with the DFT calculations.
The observed deviation from the DFT results can be explained
by the limitations of our atomic spin-lattice model: as both
the pressure and the relative angle between neighboring spins
increase, fluctuations of the atomic spin norms become more
important. As discussed in the "Methods" and "Discussion"
sections, these are not included in the Hamiltonian of our
atomic spin-lattice model.

Magneto-Dynamic Accuracy
Turning now to spin-lattice dynamics calculations based on
our magneto-elastic ML-IAP (as detailed in the "Methods"
section), we assess the quantitative accuracy with respect to

experimental measurements of changes in magnetic and ther-
moelastic properties as the material is heated. In making this
comparison, it is necessary to choose which thermodynamic
state variables will be held fixed and which will be allowed
to vary with temperature. Spin-lattice dynamics algorithms
have been developed for simulations in a canonical ensemble
(CE) which preserves the number of particles, the volume,
and the temperature in the system39. Our first set of simu-
lation conditions, referred to as "fixed-volume conditions"
(FVC), hold the volume fixed while running dynamics in the
CE at specified values of the lattice and spin temperatures.
A disadvantage of this choice is that the pressure steadily in-
creases as heat is added to the material, in contradiction to the
experimental observations, which are conducted at constant
pressure. To this date, an isobaric spin-lattice algorithm has
not been developed (preserving the system’s pressure rather
than its volume). However, our methodology as implemented
in LAMMPS enables us to compute the magnetic contribution
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Figure 4. Plots a-f show magnetoelastic data obtained with our magneto-elastic ML-IAP. The green ( ), blue ( ), and red ( )
markers indicate the choice of equilibration conditions: "fixed-volume conditions" (FVC), "pressure-controlled conditions"
(PCC) and "pressure-controlled and magnetization-controlled conditions" (PCMCC), respectively. In all plots, experimental
data (extracted from five different references16, 17, 46–48) is denoted by the filled triangles (N), and the dotted black lines ( )
represent the experimental Curie temperature. The plots in a-b) show magnetization and specific heat comparisons between
different ensembles and experiments. The light blue region in (b) indicates the low temperature regime T .250 K where
quantum effects reduce the experimental heat capacity below the classical Dulong-Petit limiting value of 3R49. The data in plot
c) illustrates how the lattice expands with temperature. An inherent offset exists between our model (trained to match the DFT
data at 0 K) and experimental measurements. Plots d-f show (d) bulk modulus, (e) (c11− c12)/2 shear constant, and (f) c44
shear constant for the three aforementioned sets of conditions.

to the pressure. By alternating thermalization (coupled spin-
lattice dynamics in a CE) and pressure equilibration (frozen
spin configuration in an isobaric ensemble) steps, it is possible
to control the pressure of our spin-lattice system. Hence, we
refer to calculations performed in this pressure-controlled CE
as "pressure-controlled conditions" (PCC). In both conditions,
the temperature of the spin and lattice subsystems is set using
two separate Langevin thermostats (one acting on the spins,
the other on the lattice)39. Finally, this enables us to define a
third set of conditions: in addition to controlling the pressure,

the spin thermostat can be set to match a given magnetiza-
tion value (i.e., the experimental magnetization) rather than
a temperature. We refer to this as "pressure-controlled and
magnetization-controlled conditions" (PCMCC). Figure 6 in
the "Methods" section displays the different definitions of the
spin temperature and the evolution of the pressure for those
three different conditions.

In practice, FVC, PCC and PCMCC only differ in their equi-
libration conditions (control of pressure and / or magnetiza-
tion), as each of the corresponding simulations are performed
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in a canonical ensemble. We illustrate the predictive capability
of our magneto-elastic ML-IAP in α-iron for these equilibra-
tion conditions in Figure 4.a-f (FVC : , PCC : , PCMCC
: ). The agreement of the following magneto-elastic prop-
erties with experimental results is assessed: magnetization
(Figure 4.a), heat-capacity Cp (Figure 4.b), thermal expansion
(cell volume on Figure 4.c), bulk modulus (Figure 4.d), and
two shear constants, (c11− c12)/2 and c44 (Figure 4.e-f). The
"Spin-Lattice Dynamics" subsection of the "Methods" sec-
tion details the computation of those temperature-dependent
elastic constants.

