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flights with stochastic resetting
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91191 Gif-sur-Yvette, France

Abstract. We perform a thorough analysis of the survival probability of
symmetric random walks with stochastic resetting, defined as the probability
for the walker not to cross the origin up to time n. For continuous symmetric
distributions of step lengths with either finite (random walks) or infinite variance
(Lévy flights), this probability can be expressed in terms of the survival probability
of the walk without resetting, given by Sparre Andersen theory. It is therefore
universal, i.e., independent of the step length distribution. We analyze this
survival probability at depth, deriving both exact results at finite times and
asymptotic late-time results. We also investigate the case where the step
length distribution is symmetric but not continuous, focussing our attention onto
arithmetic distributions generating random walks on the lattice of integers. We
investigate in detail the example of the simple Polya walk and propose an algebraic
approach for lattice walks with a larger range.
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1. Introduction

This work is a sequel to the recent study of the statistics of the maximum and of
the number of records for random walks with stochastic resetting [1], a topic of much
current interest (see [2] for a review). Consider a random walk starting from the origin,
defined by the recursion

xn+1 =

{
0 with prob. r,
xn + ηn+1 with prob. 1− r. (1.1)

At each time step, the walker is reset to the origin with probability r. The step
lengths ηn are iid (independent and identically distributed) random variables with an
arbitrary symmetric distribution with density ρ(η).

The central object of interest of the present work is the survival probability (or
persistence probability) of the random walker, that is, the probability for the walker
not to cross the origin, up to time n:

Qn = P(x1 ≥ 0, . . . , xn ≥ 0) = P(x1 ≤ 0, . . . , xn ≤ 0). (1.2)

The generating series of the sequence Qn has the expression

Q̃(z) =
∑
n≥0

Qnz
n =

q̃((1− r)z)
1− rz q̃((1− r)z)

, (1.3)

where q̃(z) is the generating series of the sequence of survival probabilities qn of the
same walker in the absence of resetting. The identity (1.3) can be deduced either from
a renewal approach (see section 3), or from the formalism used in [1] for investigating
the statistics of the maximum. The expression of q̃(z) stems from Sparre Andersen
theory (see section 2). If the step length distribution is continuous and symmetric,
with either finite (random walks) or infinite variance (Lévy flights), q̃(z) is given
by (2.6), and so qn and Qn are universal: qn only depends on n, whereas Qn also
depends on the resetting probability r. If the step length distribution possesses a
discrete component, q̃(z) is given by the general expression (2.12) and is no longer
universal.

The relation (1.3) is the starting point of a thorough analysis of several novel
aspects of the problem, as we now summarize. Section 2 is a brief reminder of the
predictions of Sparre Andersen theory on the survival probability qn of symmetric
random walks in the absence of resetting, the step length distribution being either
continuous or not. In section 3, using a direct renewal approach, we establish in full
generality the identity (1.3) between the survival probabilities of the random walk in
the presence and in the absence of resetting. We also recall how the same result can
be deduced from the study made in [1]. The case of a symmetric continuous step
length distribution is considered in section 4. We analyze the universal expression
of the survival probability Qn at depth, deriving both exact results at finite times
and asymptotic late-time results. Section 5 is devoted to the simple Polya walk on
the lattice of integers, for which the survival probability is studied following the same
setting. More general arithmetic step length distributions are dealt with in section 6
by means of a novel algebraic approach.

2. Elements of Sparre Andersen theory

This section is a brief reminder of some aspects of Sparre Andersen theory on sums of
random variables [3, 4, 5]. Consider a random walk without resetting, whose position
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at time n,

xn = η1 + · · ·+ ηn, (2.1)

is the sum of n iid random variables whose common distribution is symmetric, with
density ρ(η). Introduce the probabilities

πn = P(xn ≥ 0) = P(xn ≤ 0),

qn = P(x1 ≥ 0, . . . , xn ≥ 0) = P(x1 ≤ 0, . . . , xn ≤ 0). (2.2)

A combinatorial theorem due to Sparre Andersen states that these probabilities are
related by the identity [5, ch. XII]

q̃(z) =
∑
n≥0

qnz
n = exp

(∑
n≥1

πn
n
zn

)
. (2.3)

The first few of these relations read

q0 = 1, q1 = π1, q2 =
π2 + π2

1

2
, q3 =

2π3 + 3π1π2 + π3
1

6
. (2.4)

Let us now discuss the consequences of the identity (2.3), depending on the nature of
the distribution ρ(η).

Continuous symmetric distributions. If the step length distribution is symmetric and
continuous, the position xn is non-zero with certainty at all times n ≥ 1, so that we
have

πn =
1

2
(n ≥ 1). (2.5)

The series entering the right-hand side of (2.3) therefore reads

q̃(z) =
∑
n≥0

qnz
n =

1√
1− z

, (2.6)

hence

qn = bn, (2.7)

where bn denotes the binomial probability

bn =
(2n)!

