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(CoxMn1−x)3O4 is a promising candidate material for solar thermochemical energy storage. A
high-temperature model for this system would provide a valuable tool for evaluating its potential.
However, predicting phase diagrams of complex systems with ab initio calculations is challenging
due to the varied sources affecting the free energy, and with the prohibitive amount of configurations
needed in the configurational entropy calculation. In this work, we compare three different machine
learning (ML) approaches for sampling the configuration space of (CoxMn1−x)3O4, including a
simpler ML approach, which would be suitable for application in high-throughput studies. We use
experimental data for a feature of the phase diagram to assess the accuracy of model predictions.
We find that with some methods, data pre-treatment is needed to obtain accurate predictions
due to inherently composition-imbalanced training data for a mixed phase. We highlight that the
important entropy contributions depend on the physical regimes of the system under investigation
and that energy predictions with ML models are more challenging at compositions where there are
energetically competing ground state crystal structures. Similar methods to those outlined here can
be used to screen other candidate materials for thermochemical energy storage.

I. INTRODUCTION

The mixed phase system (CoxMn1−x)3O4 is currently
under investigation for applications in next-generation
concentrated solar energy storage technologies, which are
based on reversible redox reactions of metal oxides [1–3].
The motivation of the mixed phase is to attempt to min-
imize the shortcomings of the pure end members, such
as cost and toxicity for Co3O4, and sluggish oxidation
rate and poor reversibility for Mn3O4 [4], by combining
them in (CoxMn1−x)3O4. Gaining atomic-level insights
into the stability of Co3O4 and Mn3O4 mixtures at high
temperatures is therefore an important step towards the
rational design of these materials. However, the accurate
prediction of phase diagrams with free energies derived
from ab initio calculations can be particularly challeng-
ing for complex crystal structures. For such systems, it
may be necessary to sample extremely large numbers of
configurations.

Based on density functional theory (DFT) calculations
of formation energy at T =0 K, published in Ref. 1, all
compositions of (CoxMn1−x)3O4 should decompose into
the pure phases Co3O4 and Mn3O4. However, the mixed
phases have been successfully synthesized in a number of
works [1–3]. This implies that entropic contributions to
the free energy of the mixed metal oxide phases must be
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responsible for the stability at finite temperatures [5, 6].
It has been suggested that a large number of metastable
configurations close in energy to the T=0 K ground state
may provide the explanation here [1]. However, the full
configuration space of this mixed phase system would
require millions of ab initio calculations to study exhaus-
tively, even after discounting symmetrically equivalent
structures [1]. Recent advances in the coupling of ar-
tificial intelligence (AI) techniques and materials design
are creating new opportunities to tackle this challenge
[7–9]. Specifically, AI-aided approaches, mainly from the
subdomain of machine-learning (ML) are helping to sig-
nificantly reduce the number of required computations,
making the materials design process faster and cheaper
than conventional high-throughput exploration.

Here in order to investigate possible entropic con-
tributions to the reduction of the free energy of
(CoxMn1−x)3O4, and to develop a fuller theoretical un-
derstanding of the stability of these mixed phases, we
use and compare different ML methods to augment the
DFT calculations performed in Ref. 1. To evaluate the
accuracy of the sampling of the configuration space with
these different ML approaches, we use the methods de-
scribed in Ref. 10 to calculate the phase coexistence re-
gion between the tetragonal hausmannite (H) and spinel
(S) phases of (CoxMn1−x)3O4 from the predicted free
energy curves. In each case, the configurational entropy
contribution to the free energy is calculated using the
different ML approaches and compared to experimental
data for this feature of the phase diagram. We discuss
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the relative strengths of the different methods employed
in this work and show that accurate prediction of differ-
ent parts of the phase diagram of this system depends
the most strongly on accurately accounting for different
contributions to the free energy.

II. MIXED METAL OXIDE PHASES

The pure Co3O4 phase has a cubic spinel structure (S)
with space group 227. Below 1170 ◦C, the pure Mn3O4

is a tetragonally distorted spinel structure (hausmannite,
H) with space group 141 and distortion along one crystal-
lographic axis relative to the S structure. Above 1170 ◦C,
Mn3O4 transitions to a S structure [12]. The transition
metal (TM) sites in these structures are either tetrahe-
drally (td) or octahedrally (oh) coordinated to the oxygen
atoms. Mn ions substituted on oh Co sites in the S struc-
ture are Jahn-Teller active, inducing a tetragonal distor-
tion of the lattice [13]. These Jahn-teller active oh sites
are largely, but not solely, responsible for a composition-
dependent tetragonal distortion of the mixed phases as
shown in Fig. 1, where small changes in lattice parame-
ters are also correlated to number of td Co. Plots of all
DFT lattice parameters as a function of Co composition
are shown in the Supplementary information (SI) (Fig.
1).