We first work under the FVC ( ), keeping a constant vol-
ume and equal spin and lattice temperatures (Figure 4.c and
Figure 6). At constant volume, our model predicts a Curie
temperature of approximately 716K (Figure 4.a). Specific
heat calculations shown in Figure 4.b were performed by com-
puting the derivative of the internal energy, taking both the
lattice and magnetic contributions into account. The SNAP
contribution (lattice only) was first isolated and determined
to be a constant value of 26.4 Jmol−1K−1, in good agreement
with the Dulong-Petit value of 3R49. The magnetic contri-
bution offsets the total specific heat at low temperature, as
the magnetization steadily decreases (thus steadily increasing
the magnetic energy). Also at low temperature, deviation
between simulations and experiment (highlighted by the semi-
transparent blue region in Figure 4.b) occurs due to quantum
effects which reduce the experimental heat capacity below the
3R value. The FVC heat-capacity is determined at constant
volume, although we use the symbol Cp on the axis label
because the enhanced simulations described below are indeed
conducted at constant pressure conditions. In those constant
volume conditions, the pressure evolution with temperature
increase is substantial (up to 12 GPa, almost corresponding
to the α → ε transition, as can be seen on Figure 6), which
has a strong impact on the underlying elastic properties. Inter-
estingly, at the Curie temperature (here 716K), the increasing
pressure exhibits an inflection point, confirming the impor-
tance of spin fluctuations on the thermoelastic properties. The
temperature dependence of three elastic constants is shown in
Figure 4.d-f. For the bulk modulus, FVC does not agree well
with experimental data, especially at higher temperatures. The
FVC results tend to overestimate the stiffness, which most
likely arises from the build-up of thermal stresses in the ma-
terial. Under these conditions a nearly temperature-invariant
c44 response is predicted, which is in strong contrast to trends
in experiment. Despite these shortcomings, the FVC calcula-
tions actually match the experimental data for shear constant
(c11− c12)/2 relatively well throughout the entire tempera-
ture range. In general, the fixed volume assumption made
under FVC fails to account for thermal expansion, leading to
incorrect elastic predictions.

We correct this shortcoming of the model by working un-
der PCC ( ) which allows for thermal expansion. As can
be seen on Figure 4.c, the cell volumes are relaxed at each
finite temperature, until the pressure in the system drops to

approximately 0 GPa. As shown in Figure 4.a, the thermal
expansion incorrectly moves the onset of Curie transition to
approximately 536K. As the average interatomic distance in-
creases, the strength of the exchange interaction is lowered,
thus decreasing the transition temperature. The computed
heat-capacity (Figure 4.b) now corresponds to the derivative
of the free energy, and to an actual Cp measurement. However,
as in the FVC, the low agreement between the experimental
and computed magnetization evolution leads to an offset in
the initial Cp and does not match the Dulong-Petit value at low
temperature. The PCC fares better in reproducing the experi-
mental bulk modulus up to the Curie transition (no hardening
observed). PCC also does better in terms of the shear constant
c44, as it is able to reproduce the thermal softening seen in
experiments. However, for shear constant (c11− c12)/2, PCC
underestimates the extent of the thermal softening. Overall,
PCC does better than FVC in terms of elastic properties, but
deviates more in terms of magnetic predictions compared to
experiment. By shifting the Curie transition towards lower
temperatures, it reduces the range of validity of our elastic
calculations.

In order to improve the magnetic predictions of α-iron,
we finally consider the PCMCC scheme ( ). In addition
to allowing for thermal expansion similarly to the PCC, we
also set the spin thermostat temperature in order to reproduce
the experimental magnetization. Below the Curie transition,
the spin temperature increases more slowly than the lattice
temperature, while above the Curie transition, it increases
at the same rate as the lattice temperature (see Figure 6 in
the "Methods section"). Figure 4.a shows that the obtained
magnetization under PCMCC closely matches that of exper-
iment. Most prominently, the resulting Cp agrees well with
experiments (Figure 4.b). The Dulong-Petit value is recovered
at low temperature, and the Cp discontinuity at the Curie tran-
sition is well captured. The thermal expansion trend is also in
much better agreement with experiments, with very compara-
ble slopes between approximately 200 and 750K (Figure 4.c).
Up to approximately 600 K, PCMCC agree very well with
the experimental values for (c11− c12)/2 (Figure 4.e) but at
800-1000K a slight hardening is observed, which contradicts
experimental data. For the bulk modulus, PCMCC correctly
predicts the nearly linear trend up to the Curie temperature.