(2nn!)2
=

(
2n
n

)
22n

. (2.8)

This is the well-known universal expression of the survival probability for a symmetric
continuous distribution, with either finite or infinite variance [3, 4, 5]. The following
power-law decay and asymptotic series of corrections are therefore universal:

qn =
1√
πn

(
1− 1

8n
+

1

128n2
+

5

1024n3
+ · · ·

)
. (2.9)
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Arbitrary symmetric distributions. In the general case where the step length distri-
bution is symmetric, but not necessarily continuous, its density ρ(η) may contain
Dirac delta functions, either at the origin (η = 0) or at pairs of symmetric positions
(η = ±a). In such a circumstance, the probability

Pn = P(xn = 0) (2.10)

is non-zero for some n. Equations (2.5) and (2.6) become

2πn = P(xn ≥ 0) + P(xn ≤ 0) = 1 + Pn (2.11)

and

q̃(z) =
∑
n≥0

qnz
n =

1√
1− z

exp

(
1

2

∑
n≥1

Pn
n
zn

)
. (2.12)

We have in particular

q̃(z) ≈ E√
1− z

(z → 1), (2.13)

hence

qn ≈
E√
πn

, (2.14)

where

E = exp

(
1

2

∑
n≥1

Pn
n

)
≥ 1 (2.15)

is the asymptotic enhancement factor of the survival probability qn with respect to the
formula (2.9), which holds for symmetric continuous distributions (see [5, ch. XVIII],
and [1, 6]).

The special class of arithmetic step length distributions, that is, discrete
probability distributions yielding random walks on the lattice of integers, will be
considered in section 6.

3. A direct renewal approach

The sequence of resetting events is a usual renewal process on the integers. The
description of such a process is a simple transcription of that given for renewal
processes with continuous random variables (see, e.g., [7]). The durations T1, T2, . . .
between successive resetting events are iid with common geometric distribution

fk = P(T = k) = r(1− r)k−1 (k ≥ 1), (3.1)

whose complementary distribution function reads

gk = P(T > k) =
∑
j>k

fj = (1− r)k (k ≥ 0). (3.2)

For any given time n ≥ 0, the number of resetting events up to n is the unique integer
Nn ≥ 0 such that

T1 + · · ·+ TNn
≤ n < T1 + · · ·+ TNn+1, (3.3)

and the age Bn of the process at time n, also dubbed the backward recurrence time,
is such that

n = T1 + · · ·+ TNn +Bn, Bn = 0, 1, . . . , TNn+1 − 1. (3.4)
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n

x
n

0 3 7 8

Figure 1. Example of a random walk of n = 8 steps which does not cross
the origin, with two resetting events at times 3 and 7. In terms of a renewal
process (see text), we have N8 = 2, T1 = 3, T2 = 4 and B8 = 1.

These definitions are illustrated in figure 1.
Let us now relate the survival probability Qn of the walker in the presence of

resetting to the survival probability qn of the same walker in the absence of resetting.
For a given number of steps n, let us denote a realization of the process by

C = {Nn = m,T1 = k1, . . . , Tm = km, Bn = b}. (3.5)

The joint probability distribution associated to (3.5) reads

P (C) = fk1 . . . fkm gb δ
( m∑
i=1

ki + b, n
)
, (3.6)

where δ is the Kronecker delta symbol.
In the example shown in figure 1, C = {N8 = 2, T1 = 3, T2 = 4, B8 = 1}, which

gives a contribution q2q3q1 to Q8. For a generic realization C, this contribution reads

Q(C) = qk1−1 . . . qkm−1 qb, (3.7)

because every duration Ti = ki between two consecutive resetting events brings a
factor qki−1, since the walker survives during ki − 1 steps before a resetting occurs.
The last incomplete lapse of time Bn = b brings a factor qb.

The survival probability Qn is obtained by averaging (3.7) over all realizations C:

Qn =
∑
C
P (C)Q(C) (3.8)

=
∑
m≥0

∑
k1,...,km

∑
b

fk1 . . . fkmgb qk1−1 . . . qkm−1qb δ
( m∑
i=1

ki + b, n
)
.