Three distinct Co-Mn substitution schemes were con-
sidered in Ref. 1 and form the basis of the training data
used for the ML methods in this study. Taking as a base
the pure Mn3O4 with the cubic structure of Co3O4, the
data sets referred to as ‘set A’ (‘set B’) in this study corre-
spond to starting to substitute only td (oh) sites with Co
until all td (oh) sites are occupied by Co, and only then
beginning to substitute onto the oh (td) sites. Set A and
B, as referred to in this work, correspond to ‘scenario 1’
and ‘scenario 2’ respectively in Ref. 1. In the data set re-
ferred to as ‘set C’ in this work (or ‘scenario 3’ in Ref. 1),
Co ions are allowed to substitute freely on all TM sites in
the crystal. The DFT training data is composed of such
structures after atomic positions and cell volumes have
been relaxed. It is expected that the set C-type struc-
tures should be higher in energy than those of either set
A or set B types [1], whichever is lower at the concen-
tration of interest. However, without the constraint of
preferential occupation, the total possible combination
space is dramatically larger, opening up the possibility
of entropy-stablisation of the mixed phases [6].

To compare the sampling size required in each of the
three substitution scenarios, we take the 56 atom super-
cell used in the DFT calculations in Ref. 1. Each super-
cell contains 24 TM sites, 8 of which are td-coordinated
and 16 are oh-coordinated. In the set C scenario for N
Co ions in the supercell, the total number of possible
combinations on the 24 TM sites is given by,

CN =
24!

N !(24−N)!
. (1)

Whereas in set B, the total number of combinations for
N < 16 would be

CN =
16!

N !(16−N)!
. (2)

Then for N > 16, this would be

CN =
8!

(N − 16)!(8− (N − 16))!
. (3)

Similarly for set A, the constraint of preferential filling
gives a total number of possible combinations for N < 8
as,

CN =
8!

N !(8−N)!
. (4)

Then for N > 8, this would be

CN =
16!

(N − 8)!(16− (N − 8))!
. (5)

Due to the availability of all 24 sites for substitutions in
set C-type structures, at intermediate compositions the
total number of possible configurations, CN , is enormous.
For example, for x = 0.5 in (CoxMn1−x)3O4, CN for set
C is 2.70×106. In comparison, for the same x for sets
A and B, CN is just 1820. For this reason, the data set
in Ref. 1 sampled sets A and B thoroughly, but was un-
able to substantially sample set C, even after eliminating
symmetrically equivalent structures. Therefore, it was
not possible in this study to consider configurational en-
tropy contributions from this large portion of the total
configuration space. For this reason, we have used the
DFT data set of Ref. 1 as a starting point for training
different ML models to predict the energies of the set
C-type structures.

III. MACHINE LEARNING METHODS

Recent years have seen many successes in the use of
ML methods for various applications in materials science
[14–16], where data sets are used to train algorithms
to predict properties of interest. Here, to approximate
the formation energy in complex (CoxMn1−x)3O4 mixed
phases, we apply supervised machine learning [17]. For
this, various learning algorithms and various representa-
tions for the atomic configurations (or ‘descriptors’) exist
which take into account rotational and translational in-
variance [18–22]. Comparisons of some of these methods
can be found, highlighting their differing predictive ca-
pabilities and computational cost [23, 24].