We note that in all three sets of conditions, a rapid increase
of about 25-30 GPa in the bulk modulus is observed as we
move across the critical point. This jump was found to be
strongly impacted by the underlying mechanical potential.
The prediction accuracy could possibly be improved by in-
cluding additional, finite-temperature objective functions in
the fitting procedure. The PCMCC prediction of the shear
constant c44 closely matches the PCC data. This tends to indi-
cate that this shear constant c44 is not impacted significantly
by the spin dynamics. For both pressure controlled conditions
(PCC and PCMCC) the maximum deviation from experiments
occurs near 700K and is approximately 14%.
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Discussion

We presented a data-driven framework for automated gener-
ation of magneto-elastic ML-IAPs which enable large-scale
spin-lattice dynamics simulations for any magnetic material
in LAMMPS. This framework was demonstrated by gener-
ating a robust magneto-elastic ML-IAP for α-iron. First we
investigated the magneto-static accuracy (energy and pres-
sure) with respect to equivalent first-principles calculations. It
was demonstrated that the generated magneto-elastic ML-IAP
(which represents the corresponding 5-N dimensional PES)
is in close agreement with first-principles magneto-elastic
calculations. This was achieved by properly partitioning the
PES into magnetic and mechanical degrees of freedom. Sub-
sequently, we investigated the magneto-dynamic accuracy
by comparing predicted finite temperature magneto-elastic
properties (magnetization, heat-capacity, thermal-expansion,
bulk modulus, and shear constants) across the ferromagnetic-
paramagnetic phase transition from spin-lattice dynamics sim-
ulations against data from experiments. In the course of this,
we analyzed the choice of simulation conditions (control of
pressure and magnetization) and highlighted the importance
of thermal and magnetic pressure contributions. This is an
important advance over traditional classical magnetization dy-
namics methods, where contributions from thermal expansion
or spin pressure due to disorder are negated. We demonstrated
that spin-lattice dynamics simulations of controlled pressure
and constrained magnetization yields qualitative agreement
with the measured magneto-elastic properties.

Our framework enables predictions of critical properties
across the second-order phase transition within classical spin-
lattice dynamics simulations, such as the divergent behavior
of the heat capacity around the Curie temperature (Figure 1
and 4.b). We provide a more comprehensive perspective on
our results by comparing them within the context of other
first-principles and classical methods. At low temperature,
first-principles methods can capture the electronic component
of the heat-capacity, up to the Dulong-Petit value49, 50 (the
difference with our model is highlighted by the blue area on
Figure 4.b). However, computing Cp across the Curie tran-
sition requires a dynamic treatment of large spin-ensembles
whose calculation is computationally expensive in terms of
first-principles methods. Classical IAPs do not explicitly treat
magnetic degrees of freedom and, thus, cannot reproduce
the effects of this magnetic phase-transition51. An empiri-
cal model which is based on first-principles calculations and
accounts for electronic, phononic and magnetic degrees of
freedom gave excellent agreement with the experimental Cp
curve of α-iron up to the Curie temperature52. However, this
model does not extend above the Curie temperature, does not
account for the pressure generated by the corresponding spin
configurations, and cannot be easily extended to other ther-
momechanical properties. Thus, for a range of temperature
from about 250 K to 1200 K, our model provides with a set
of very good predictions, obtained for the computational cost
of classical MD calculations only.

We conclude the discussion of our results by pointing out
limitations of the present method and future prospects. First,
note that the agreement to the experimental Curie transition
(Tc ≈ 716K in a fixed volume calculation) could have been ad-
justed by parameterizing the spin potential on a smaller range
of the high-symmetry lines (see Figure 5), or by adding an ob-
jective function aimed at matching the experimental value in
the spin-potential fitting procedure. However, this additional
constraint would have worsened the agreement of our model
with the DFT energy and pressure results (as displayed on
Figure 3) and would contradict the overall objective of this
work.

For temperatures below approximately 250 K, our classical
framework cannot access the quantized free energy, and is
thus enable to accurately reproduce the trends of all the quan-
tities being its derivatives (Cp, elastic constants, ...). This is
reducing the agreement versus experiments of the magneto-
dynamic accuracy measurements displayed on Figure 4 at low
temperature, and can be seen as a limitation of our classical
approach53.