The associated generating series follows easily:

Q̃(z) =
∑
m≥0

∑
k1,...,km

∑
b

fk1z
k1 . . . f(km)zkmgbz

b qk1−1 . . . qkm−1qb

= β(z)
∑
m≥0

α(z)m =
β(z)

1− α(z)
, (3.9)
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with

α(z) =
∑
k≥1

fk qk−1 z
k = rz q̃((1− r)z),

β(z) =
∑
b≥0

gb qb z
b = q̃((1− r)z). (3.10)

We thus obtain the key result

Q̃(z) =
q̃((1− r)z)

1− rz q̃((1− r)z)
, (3.11)

relating the generating series of Q̃(z) and q̃(z), already announced in (1.3).
As the resetting probability r varies, the expression (3.11) interpolates between

the following two limiting situations. In the absence of resetting (r = 0), we have
Q̃(z) = q̃(z), and so Qn = qn for all n. In the other limit (r = 1), where the walker
stays put at the origin, (3.11) yields Q̃(z) = 1/(1 − z), and so Qn = 1 for all n, as
expected.

The first few relations between the Qn and the qn read

Q1 = (1− r)q1 + r,

Q2 = (1− r)2q2 + 2r(1− r)q1 + r2,

Q3 = (1− r)3q3 + r(1− r)2(q21 + 2q2) + 3r2(1− r)q1 + r3. (3.12)

There is an alternative route to obtaining (3.11), based upon the relationship
between the survival probability Qn and the distribution of the maximum of the walk,

Mn = max(0, . . . , xn). (3.13)

All surviving walks on the negative side up to time n, obeying x1 ≤ 0, . . . , xn ≤ 0,
have Mn = 0, whereas all non-surviving walks have Mn > 0. We have therefore

Qn = P(Mn = 0). (3.14)

The generating series of this quantity, obtained by means of a renewal integral
equation, identifies to (3.11) [1].

To close, let us mention that rational expressions similar to (3.11) relating
generating series for quantities with and without stochastic resetting are in fact
ubiquitous [1, 2, 8, 9, 10, 11]. The above direct renewal approach applies to all these
situations.

4. Symmetric continuous step length distributions

4.1. Generating series

In this section we consider the case of symmetric continuous step length distributions,
with either finite or infinite variance. The survival probability qn in the absence of
resetting is given by the universal formula (2.7), the generating series q̃(z) of which
is (2.6). Inserting this latter expression into (3.11) yields the following generating series
of the survival probabilities Qn for symmetric continuous step length distributions:

Q̃(z) =
1√

1− (1− r)z − rz
. (4.1)

This universal expression is one of the cornerstones of the present work. We now
investigate its consequences in detail.
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4.2. Exact finite-time results

The survival probability Qn only depends on time n and on the resetting probability r.
By expanding the formula (4.1) as a power series in z, it is readily seen that Qn is a
polynomial of degree n in r, which has the same universality as the expression (2.7)
to which it reduces for r = 0. It is plotted against r in figure 2 up to n = 10. Its first
values read

Q0 = 1,

Q1 =
1

2
(1 + r),

Q2 =
1

8
(3 + 2r + 3r2),

Q3 =
1

16
(5 + r + 7r2 + 3r3),

Q4 =
1

128
(35− 12r + 66r2 + 20r3 + 19r4),

Q5 =
1

256
(63− 59r + 166r2 − 6r3 + 75r4 + 17r5). (4.2)

0 0.2 0.4 0.6 0.8 1
r

0

0.2

0.4

0.6

0.8

1

Q
n

1

2

3

4

5

6

7

8

9

10

Figure 2. Survival probability Qn for symmetric continuous step length
distributions against resetting probability r for times n up to 10 (see
legend).

It turns out that Qn obeys a four-term linear recursion, whose origin can be traced
back to the works by Abel on algebraic functions (see [12] for an overview including
historical and algorithmic aspects). In the present situation, the derivation goes as
follows. First, by eliminating the square root in (4.1), we obtain a quadratic equation
for Q̃(z):

(1− (1− r)z − r2z2)Q̃(z)2 − 2rzQ̃(z)− 1 = 0. (4.3)

Second, by differentiating the above equation w.r.t. z and judiciously eliminating non-
linear terms, we obtain a linear first-order differential equation for Q̃(z):

2(1− (1− r)z)(1− (1− r)z − r2z2)Q̃′(z)
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+ (r − 1 + (1 + r)(1− 3r)z + 3r2(1− r)z2)Q̃(z)

− r(2− (1− r)z) = 0. (4.4)

Third, by expanding the above differential equation as a power series in z, we obtain
the four-term linear recursion

2nQn − (4n− 3)(1− r)Qn−1 + ((2n− 3)(1− 2r)− 3r2)Qn−2

+ (2n− 3)r2(1− r)Qn−3 = 2rδn1 − r(1− r)δn2. (4.5)

The behavior of the survival probability Qn as r → 0 or r → 1 can be studied
by appropriately expanding the generating series (4.1). In the weak-resetting regime
(r → 0), we obtain