Common to all of these methods is the need to opti-
mise the model. During training it is important to con-
sider overfitting and underfitting, or ‘bias-variance’ trade
off [25]. To avoid overfitting or underfitting, it is com-
mon to trial various ‘hyperparameters’ associated with
the model complexity for the particular ML method and
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FIG. 1. a) (CoxMn1−x)3O4 crystal structure indicating tetragonal distortion introduced by Mn ions on octahedral lattice sites.
Produced with VESTA [11]. Largest lattice parameter, a, in (CoxMn1−x)3O4 supercells as a function of b) number of Co
on tetrahedral (td) lattice sites and c) number of Co on octahedral (oh) lattice sites, data from Ref. 1 for set A- and B-type
structures.

to then compare the root mean square error (RMSE) be-
tween reference outputs and model predictions at the end
of the training process. This is done with both the train-
ing and validation datasets, to optimize the hyperparam-
eters, and a ‘hold-out’ set of data, which was not seen by
the algorithm during training, to assess model accuracy.
Note that some differing terminologies are used in the
literature where the term “validation set” is sometimes
used for the “hold-out set”, or is sometimes replaced by
“test set”. In the case of underfitting, the RMSE on the
training data is large. While for overfitting the RMSE on
the training data is typically small, but coincides with ei-
ther a plateau or increase in the RMSE for the validation
set with increasing model complexity.

In this work, we investigate the use of three differ-
ent supervised ML methods. The models are trained
with a data set of hundreds of final, relaxed structures of
(CoxMn1−x)3O4 and their corresponding total energies.
In the next sections we provide a brief outline of each
method and a description of their corresponding training
hyperparameters.

A. Artificial neural networks (ANNs)

Our ANN methodology is that of Ref. 26, which makes
use of symmetry functions for representing chemical en-
vironments, similar to those developed by Behler and
Parrinello [18, 27, 28]. During the construction of a de-
scriptor for the chemical environment, it is important to
ensure that it is invariant with respect to rotations and
translations of the system and also to permutations in
the ordering of the atomic inputs. The design of the de-
scriptor can also allow for more automatic optimisation
of the model, and hence fewer hyperparameters that need
to be tuned manually [26].

The representation of input data to the ANN in this
study is an n-dimensional vector for each atom i in the

system,

Dl
i =

∑
cl(zi)c

l(zj)e
−σl(rij−ηl)2fcut(rij , Rcut), (6)

which contains information about the atoms surrounding
atom i out to a certain cutoff distance, Rcut, by using a
Gaussian expansion of interatomic distances rij to probe
the surrounding space where l labels each Gaussian in the
expansion. Parameters η and σ are related to the prob-
ing of this space [26]. In this particular implementation,
these two parameters are automatically optimised during
training so that regions of space which are more impor-
tant for distinguishing different atomic configurations are
selected. fcut is the cutoff function which ensures that the
contributions from neighbouring atoms smoothly goes to
zero as rij approaches Rcut. c

l(zi) and cl(zj) are the parts
of the vector descriptor that are related to the chemical
identity of atom i and its neighbour j, defined by their
atomic numbers zi and zj . These vectors are initialised
randomly and are also optimised automatically during
training.

The output of this ANN is the energy of atom i. The
total energy of a system is then the summation of all of
the atomic energies,

EANN
tot =

∑
i

Ei. (7)

The ANN is trained by minimising the loss function. The
original implementation in Ref. 26 and also in Ref. 29
trains simultaneously with forces and energy, whereas in
this study we train only with energies due to the lack
of force information in the initial data set. Without in-
cluding the forces, the loss function in Ref. 26 is reduced
to ∥∥EANN

tot − EDFT
tot

∥∥2
, (8)

where EDFT are the reference total energies of the train-
ing data and EANN are the predictions by the ANN model
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for the same atomic configurations. Essentially, the ANN
model is fit to minimise the RMSE between DFT energies
and predicted energies for the training data.

Despite the automatic optimisation of some of the pa-
rameters in Eq. 6, there are still various hyperparameters
that need to be tuned for the ANN, and carefully chosen
to avoid overfitting or underfitting. Firstly, there is the
cutoff distance, Rcut, used when creating the descriptor
for each atom in the system. Then for model complex-
ity, the architecture of the neural network can be tuned
by varying the layer size and depth. A larger network
allows for more model flexibility, but too large can result
in overfitting to the training data. Lastly, the number of
epochs can also be tuned. This is the number of training
cycles the model is optimised over. Again, here if the
model is trained over too many epochs this can result in
overfitting.