Another limitation of our work lies in the simplicity of the
spin Hamiltonian model used. Extended spin Hamiltonians,
such as spin-cluster expansions, might be a promising route to
improving the accuracy of the magnetic component of the PES
by both accounting for the fluctuation of the magnetic moment
magnitudes and many-body spin interactions54, 55. A straight-
forward extension of this work could combine recently devel-
oped extended spin Hamiltonians with first-principles studies,
and apply our formalism to extend our α-iron magneto-elastic
ML-IAP to account for defect configurations56, 57, Cr cluster-
ing58, 59, and magneto-structural phase-transitions11, 60.

Enhanced magnetic thermostats have also been proposed in
order to better match the experimental magnetic transition ver-
sus temperature61, 62. Such thermostats could be implemented
in LAMMPS and used to replace the magnetization-controlled
conditions defined in the "Results" section. This could extend
the range validity of our framework to areas of phase-diagrams
where the magnetization distribution is not well measured (for
example in the ε phase of iron).

A recent study added a magnetic contribution to the set
of descriptors used in a moment-tensor ML-IAP63. Although
this approach does not explicitly simulate the magnetization
dynamics (and its effects on thermomechanical properties),
the authors demonstrated remarkable improvement in terms
of error convergence. At this stage of our work, we believe im-
proving the modeling of the magnetic component of the PES
remains our first priority (and thus implementing and fitting
improved spin Hamiltonians, as discussed above). However,
depending on the success of this first effort, this complemen-
tary approach could be leveraged to improve the quantum-
accuracy of our magneto-elastic ML-IAPs.

In summary, we have presented a new computational frame-
work for near quantum-accuracy simulations of magneto-
elastic materials properties. By leveraging the flexibility of
ML-IAPs, our data-driven workflow enables to model the in-
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terplay between magnetic and phononic dynamics for a large
class of magnetic materials. Furthermore, our straightforward
connection to the LAMMPS package makes it possible to per-
form large-scale quantitative magneto-elastic predictions over
controlled pressure and temperature spaces, hitherto study
unexplored magneto-dynamics properties of materials.

Methods
Density functional theory calculations
Parameterizing both the ML-IAP and the magnetic Heisenberg
Hamiltonian relies on data computed using spin-dependent
DFT calculations. They were performed using VASP64, 65. In
all calculations the PBE66 exchange-correlation functional
was employed. We used PAW pseudopotentials67 with 8 va-
lence electrons and a core radius of rc = 2.3 aB. The plane
wave cutoff was set to 320 eV and the convergence in each self-
consistency cycle was set to 10−8. The Fermi-Dirac smearing
scheme with a width of 0.026 eV was used. The Brillouin
zone was sampled on a 10× 10× 10 grid of k-points. The
number of bands used was 224 per atom.

Spin-Spiral Calculations
Spin-spirals define a subset of non-collinear magnetic states.
In this work, we leverage spin-spirals as a convenient tool to
perform one-to-one comparisons between first-principles and
classical magneto-elastic calculations. They can be defined as
follows:

sss j = sinθ cos(qqq ·RRR0 j)x̂xx+ sinθ sin(qqq ·RRR0 j)ŷyy+cosθ ẑzz , (2)

where qqq is the spin-spiral vector, RRR0 j is the position of atom
j relative to a central atom 0, sss j is the spin on atom j, and
θ is a constant angle between the spins and the spin-spiral
vector (often referred to as "cone angle")68. x̂xx, ŷyy, and ẑzz are the
unit vectors along [100], [010], and [001], respectively. Our
calculations are restricted to θ = π/2, corresponding to flat
spin-spirals in the (001) plane.

First-principles calculations of the per-atom energy and the
pressure corresponding to spin-spiral states are performed us-
ing DFT by leveraging the frozen-magnon approach69, 70 and
the generalized Bloch theorem71 as implemented in VASP72.
We consider a primitive cell of one atom. A 10×10×10 k-
point grid, an energy cutoff of 320 eV, and 224 bands proved
sufficient to reach the level of accuracy expected in our model
(as can be seen in Figure 5).

Classical calculations are performed by using Eq. (2) to
generate supercells accommodating the spin-spirals corre-
sponding to the qqq-vectors used in the DFT calculations. Based
on a given supercell and a spin Hamiltonian, the per-atom
energy and pressure are computed using the SPIN package of
LAMMPS23, 40.

Spin Hamiltonian
A spin Hamiltonian is used to model the energy, mechanical
forces, and pressure contributions of magnetic configurations.