Q̃(z) =
1√

1− z
+

(
z

1− z
− z

2(1− z)3/2

)
r + · · · , (4.6)

hence

Qn = bn + cnr + · · · , cn = 1− nbn. (4.7)

The first three correction terms c1 = 1/2, c2 = 1/4, c3 = 1/16 are positive,
whereas c4 = −3/32 and all subsequent ones are negative. This corroborates the
observation (see figure 2) that Qn is monotonically increasing with r for n = 1, 2
and 3, whereas it exhibits a minimum for a non-trivial rn for all n ≥ 4. The value rn
of the resetting probability at which Qn is minimal is plotted against 1/n in figure 3
(red dataset). For large times, rn approaches the limit (4.17) (red arrow), at which
the asymptotic decay rate K (4.13) is maximal.

0 0.05 0.1 0.15 0.2 0.25

1/n

0

0.15

0.3

0.45

r
n

continuous
Polya

Figure 3. Values rn of the resetting probability at which Qn is minimal
against 1/n for n ≥ 4. Red: data for for symmetric continuous step
length distributions. Blue: data for the simple Polya walk (see section 5.2).
Arrows: limits (4.17) and (5.30).

In the strong-resetting regime (r → 1), we obtain

Q̃(z) =
1

1− z
− z

2(1− z)2
(1− r) + · · · , (4.8)
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hence

Qn = 1− n

2
(1− r) + · · · (4.9)

When r = 1, as said above, the walker stays put at the origin, so that Qn = 1 at all
times. The correction term expresses that there are on average n(1 − r) time steps
where the walker is not being reset, and the walker’s displacement at each of those
times is positive (or negative) with probability π1 = 1/2.

4.3. Asymptotic late-time results

Let us now turn to the asymptotic behavior of the survival probabilities Qn at late
times. For any fixed value of the resetting probability r, the closest singularity of the
generating series (4.1) is a simple pole located at

z0 =

√
5r2 − 2r + 1 + r − 1

2r2
, (4.10)

whereas the branch-point singularity of the square root lies further away, at

zc =
1

1− r
. (4.11)

We have indeed 1 < z0 < zc. Therefore Qn decays exponentially as

Qn ≈ A e−Kn, (4.12)

with

K = ln z0 = ln

√
5r2 − 2r + 1 + r − 1

2r2
. (4.13)

The amplitude A can also be worked out and reads

A =
2r√

5r2 − 2r + 1
. (4.14)

An exponential decay law of the survival probability was to be expected. In
the presence of resetting, the walker indeed reaches a nonequilibrium steady state
characterized by a non-trivial stationary distribution of its position [2]. As is well
known, for stationarity processes, the survival probability (or persistence probability)
generically falls off exponentially in time. This picture is corroborated by the fact that
the number of factors in (3.7) scales linearly with time.

The decay rate K (4.13) entering the exponential law (4.12) is plotted against r
in figure 4 (red curve). It vanishes as r → 0 and r → 1, according to

K = r − r2

2
+ · · · (r → 0),

K =
1− r

2
− 7(1− r)3

48
+ · · · (r → 1),

(4.15)

and reaches its maximum,

Kmax = ln
5

4
≈ 0.223143, (4.16)

for the value

r =
2

5
(4.17)

of the resetting probability.
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0 0.2 0.4 0.6 0.8 1
r

0

0.05

0.1

0.15

0.2

0.25

K

continuous
Polya

Figure 4. Asymptotic decay rate K of the survival probabilities against
resetting probability r. Red: universal expression (4.13) for symmetric
continuous step length distributions. Blue: expression (5.26) for the
simple Polya walk. Symbols: maximal values Kmax (see (4.16), (4.17)
and (5.29), (5.30)).

Finally, a crossover takes place in the scaling regime where n is large, whereas r
is small. Both singularities of the generating series (4.1) merge in this regime, as we
have K ≈ z0 − 1 ≈ r, whereas zc − z0 ≈ r2 is much smaller. Setting z = e−s, the
leading-order singular behavior of (4.1) reads

Q̃(z) ≈ 1√
s+ r

, (4.18)

hence

Qn ≈
e−rn√
πn

. (4.19)

The power-law decay (2.9) of the survival probability qn in the absence of resetting
is thus reduced by an exponential factor involving the mean number of resettings nr.
The full crossover between the decay laws (4.12) and (4.19) is captured by the more
complete scaling formula

Q̃(z) ≈ 1√
s+ r − r

≈
√
s+ r + r

s+ r(1− r)
, (4.20)

featuring a pole at s = −r(1 − r) and a square-root branch point at s = −r, and
yielding

Qn ≈ e−rn
(

1√
πn

+ r er
2n
(
1 + erf(r

√
n)
))

. (4.21)