B. Moment tensor potentials (MTPs)

MTPs are a class of ML potentials first proposed in
Ref. 19 and later extended for multi-component systems
[30]. The latest release of the software is described in
Ref. 31. Similarly to the ANN methodology outlined
above, MTPs represent the energy of an atomic configu-
ration as a sum of contributions of local atomic environ-
ments of each atom i,

EMTP
tot =

n∑
i=1

Ei. (9)

Each contribution Ei is linearly expanded via a set of
basis functions, Bα:

Ei =
∑
α

ξαB
α
i (10)

where the set of parameters ξ = {ξα} are obtained during
training. Unlike ANNs, the atomic environments are in-
stead represented by the moments of inertia of the neigh-
bouring atoms. The moment tensor descriptors of the ith
atom consist of radial and angular parts and are given by:

Mµ,ν
i =

∑
j

fµ(rij , zi, zj) rij ⊗ . . .⊗ rij︸ ︷︷ ︸
ν times

. (11)

Here rij is the position of the jth atom relative to the
ith atom and rij is, as before, its length. The radial part
is further expanded as

fµ(rij , zi, zj) =

NQ∑
β=1

c(β)
µ,zi,zjQ

(β)(rij). (12)

and defines different shells around atom i and contains
a set of radial parameters c = {c(β)

µ,zi,zj} which are
also obtained during training, and radial basis functions,
Q(β)(rij) based on polynomials. A cutoff radius, Rcut,

is also used here to ensure smooth behaviour at the
edges of the atomic environments. The angular part,
rij ⊗ . . .⊗ rij︸ ︷︷ ︸

ν times

, contains the angular information about

the atomic environment and is a rank ν tensor. When
the radial and angular components are combined to form
Mµ,ν , for µ = 0, the increasing ranks of the tensor can be
interpreted mechanically as: the number of atoms within
Rcut of atom i (or as the ‘mass’ of these atoms) for M0,0,
the centre of mass scaled by the mass for M0,1 and the
tensor of the second moments of inertia for M0,2, etc. For
µ > 0, this can then be interpreted as weighted moments
of inertia [19].

The basis functions, Bα, in Eq. 10 are constructed by
defining the ‘level of moments’ via,

levMµ,ν = 2 + 4µ+ ν, (13)

where the coefficients in Eq. 13 were found to be opti-
mal in Ref. 32. The tensor contractions of a number of
moments are defined by adding together such levels. All
such contractions of one or more moments form the basis
functions, Bα. As for the symmetry functions represen-
tation with the ANN, these basis functions are invariant
to atomic permutations, rotations and reflections. The
functional form of the MTP is defined firstly by choos-
ing a maximum level for the basis set, levmax, and then
including all basis functions whose level is less than or
equal to that maximum. And secondly, by the size of the
radial basis, NQ, in Eq. 12.

The parameters ξ and c make up the total set of pa-
rameters that are found during training, θ = {ξ, c}. The
total number of basis functions (and hence the number
of the corresponding parameters ξ) grows exponentially
with levmax, but the number of radial functions increases
linearly with levmax and NQ. levmax and NQ are there-
fore the hyperparameters which define the total set of
parameters to be found during training and hence de-
fine the model complexity. The computational expense
increases with the total number of free parameters; and
the optimal number of such parameters depends on the
total training set size, with the possibility of overfitting
with too many parameters for a small data set. During
the training process, fitting with MTP is performed using
output variables for each configuration in the training set
for quantities from ab initio calculations: total energy,
forces and the stress tensor. Weights can be set to ex-
press the importance of each of these quantities during
the optimisation. In the case of this work, as the ini-
tial data set did not contain sufficient force information,
weights for forces were set to zero.

C. Extended Mean Field (EMF) model for a
two-species, two-site-type compound

An approach commonly known as the Miedema model
is often used to describe the mixing enthalpy of alloys
[5, 33]. The Miedema model was originally developed



5

in the context of liquid alloys, and it was expressed in
terms of solution enthalpies and interfacial area between
species. Nevertheless, its underlying basic concept is
shared with a mean field model in which the average en-
ergy of atomic configurations with average species occu-
pations φi is given by atom-pair contributions, φiεi,jφj ,
where i and j denote the species type [34]. In binary
mixtures of species a and b the two concentrations are
related by φb = 1− φa. The total energy is

〈E〉 = φ2
aεaa + 2φaφbεab + φbεbb. (14)

The case of (CoxMn1−x)3O4 is more complex because
there are two distinct site types: oh and td, and two
species: Co and Mn. We thus extend the model to ac-
count for all the possible interactions between pairs of
species and site types. There are four types of atoms:
Co on a td site, Co on an oh site, Mn on a td site, and
Mn on an oh site. This results in a 4x4 matrix of pair in-
teractions εij . However, the matrix is symmetric because
εij = εji, so only the 10 elements contained in the diago-
nal and the upper triangle are independent parameters.
We can write the energy as the quadratic form:

〈E〉 = xεx = xiεijxj , (15)

where we assume summation over repeated indices. Here
x = xT = {xtd, 1− xtd, xoh, 2− xoh} defines the average
occupations of the system, where 0 ≤ xtd ≤ 1 (0 ≤ xoh ≤
2) denote the average Co concentration in the td (oh)
sites, and 1 − xtd and 2 − xoh denote the corresponding
Mn concentrations. The occupation range of the oh sites
is twice as large as for the td sites, since there are twice
as many of the former than of the latter. The εij are
adjustable parameters to be fitted to the DFT energies.
To do this, we reshape the 10 independent elements of ε
as a single column array, M , and write N equations for
each of the DFT configurations that we want to include
in the fit, as

E(n) = x
(n)
i x

(n)
j Mu = An,uMu, (16)

where u ≡ (i, j) labels the ordered list of pairs (i, j),
with 1 ≤ i ≤ 4, 1 ≤ j ≤ i, containing a total of
10 elements. E(n) is the DFT energy corresponding to
configuration n, whose concentrations array is x(n) =

{x(n)
td , 1− x

(n)
td , x

(n)
oh , 2− x

(n)
oh }. Directly substituting this

into Eq. 16, the explicit values of An in terms of the
elements of x(n) are

A = {x2
td, (1− xtd)xtd, xohxtd, (2− xoh)xtd,

(1− xtd)2, xoh(1− xtd), (2− xoh)(1− xtd),

x2
oh, (2− xoh)xoh, (2− xoh)2},

(17)

where the superscript (n) is ommitted from the x for
simplicity.

Eq. 16 is a system of N equations with 10 unknowns.
It can be written in compact form as

AM = E. (18)

The solution to this (usually overdetermined) system can
be obtained as

M = A−1E, (19)

where A−1 is the pseudoinverse of A. We implement this
solution via a standard least-squares algorithm. Rather
than fit to the total DFT energies, the model is fit with
the formation energies calculated via

E
(n)
form ≡ E

(n)
tot (x)−

(
(1− x

3
)Ex=0

tot −
x

3
Ex=3
tot

)
, (20)

where Ex=0
tot and Ex=3

tot correspond to the total energy
of the pure phases. Formation energies are zero at the
composition extremes, when x = 0 or x = 3. To ensure
that this is the case, from each equation (n) in Eq. 16 we
subtract the energy corresponding to the linearly weighed
average between E(x = 0) and E(x = 3) at x(n). Using
Eq. 17, this yields

E
(n)

form =

(
An −

x
(n)
td + x

(n)
oh

3
B − C

)
M, (21)

where B = {1, 0, 2, 0,−1, 0,−2, 4, 0,−4} and C =
{0, 0, 0, 0, 1, 0, 2, 0, 0, 4}. This equation is solved similarly
to Eq. 19.

The only means to improve the prediction performance
of the EMF model is to increase the training set size,
compared to the various different hyperparameters asso-
ciated with training the ANN or MTP. Unlike the ANN
and MTP models, the implementation of the EMF model
in this work does not depend on the exact atomic posi-
tions or cell volume of the relaxed structures. While the
classic Miedema model involves additional terms, such as
elastic strain and lattice structure information [5, 35, 36],
the EMF model in this work depends only on the oh or
td site occupancy of the Co or Mn species.

IV. RESULTS AND DISCUSSION

A. ML prediction of formation energies

1. Development of the training procedure

Training, validation and hold-out sets

The initial DFT training set from Ref. 1 contains 540
relaxed structures of A- and B-type and 16 C-type (see
Section II). Another 496 C-type structures were calcu-
lated with the same settings as in Ref. 1: spin-polarised
DFT calculations with the Vienna ab initio simulation
package (VASP) [37, 38] and the strongly constrained and
appropriately normed (SCAN) meta-generalized gradient
approximation (meta-GGA) functional [39]. 115 of the
C-type structures contained 12 oh Co and 2 td Co. The
remaining 381 C-type structures calculated are randomly
selected with various compositions. The total DFT data
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set contains 1052 structures. When predicting energies
for the full configuration space of set C, the entire DFT
data set described above is used to train and validate
the ML model. However, the design of the training pro-
cedure (outlined in the following subsections below) in-
volved splitting this full training set into various training,
validation and hold-out sets.