Rosengaard and Johansson73 and Szilva et al.74 showed that
adding a biquadratic term to the classical Heisenberg Hamil-
tonian improves the accuracy of magnetic excitations in 3-d
transition ferromagnets. We adopted their Hamiltonian form:

Hmag = −
N

∑
i6= j

J (ri j) [sssi · sss j−1]

−
N

∑
i6= j

K (ri j)
[
(sssi · sss j)

2−1
]
, (3)

where sssi and sss j are classical atomic spins of unit length lo-
cated on atoms i and j, J (ri j) and K (ri j) (in eV) are magnetic
exchange functions, and ri j is the interatomic distance be-
tween magnetic atoms i and j. The two terms in Eq. 3 are
offset by subtracting the spin ground state (corresponding to
a purely ferromagnetic situation), as detailed in Ma et al.37.
Although this offset of the exchange energy does not affect the
precession dynamics of the spins, it allows to offset the cor-
responding mechanical forces. Without this additional term,
the magnetic contribution to the forces and the pressure are
not zero at the energy ground state. For the exchange interac-
tion terms J (ri j) and K (ri j), the interatomic dependence is
taken into account through the following function based on
an approximation of the Bethe-Slater curve75, 76:

f (r)= 4α

( r
δ

)2
(

1− γ

( r
δ

)2
)

exp
(
−
( r

δ

)2
)

Θ(Rc− r) ,

(4)

where α denotes the interaction energy, δ the interaction de-
cay length, γ a dimensionless curvature parameter, r a distance,
and Θ(Rc− r) a Heaviside step function for the radial cutoff
Rc. This assumes that the interaction decays rapidly with the
interatomic distance, consistent with former calculations74, 77.
We set Rc = 5Å to include five neighbor shells, as Pajda et
al.77 showed that the exchange interaction decays slower
along the [111] direction in α-iron.

Using Eq. (3) and leveraging the generalized spin-lattice
Poisson bracket as defined by Yang et al.78, the magnetic
precession vectors (ωωω i), mechanical forces (FFF i), and their
corresponding virial components (W

(
rrrN
)
) are derived:

ωωω i =
1
h̄

Ni

∑
j

J (ri j) sss j +K (ri j)(sssi · sss j)sss j , (5)

FFF i =
Ni

∑
j

dJ (ri j)

dri j
[sssi · sss j−1]eeei j

+
dK (ri j)

dri j

[
(sssi · sss j)

2−1
]

eeei j , (6)

W
(
rrrN) =

N

∑
i=1

rrri ·FFF i , (7)

where rrrN denotes a 3N size vector of all atomic positions
and rrri the position vector of atom i. We note that the virial
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Figure 5. Comparison of spin-spiral results along sections
of the ΓH and ΓP high-symmetry lines. The upper plot dis-
plays the per-atom energy, the middle one the atomic moment
fluctuations (in Bohr magneton per atom), and on the bottom
the evolution of the pressure. The energy and pressure fluc-
tuations are plotted with respect to the magnetic ground state
at the Γ point. The green and red dots represent experimental
measurements obtained by Loong et al.79 and Lynn80. In
all three plots, the dashed lines correspond to the DFT re-
sults, and the continuous lines to our classical model results,
whereas the line color (black or blue) corresponds to the lat-
tice compression (0 or 2%, respectively). In the middle plot,
the green dashed horizontal line represent the experimental
equilibrium value (2.2 µB per atom), which is the constant
value chosen in our model. In all three plots, the red vertical
dashed lines are delimiting the qqq-vectors on which our spin
Hamiltonian was parametrized.

components enable computing the spin contribution to the
pressure.

The spin Hamiltonian is used to reproduce spin-spiral en-
ergy and pressure reference results obtained from DFT. They
are sampled along two high-symmetry lines, ΓH and ΓP, and
for two different lattice constant values (corresponding to the
equilibrium bulk value and to a lattice compression of 2%).
This allows us to encapsulate in the model the influence of
lattice compression on the spin stiffness and the Curie temper-
ature, which was experimentally and theoretically predicted
to be small81–83. Figure 5 displays the excellent agreement
obtained between our first-principles spin-spiral energies and
experimental measurements.