The first and second term of this crossover formula respectively match the asymptotic
decay of the expressions (4.19) and (4.12), to leading order at small r. The crossover
time between both regimes diverges as n ∼ 1/r2.
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5. The simple Polya walk

5.1. Generating series

The simple Polya walk on the lattice of integers is generated by the binary step length
distribution

ρ(η) =
1

2
(δ(η − 1) + δ(η + 1)) . (5.1)

In this case, the probability Pn introduced in (2.10) can be determined as follows. In
the absence of resetting, the walker’s position xn is zero if the number of steps n = 2k
is even, and the walk consists of k steps to the right and k steps to the left. This reads
(see (2.8) for the definition of bk)

P2k = bk, P2k+1 = 0. (5.2)

We have thus, using (2.6),∑
k≥1

bk
k
yk =

∫ y

0

(
1√

1− x
− 1

)
dx

x
= −2 ln

1 +
√

1− y
2

. (5.3)

The sum involved in (2.12) therefore reads

1

2

∑
n≥1

Pn
n
zn =

1

4

∑
k≥1

bk
k
z2k

= − 1

2
ln

1 +
√

1− z2
2

= ln

√
1 + z −

√
1− z

z
. (5.4)

We are thus left with the expressions

q̃(z) =
2√

1− z2 + 1− z
=

1

z

(
1 + z√
1− z2

− 1

)
. (5.5)

The second formula is more amenable to power-series expansion, as it shows explicitly
the even and odd components of q̃(z).

The survival probability qn without resetting inherits the dependence on the
parity of n of the probability Pn given in (5.2). It reads

q2k−1 = q2k = bk, (5.6)

and obeys the power-law fall-off

qn ≈
√

2

πn
. (5.7)

The enhancement factor with respect to the universal result (2.9) therefore reads

E =
√

2. (5.8)

The corrections to the leading behavior (5.7) depend on the parity of n, according to

qn =

√
2

πn


(

1− 1

4n
+

1

32n2
+ · · ·

)
(n even),(

1− 3

4n
+

25

32n2
+ · · ·

)
(n odd).

(5.9)
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Finally, inserting (5.5) into (3.11), we obtain

Q̃(z) =
2√

1− (1− r)2z2 + 1− (1 + r)z

= 1 +
(1 + r)z + (1 + r2)z2√

1− (1− r)2z2 + 1− (1 + r2)z2
. (5.10)

These expressions are another key outcome of this work. We now investigate their
consequences in detail.

5.2. Exact finite-time results

The survival probability Qn of the Polya walk with resetting only depends on time n
and on the resetting probability r. By expanding the second line of (5.10) as a power
series in z, we obtain Q0 = 1, as should be, and

Q2k+1 = (1 + r)Rk, Q2k+2 = (1 + r2)Rk (k ≥ 0), (5.11)

where the generating series of the Rk reads, upon setting y = z2,

R̃(y) =
∑
k≥0

Rky
k =

1√
1− (1− r)2y + 1− (1 + r2)y

. (5.12)

As it turns out, Rk is a reciprocal polynomial of degree 2k in r, and so Qn is a
polynomial of degree n in r, whose structure depends on the parity of n, according
to (5.11). For r = 0, we have Rk = bk+1, in agreement with (5.6). For r = 1, we have
Rk = 1/2, and so Qn = 1, as expected.

The survival probability Qn is plotted against r in figure 5 up to n = 10. Its first
values read

Q0 = 1,

Q1 = (1 + r)R0, Q2 = (1 + r2)R0,

Q3 = (1 + r)R1, Q4 = (1 + r2)R1,

Q5 = (1 + r)R2, Q6 = (1 + r2)R2,

Q7 = (1 + r)R3, Q8 = (1 + r2)R3, (5.13)

with

R0 =
1

2
,

R1 =
1

8
(3− 2r + 3r2),

R2 =
1

16
(5− 8r + 14r2 − 8r3 + 5r4).

R3 =
1

128
(35− 94r + 205r2 − 228r3 + 205r4 − 94r5 + 35r6). (5.14)

The formula (5.11) implies

(1 + r)Q2k+2 − (1 + r2)Q2k+1 = 0. (5.15)

This suggests to consider the same differences in the other parity sector, namely

∆k = (1 + r)Q2k+3 − (1 + r2)Q2k+2

= (1 + r)2Rk+1 − (1 + r2)2Rk. (5.16)
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Figure 5. Survival probabilityQn of the simple Polya walk against resetting
probability r for times n up to 10 (see legend).