Imbalanced data sets

The training data across the full composition range
contains many more possible structures at intermediate
compositions than at the composition extremes. This
can pose a challenge when wanting to accurately pre-
dict energies of structures that are less well-represented
in the training data. As a test, the DFT data for A- and
B-type structures from Ref. 1 was randomly split into
a training set with 360 structures, and a test set with
the remaining ones. The initial training data for set A-
and B-type structures contained only the final, relaxed
structures. Therefore, there was insufficient force infor-
mation from the relaxation trajectory to fit interatomic
potentials for the systems, as is often done in other ML
studies to predict the full potential energy surface (PES)
[18, 26, 40, 41]. Only the basins of the PES for each
mixed phase were of interest for this study. Therefore,
instead ML models were trained to map initial, unrelaxed
atomic configurations onto final, relaxed energies based
on DFT data of similar structures.

The different hyperparameters associated with each
of the ML methods (see Methods section) were trialled
to determine those which resulted in predictions for
the validation set with the smallest RMSE. The best-
performance models were then used to predict total ener-

gies, and from them formation energies, E
(n)
form via Eq. 20.

Plots of formation energy as a function of composition are
shown in Figs. 2a-c. The ANN method yields a smaller
RMSE than MTP (3.1 meV per atom vs. 4.6 meV per
atom). However, it performs worse at the composition
extremes than MTP, where the formation energy even
drops below the dashed line marking zero energy at cer-
tain compositions.

In order to better balance the sampling for the ANN
training, we trialled generating artificial data for the
minority data based on k-nearest neighbours using the
SMOTE algorithm [42]. However, the structures that
this method generated were often unphysical. This is
likely to be due to the small sample size and high-
dimensionality of the data with each atom type, its coor-
dinates as well as the types and coordinates of its neigh-
bours within the cutoff radius all being used to define the
representation of the structure. We found that the pre-
dictive performance of the ANN at composition edges
improves by weighting higher (or ‘over-sampling’) the
minority data during training (Fig. 2b). This however
slightly increases the RMSE from 3.1 to 3.6 meV per
atom.

Despite the low RMSE’s obtained with the ANN, based
on the better qualitative agreement of the MTP pre-
dictions for this imbalanced data set without the need
for any data pre-treatment, we do not proceed further
with the ANN method for this study. The optimal pre-
treatment of training data is an open research question
[43] and beyond the scope of this work. However, the
improvements observed from over-sampling imply that
further investigations into data pre-treatment procedures
could result in a very good predictive performance with
the ANN. The optimal choice of ML method and data
preparation procedure may also be dependent upon the
particular system under investigation and the available
data. For example, the prediction accuracy may differ
considerably for a large, balanced data set where it is
desirable to reduce the impact of outliers in the data set
on the model.

The third method trialled is the EMF model shown in
Fig. 2d. This method gave the best RMSE of all three
methods (2.7 meV per atom) and did not suffer from
the visibly poor predictions at the composition edges as
with the ANN. It is likely that applying the constraint
of zero formation energy at the composition extremes
in the EMF model is responsible for this improvement.
However, the EMF predictions do not reproduce well the
spread in the DFT data at each composition.

Assessment of prediction capabilities

Fig. 1 shows a substantial variation in the lattice pa-
rameters of the (CoxMn1−x)3O4 supercells as a function
of the number of Co. It has been shown that cluster
expansion predicted energies are typically less accurate
when the systems undergo substantial atomic relaxation
[44]. In the data set for (CoxMn1−x)3O4, the total en-
ergy of each supercell is most strongly dominated by the
total number of the substituting species, i.e. number of
Co, in the supercell. However, finer energy differences
between structures depend on the fraction of Co on td or
oh sites and, even more subtly, the variations in atomic
arrangements between structures with the same number
of Co on the same type of crystallographic sites. As our
EMF model takes only the number of oh and td Co as its
representation of the structure, it is unable to distinguish
between different structures having the same number of
oh and td Co.