Our current spin Hamiltonian does not account for fluctu-
ations of the magnetic moment magnitudes, i.e. the norm of
atomic spins remains constant in our calculations. As can be
seen in Figure 5, this is not the case for our DFT results, as
those fluctuations can become important when departing from
the Γ point. We thus decided to parameterize our model only
on spin-spirals corresponding to qqq-vectors for which the spin
norm deviates from the ferromagnetic value (≈ 2.2 µB/atom at
the Γ point) by less than 5%. The red dashed lines in Figure 5
delimit this qqq-vector range.

Finally, we used the single objective genetic algorithm
within the DAKOTA software package44 to optimize the six
coefficients of J (ri j) and K (ri j) in order to obtain the best
possible agreement between our reference DFT spin-spiral
energy and pressure results and our spin model. Figure 5
displays the obtained result. As can be seen in Figure 4, for
a fixed-volume calculation, our spin Hamiltonian predicts a
Curie temperature of 716K. Note that a better match of the
DFT spin-spiral energies would yield a larger spin-stiffness,
and thus a better agreement for the Curie temperature. How-
ever, this would worsen the pressure agreement.

Spin-orbit coupling effects were included by accounting
for an iron-type cubic anisotropy84:

Hcubic =−
N

∑
i=1

K1

[
(sssi · x̂xx)2(sssi · ŷyy)2 +(sssi · ŷyy)2(sssi · ẑzz)2 + ...

(sssi · x̂xx)2(sssi · ẑzz)2
]
+K(c)

2 (sssi · x̂xx)2(sssi · ŷyy)2(sssi · ẑzz)2 ,

(8)

with K1 = 0.001 eV and K(c)
2 = 0.0005 eV the intensity coef-

ficients corresponding to α-iron. The cubic anisotropy was
only included to run calculations, but ignored in the fitting
procedure as its intensity is below the range of accuracy of
our ML-IAP.

In all our classical spin-lattice dynamics calculations, our
system size remained small compared to the typical magnetic
domain-wall width in iron84. Thus, long-range dipole-dipole
interactions could safely be neglected.

SNAP Potential
For this work, an interatomic potential for iron was devel-
oped that is specifically parameterized for use in coupled
spin and molecular dynamics simulations. Training data for
a Spectral Neighborhood Analysis Potential (SNAP)45, 85, 86

was collected to constrain the fit to the pressure and tem-
perature phase space of < 20GPa and < 2000K. The set of
non-colinear, spin-polarized VASP calculations includes α-
(BCC), ε- (HCP) and liquid-iron, Table 1 displays the quan-
tity of each training type and target properties that are captured
therein. Optimization of a SNAP potential necessitates that
the generated training database be broken into these groups
(rows in Table 1) such that the weighted linear regression can
(de-)emphasize different parts in search of a global minima in
objective function errors. Each training group is assigned a
unique weight for its’ associated energies and atomic forces
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for each candidate potential, optimization of these weights
is controlled by DAKOTA. Regression is carried out using
singular value decomposition with a squared loss function
(L2 norm). In order to avoid double counting, and properly
simulate the magnetic properties of iron in classical MD, we
have adapted the SNAP fitting protocol45 to isolate the non-
magnetic energy and forces from the generated training data.
To do so, the fitted biquadratic spin Hamiltonian is evaluated
for every atom in the training set, and its’ contribution to the
total energy and per-atom forces is subtracted. This is akin
to previous uses of an ion core repulsion87 or electrostatic
interaction term88 as a reference potential while fitting SNAP
models.

Optimization of the SNAP potential was achieved using
a single objective genetic algorithm within the DAKOTA
software package44. Radial cutoff distance, training group
weights and number of bispectrum descriptors were varied
to minimize a set of objective functions, as percent error to
available DFT or experimental90 data, that encapsulate the
desired mechanical properties of Fe. These objective func-
tions specific to α-iron are listed in Table 2, and the RMSE
energy and force regression errors are included in optimiza-
tion as well. In all objectives, our linear SNAP model with 31
bispectrum descriptors achieves accuracy in all mechanical
properties within a few percent of experiment/DFT. Addi-
tionally, lattice constants and cohesive energies of γ- (FCC)
and ε-iron (HCP) phases were fit, but given far less priority
with respect to the α-iron mechanical properties resulting in
∼ 6− 7% errors with respect to DFT. Importantly, each of
the objective functions were evaluated including the magnetic
spin contributions to avoid unforeseen changes in property
predictions. A full breakdown of the optimal training group
weights and mean absolute energy/force errors are given in
Table 1. Group weights listed have been adjusted by the num-
ber of configurations or forces they are applied to, therefore
allowing for larger group weights to be (cautiously) inter-
preted more valuable at meeting the set of targeted objective
functions. This optimized Fe-SNAP interatomic potential is
contained as Supplemental Material along with LAMMPS
input scripts used in the following section.