The corresponding generating series reads

∆̃(y) = (1 + r)2
R̃(y)−R0

y
− (1 + r2)2R̃(y). (5.17)

Using (5.12), we obtain

∆̃(y) =
1

y2

(√
1− (1− r)2y − 1 +

1

2
(1− r)2y

)
, (5.18)

hence

∆k = − bk+2

2k + 3
(1− r)2k+4, (5.19)

(see (2.8)). The resulting two-term linear recursion for the polynomials Rk,

(1 + r)2Rk+1 − (1 + r2)2Rk = − bk+2

2k + 3
(1− r)2k+4 (k ≥ 0), (5.20)

supersedes the three-term linear recursion that could be derived by means of the
algebraic approach of section 4.2.

The behavior of Qn as r → 0 can be readily investigated by expanding the
generating series (5.10) as

Q̃(z) =
1

z

(
1 + z√
1− z2

− 1

)
+

1

z

(
− 1 + z − z2

(1− z)
√

1− z2
+

1 + z

1− z

)
r + · · · , (5.21)

hence

Qn = qn + cnr + · · · , cn = 2− (n+ 2)qn. (5.22)

The survival probability qn in the absence of resetting depends on the parity of n
according to (5.6), whereas the relation between cn and qn holds irrespective of the
parity of n. The correction terms c1 = 1/2 and c3 = 1/8 are positive, whereas c2
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vanishes, and c4 = −1/4 and all subsequent ones are negative. This corroborates the
observation (see figure 5) that Qn is monotonically increasing with r for n = 1, 2
and 3, whereas it exhibits a minimum for a non-trivial rn for all n ≥ 4. The value rn
of the resetting probability at which Qn is minimal has been plotted against 1/n in
figure 3 (blue dataset). Oscillations according to the parity of n are clearly visible for
the smaller values of n. For large times, rn approaches the limit (5.30) (blue arrow),
at which the asymptotic decay rate K (5.26) is maximal.

In the strong-resetting regime (r → 1), the result (4.9) holds unchanged, as well
as its interpretation.

5.3. Asymptotic late-time results

The analysis of the asymptotic behavior of the survival probability Qn at late times
closely follows the analysis made in section 4.3. For any fixed resetting probability r,
the closest singularity of the generating series (5.10) is a simple pole located at

z0 =
1 + r

1 + r2
, (5.23)

whereas the branch-point singularity of the square root lies further away, at

zc =
1

1− r
. (5.24)

The survival probability therefore falls off exponentially as

Qn ≈ A e−Kn, (5.25)

with

K = ln z0 = ln
1 + r

1 + r2
(5.26)

and

A =
4r

(1 + r)2
. (5.27)

The expression (5.26) of the decay rate K can be alternatively derived from the
recursion (5.20). This is however not the case for the amplitude A.

The decay rate K (5.26) entering the exponential law (5.25) has been plotted
against r in figure 4 (blue curve). It vanishes as r → 0 and r → 1, according to

K = r − 3r2

2
+ · · · (r → 0),

K =
1− r

2
− (1− r)2

8
+ · · · (r → 1),

(5.28)

and reaches its maximum,

Kmax = ln
1 +
√

2

2
≈ 0.188226, (5.29)

for the value

r =
√

2− 1 ≈ 0.414213 (5.30)

of the resetting probability.
Finally, a crossover similar to that described at the end of section 4.3 takes place

in the scaling regime where n is large, whereas r is small.
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6. Arithmetic distributions

This section is devoted to the special class of arithmetic step length distributions
corresponding to random walks on the lattice of integers. A study of the statistics of
records for these distributions in the absence of resetting is given in [6] (see also [5]),
while the case with resetting is addressed in [1].

6.1. General formalism and results

We focus our attention onto symmetric arithmetic step length distributions with finite
range J , of the form

ρ(η) =

J∑
j=1

aj
2

(δ(η − j) + δ(η + j)) ,

J∑
j=1

aj = 1. (6.1)

For the sake of simplicity, steps of length zero are not allowed. We consider the generic
case where all the aj are non-zero.

The Fourier transform of (6.1) reads

ρ̂(k) =

J∑
j=1

aj cos(jk) =

J∑
j=1

ajTj(cos k). (6.2)

We have indeed cos(jk) = Tj(cos k), where the Tj are the Tchebyshev polynomials
of the first kind. As a consequence, the Fourier transform ρ̂(k) is a polynomial of
degree J in cos k. It is therefore an even 2π-periodic function of k. In the k → 0 limit,
we have

ρ̂(k) = 1−Dk2 + · · · , (6.3)

where

D =
1

2

J∑
j=1

j2aj (6.4)

is the diffusion coefficient, such that 〈η2n〉 = 2D.
The connection with the formalism of section 2 goes as follows. The probability

introduced in (2.10) reads

Pn =

∫ π

0

ρ̂(k)n
dk

π
, (6.5)

and therefore ∑
n≥1

Pn
n
zn = −

∫ π

0

ln(1− zρ̂(k))
dk

π
, (6.6)

so that (2.12) and (2.15) respectively become

q̃(z) =
1√

1− z
exp

(
−1

2

∫ π

0

ln(1− zρ̂(k))
dk

π

)
(6.7)

and

E = exp

(
−1

2

∫ π

0

ln(1− ρ̂(k))
dk

π

)
. (6.8)

The last two formulas are given in [6].
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Here, we propose to shed some new light on the problem by means of the following
algebraic approach. Let us consider first the generating series q̃(z), given by (6.7). The
expression (6.2) of the Fourier transform ρ̂(k) implies that 1 − zρ̂(k) is a polynomial
of degree J in cos k, which can be factored as

1− zρ̂(k) = C

J∏
j=1

(1− Λj cos k), (6.9)

where the prefactor C and the roots Λj depend on z and on the weights aj . Setting
k = 0, we get

1− z = C

J∏
j=1

(1− Λj). (6.10)

Inserting (6.9) into (6.7), and using the integral∫ π

0

ln(1− Λ cos k)
dk

π
= −2 ln

√
1 + Λ−

√
1− Λ

Λ
, (6.11)

as well as the identity (6.10), we obtain the expression

q̃(z) =
1

C

J∏
j=1

1

Λj

(√
1 + Λj
1− Λj

− 1

)
. (6.12)

The generating series q̃(z) is an algebraic function of z and the aj with degree 2J .
The right-hand side of (6.12) is indeed a symmetric function of the roots Λj , where
each square root has two branches, and therefore brings a factor two to the degree
of q̃(z).

The above property still holds in the presence of resetting. The key relation (3.11)
between q̃(z) and Q̃(z) is rational, and so the generating series Q̃(z) is an algebraic
function of z, r and the aj , with the same degree 2J . As a consequence, Qn obeys linear
recursion relations, generalizing (4.5), whose complexity grows exponentially with the
range J of the walk. Furthermore, the location z0 of the closest singularity of the
generating series Q̃(z), governing the exponential decay of Qn, is an algebraic function
of the resetting probability r and the aj , whose degree is however not determined by
the present reasoning.

Consider now the asymptotic enhancement factor E, given by (6.8). The
difference 1− ρ̂(k) vanishes for k = 0, and can therefore be factored as

1− ρ̂(k) = c(1− cos k)

J−1∏
j=1

(1− λj cos k). (6.13)

where the prefactor c and the roots λj depend on the weights aj . In the k → 0 limit,
using (6.3), (6.4), we obtain

2D = c

J−1∏
j=1

(1− λj). (6.14)

Inserting (6.13) into (6.8), and using (6.11) and (6.14), we obtain

E =
1√
D

J−1∏
j=1

1− λj
λj

(√
1 + λj
1− λj

− 1

)
. (6.15)
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The product

〈h1〉 = E
√
D (6.16)

is therefore an algebraic function of the aj with degree 2J−1. This quantity is the
mean value of the first positive abscissa h1 of a random walk issued from the origin,
irrespective of the time at which this position is reached [13, 14, 1] (see also [5,
ch. XVIII]).

6.2. The simple Polya walk

A first illustration of the above approach is provided by the simple Polya walk, studied
at length in section 5. In this case, we have J = 1, a1 = 1, D = 1/2 and ρ̃(k) = cos k.
For generic values of z, we have C = 1 and Λ1 = z, and so (6.12) reads

q̃(z) =
1

z

(√
1 + z

1− z
− 1

)
, (6.17)

which is equivalent to (5.5). Moreover, (6.15) yields 〈h1〉 = E
√
D = 1, as should be.

6.3. Lattice walks with range two

The next case, in order of increasing complexity, consists in lattice walks with range
J = 2. Using the parametrization

a1 = 1− a, a2 = a, (6.18)

we have

D =
1 + 3a

2
(6.19)

and

ρ̃(k) = (1− a) cos k+ a cos(2k) = (1− a) cos k+ a(2 cos2 k− 1).(6.20)

For generic values of z, we have therefore

1− zρ̃(k) = 1 + az − (1− a)z cos k − 2az cos2 k, (6.21)

so that C = 1 + az, whereas Λ1 and Λ2 are the roots of the quadratic equation

(1 + az)Λ2 − (1− a)zΛ− 2az = 0. (6.22)

By eliminating the roots Λ1 and Λ2 between (6.12) and (6.22), we obtain

a2z2(1− z)2q̃(z)4 + 2az(1− z)2q̃(z)3

−2(1 + a)z(1− z)q̃(z)2 − 4(1− z)q̃(z) + 4 = 0. (6.23)

As anticipated, this is a polynomial equation with degree 4 for q̃(z), the generating
series for the survival probability qn in the absence of resetting.