Spin-Lattice Dynamics
Calculations are performed following the spin-lattice dy-
namics approach as implemented in the SPIN package of
LAMMPS23, 40, and set by the spin-lattice Hamiltonian be-
low:

Hsl(rrr, ppp,sss) = Hmag(rrr,sss)+
N

∑
i=1

|ppp|2
2mi

+
N

∑
i, j=1

VSNAP(ri j) (9)

where Hmag is the spin Hamiltonian defined by the com-
bination of Eq. (3) and Eq. (8). The term VSNAP(ri j) is our
SNAP ML-IAP. The second term on the right in Eq. (9), rep-
resents the kinetic energy, where the particle momentum is

given as ppp and the mass of particle i is mi. Based on this spin-
lattice Hamiltonian and leveraging the generalized spin-lattice
Poisson bracket as defined by Yang et al.78, the equations of
motion can be defined as:

drrri

dt
=

pppi

mi
(10)

d pppi

dt
=

N

∑
j,i6= j

[
− dVSNAP(ri j)

dri j
+

dJ(ri j)

dri j
(sssi · sss j)+ ...

dK(ri j)

dri j
(sssi · sss j)

2
]

eeei j−
γL

mi
pppi + fff (t)

(11)

dsssi

dt
=

1
(1+λ 2)

[
(ωωω i +ηηη(t))× sssi + ...

λ sssi× (ωωω i× sssi)

] (12)

Particle positions are advanced according to Eq. (10). The
derivative of the momentum, given in Eq. (11), is dependent
not only on the mechanical potential but the magnetic ex-
change functions as well. Here γL is the Langevin damping
constant for the lattice and fff is a fluctuating force following
Gaussian statistics given below40.

〈 fff (t)〉 = 0 (13)
〈 fα(t) fβ (t

′)〉 = 2kBTlγLδαβ δ (t− t ′) (14)

The fluctuating force fff is coupled to γL via the fluctuation
dissipation theorem as shown in Eq. (14). Here kB is the
Boltzmann constant, Tl is the lattice temperature, and α and
β are coordinates. Shown in Eq. (12) is the stochastic Landau-
Lifshitz-Gilbert equation which describes the precessional
motion of spins under the influence of thermal noise. In
Eq. (12), λ is the transverse damping constant and ωωω i is a spin
force analogue as shown in Eq. (5). The variable ηηη(t) is a
random vector whose components are drawn from a Gaussian
probability distribution given below:

〈ηηη(t)〉 = 0 (15)
〈ηα(t)ηβ (t

′)〉 = DSδαβ δ (t− t ′) (16)

where the amplitude of the noise DS can be related to the
temperature of the external spin bath Ts according to DS =
2πλkBTs/h̄39.

SD-MD calculations are carried out using a 20x20x20 BCC
cell. The BCC lattice is oriented along each of the coordinate
directions. The MD timestep in all cases is set to 0.1 femtosec-
onds. The damping constants are set to 0.1 (Gilbert damping,
no units) for the spin thermostat, and to 0.1 picoseconds for
the lattice thermostat. Initially all spins start out aligned in the
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# of Config. # of Forces Target Property Energy Fit Weight Forces Fit Weight Energy MAE (eV) Forces MAE (eV·Å−1)
Eq. of State 403 65286 Volumetric Deform 4.2 ·103 2.0 ·105 1.6 ·10−2 2.4 ·10−1

DFT-MD, 300K 40 15360 Bulk phonons 2.9 ·105 1.1 ·105 5.2 ·10−4 2.4 ·10−1

Liquid w/ Spins 10 3000 Magnetic Disorder 5.5 ·101 1.9 ·104 2.0 ·10−1 5.9 ·10−1

Liquid w/o Spins 52 15300 Structural Disorder 3.3 ·103 2.0 ·104 2.2 ·10−1 8.0 ·10−1

Point Defects 10 3096 Defect Energetics 1.4 ·102 3.5 ·104 2.8 ·10−2 1.1 ·10−1

Martensitic Transform 168 1008 α → ε 4.0 ·102 2.3 ·103 9.2 ·10−2 2.3 ·10−1

Table 1. Training set for linear SNAP model adapted from Ref. [89] to include explicit spin degrees of freedom. Regression of
SNAP coefficients takes into account both configuration energies and forces from DFT, optimization of group weights is applied
to either term independently. Weighted linear regression is carried out via reported optimal fit weights, values have already
been scaled by the number of training points each group contributes. The two last columns report the obtained mean-absolute
errors (MAEs) in eV per atom.