As far as the enhancement factor E is concerned, the constants entering the
product (6.13) read c = 1 + a and λ1 = −2a/(1 + a), and so (6.15) yields

E =

√
1 + 3a−

√
1− a

a
√

2
. (6.24)
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The enhancement factor reaches its maximum Emax =
√

2, corresponding to the simple
Polya walk (see (5.8)), for a = 0 and a = 1, and its minimum Emin =

√
3/2 for a = 2/3.

The product

〈h1〉 = E
√
D =

2

1 +

√
1− a
1 + 3a

(6.25)

increases monotonically from 1 to 2 as a increases from 0 to 1.
In the presence of resetting, using the key relation (3.11), we can derive a

polynomial equation with degree 4 for Q̃(z), that is similar to (6.23), albeit too long
to be reported here. The location z0 = eK of the closest pole of Q̃(z), which governs
the exponential decay Qn ∼ e−Kn, is found to obey the quadratic equation(

(1− r)4a2 + 2r(1− r)2a+ 2r2(1 + r2)
)
z20

−2
(
(1− r)3a2 + r(1− r)(2− r)a+ r2(1 + r)

)
z0

+(1− r)2a2 + 2r(1− r)a = 0. (6.26)

The corresponding decay rate K vanishes as r → 0 and as r → 1, as

K = r +

(
1

2
− E2

)
r2 + · · · (r → 0),

K =
1− r

2
− 1− 2a(1− a)

8
(1− r)2 + · · · (r → 1).

(6.27)

The first expression involves the enhancement factor E given in (6.24). Both
expansions agree with (5.28) for a = 0 and a = 1, as should be.

7. Discussion

In a recent work [1], we have revisited various features of the statistics of extremes
and records of symmetric random walks with stochastic resetting. In the present
paper, which is a sequel to the latter, we entirely focus our attention onto the survival
probability (or persistence probability) Qn, defined as the probability for the walker
not to cross the origin up to time n. Throughout this work we consider for simplicity
symmetric step length distributions, and the origin is both the starting point of the
walker and its resetting point.

Stochastic resetting with probability r at each step has the peculiar feature that
it does not alter the Markovian nature of free random walk. This entails, among
other remarkable properties, the existence of the identity (1.3) (or (3.11)) between
the generating series of the survival probabilities Qn and qn, respectively with and
without resetting. In the present situation, this identity allowed us to investigate in
detail many facets of the problem at hand.

For random walks and Lévy flights with symmetric and continuous step length
distributions, the survival probabilities are universal: qn only depends on time n
according to (2.7), whereas Qn only depends on n and r. The properties of Qn are
explored at depth in section 4, both at finite times and in the asymptotic regime of late
times. Among their most noticeable properties, the Qn are polynomials of degree n
in r which obey a four-term linear recursion, as a consequence of the algebraic nature
of the generating series Q̃(z). They fall off exponentially in n, with the corresponding
decay rate K vanishing both as r → 0 and as r → 1, and being maximal for r = 2/5.

Whenever the step length distribution is not continuous, the survival probabilities
are no longer universal, but rather depend on details of the underlying distribution.
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The class of arithmetic step length distributions, that is, discrete probability
distributions yielding random walks on the lattice of integers, deserves special interest.
The simplest of all lattice walks is the simple Polya walk, for which a thorough
investigation of the survival probability Qn is given in section 5, both at finite
times and in the asymptotic regime of late times. The Qn are again polynomials of
degree n in r, whose structure depends on the parity of n. They fall off exponentially
in n, with the corresponding decay rate K being maximal for r =

√
2 − 1. In the

generic situation of lattice walks with a larger range, we have shown that quantities
such as the generating series Q̃(z) and the asymptotic enhancement factor E are
algebraic functions of the model parameters, and we determined their respective
degrees. Algebraic functions were shown to play a key role in a germane problem,
namely the encounters of the simple Polya walk with a ballistic obstacle [15]. The
algebraic approach can be expected to facilitate further investigations of lattice walks.
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[1] Godrèche C and Luck J M 2022 Maximum and records for random walks with stochastic resetting
arXiv:2203.01102

[2] Evans M R, Majumdar S N and Schehr G 2020 J. Phys. A: Math. Theor. 53 193001
[3] Sparre Andersen E 1953 Math. Scand. 1 263–285
[4] Sparre Andersen E 1954 Math. Scand. 2 194–222
[5] Feller W 1971 An Introduction to Probability Theory and its Applications 2nd ed vol 2 (New

York: Wiley)
[6] Mounaix P, Majumdar S N and Schehr G 2020 J. Phys. A: Math. Theor. 53 415003
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