SNAP Exp/DFT Units Error %

c11 243.25 239.55 GPa 1.54%

c12 135.65 138.1 GPa 1.77%

c44 118.73 120.75 GPa 1.67%

Bulk modulus 171.52 169.55 GPa 1.16%

0.5(c11-c12) 53.8 51.9 GPa 3.66%

Poisson ratio 0.358 0.36 - 1.10%

bcc energy -8.25 -8.26 eV 0.02%

bcc lat. const. 2.838 2.83 Å 0.30%

Table 2. Objective functions of the DAKOTA optimization
with ground truth values taken from the present DFT calcula-
tions(at zero Kelvin) or experiments90. Percent error is used
as the objective function to avoid artificial importance scaling
based on units of the target property.

z-direction. To measure the magnetic properties for the canon-
ical ensemble we initially thermalize the system under NVT
dynamics at the target spin/lattice temperatures for 40 picosec-
onds and then sample the target properties for 10 picoseconds.
For pressure-controlled simulations (see PCC and MCPCC
in the "Results" section), after the initial 40 picosecond of
temperature equilibration we freeze the spin configuration and
run isobaric-isothermal NPT dynamics in order to allow the
system to thermally expand (still accounting for the effect of
the "magnetic" pressure, generated by the spin Hamiltonian).
The pressure damping parameter is set to 10 picoseconds. The
pressure equilibration run is terminated once the system pres-
sure drops below 0.05 GPa. After this, the spin configuration
is unfrozen and another equilibration run is carried out un-
der NVT dynamics for 20 picoseconds. Unfreezing the spin
configurations causes a small jump in the pressure, typically
within the range of +/- 2 GPa. To reduce this pressure fluc-
tuation, a series of uniform isotropic box deformations are
performed under the NVE ensemble. During this procedure

the box is deformed in 0.02% increments every 2 picoseconds
until the magnitude of the pressure is reduced to negligible
values (< 10 MPa). Figure 6 displays the pressure profiles
obtained within the FVC and PCMCC (similar to the PCC).
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Figure 6. Symbols (( ) and ( )) associated to the left axis
represent the pressure evolution in the FVC and PCMCC
(similar to the PCC), as a function of lattice temperature.
Doted lines associated to the right axis represent the spin
thermostat temperature for the PCMCC and FVC (similar to
PCC) as a function of the lattice temperature.

For the magnetization-controlled conditions (PCMCC in
the "Results" section), the spin temperature is adjusted to
match the experimental magnetization values. Spin tempera-
ture adjustments are made based on the magnetization curve
obtained in the pressure-controlled conditions (PCC in the
"Results" section). The corresponding spin-lattice tempera-
ture relationship is shown in Eqs. (17-20). Here the fitting
coefficients are given as a1 = 471.6, a2 = 6362, a3 = 2774,
a4 = 1119, a5 = 13.6, a6 = 1043.3, and a7 = 0.1, respectively.
The functions Ts,pre and Ts,post prescribe how the spin temper-
ature varies before and after the critical point. At the critical
point we use a switching function fsw to smoothly transition
from Ts,pre to Ts,post :
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Ts,post(Tl) = Tl−a1 (17)

Ts,pre(Tl) = a2 exp

[
−
(

Tl−a3

a4

)2
]
−a5 (18)

fsw(Tl) =
1
2

[
1+ tanh

(
Tl−a6

a7

)]
(19)

Ts(Tl) = fswTs,post +(1− fsw)Ts,pre (20)

Figure 6 displays the spin temperature profiles for the FVC
(and, similarly, the PCC), and the PCMCC. After the magnetic
measurements we compute elastic constants by performing
both uniaxial and shear deformations along each of the coor-
dinate directions and planes. The magnitude of these defor-
mations in all cases is 2% of the box length. Following each
deformation the box is relaxed for 3 picoseconds. After this
relaxation the stresses are sampled for 2 picoseconds.

Data Availability
The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Code Availability
The code which was used to train the SNAP potential
is available from: https://github.com/FitSNAP/
FitSNAP.
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