The ANN and MTP methods are able to distinguish
the energies of structures with the same number of oh
and td Co only if the unrelaxed ionic coordinates in the
input structures are scaled by the relaxed lattice param-
eters. Fig. 3 shows the predicted MTP versus DFT ener-
gies when using a completely unrelaxed structure as the
input (a), and when the unrelaxed ionic coordinates are
scaled by the relaxed lattice parameters (b). The Pear-
son correlation coefficient increases from -0.0398 to 0.778
and the RMSE decreases from 6.14 to 0.969 meV per
atom when using the relaxed lattice parameters. There-
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FIG. 2. Predicted formation energies and reference DFT data for set A and B type configurations of (CoxMn1−x)3O4. All
models are trained with 360 structures of the total data set shown (540 structures). Structures not included in the training
set are used as the hold-out set to calculate the RMSE in units of meV per atom. a) Predictions from the ANN with a RMSE
of 3.1. b) Predictions from the ANN with an ‘over-sampled’ training set and a RMSE of 3.6. c) Predictions from the MTP
method with a RMSE of 4.6. d) Predictions from the EMF model with a RMSE of 2.7.

fore it is important to obtain estimates of relaxed lattice
parameters for set C structures before predicting their
total energy with the MTP model, as described in the
next subsection.

Ref. [44] highlighted the crucial influence of atomic re-
laxation in the accuracy of the predicted formation ener-
gies of mixed phases using cluster expansion. It appears
that a similar phenomenon is at play in our particular use
of ML i.e. training only on fully relaxed configurations,
whereby strong relaxations lead to decreased prediction
capability. Nonetheless, this does not prevent the accu-
rate prediction of the solubility gap (section IV B), or
to calculate specific site Co occupation probabilities that
are in principle verifiable by experiment [45]. The fact
that the training set is one order of magnitude smaller
than one would need to train a full-fledged interatomic
potential makes this approach useful and attractive when
the availability of computed ab initio data is limited.

Prediction of relaxed lattice parameters

Studies on alloys often use Vegard’s [23, 46] empir-
ical law of a linear relationship at constant tempera-
ture between the lattice parameters and the alloy con-
centration, resulting from the different sizes of the sub-
stituting atoms. However, for (CoxMn1−x)3O4, factors
other than concentration also affect the lattice parame-
ters for a given Co:Mn ratio. The occupation of the oh
sites strongly influences the lattice parameters (section
II). Also, increasing Mn content does not smoothly dis-
tort the cubic structure into the tetragonal cell shape of
Mn3O4. DFT training data in Fig. 4d, and experimental
measurements for this system [13] show a composition-
dependent phase transition of the ground state structure
from the tetragonal spinel of Mn3O4 to the cubic spinel
of pure Co3O4. The composition at which the ground
state phase transition occurs differs between the A-, B-
and C-type structures (Fig. 4a-c).

The lack of force information in the initial training data
set prevents us from relaxing cell shapes with an MTP
potential. Instead, we use all of the DFT training data
(section IV A 1) to estimate lattice parameters based on
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FIG. 3. Correlation between reference DFT energies and
MTP predicted energies of the set C 12 oh 2 td hold-out
set with a) completely unrelaxed structures as inputs and b)
structures with unrelaxed ionic coordinates scaled by relaxed
lattice parameters.

the number of oh and td Co in the supercell. The train-
ing data is classified as cubic when all three lattice pa-
rameters are the same within a tolerance of 0.05Å, and
tetragonal otherwise. This gave 824 cubic and 228 tetrag-
onal structures. Their formation energies as a function of
composition are displayed in Fig. 4e. Best-fit quadratic
surfaces are then fit to cubic and tetragonal data sep-
arately for each lattice parameter as a function of the
number of Co on td and oh sites in the supercells. For
cases with several structures with the same number of
oh and td Co, the minimum energy structure is used in
the fit. These surfaces are then used to predict the lat-
tice parameters for cubic and tetragonal structures, both
when sampling the full configuration space of set C, and
also to replace the true relaxed lattice parameters of the
training set. All best-fit surfaces are included in the SI
(Sections 2 and 3).

For both tetragonal and cubic structures, the largest
weighted mean error in the fits was for the largest lat-

tice parameter, a, which is the one varying the most as
a function of composition. With this method any struc-
ture with the same number of oh and td Co will be as-
signed the same volume. However, the distribution of
cell volumes in the DFT data for C-type structures shows
substantial variations, even between structures with the
same number of oh and td Co (see Section 4 of the SI).
Cell volumes of the 12 oh 2 td Co set have a range of
9.78Å3 compared to 15.44Å3 for the set of all C-type
structures with 14 Co, with the largest variance in the
lattice parameters being that of the largest lattice param-
eter, a. On this basis, the ability to distinguish structures
with the same number of oh and td Co may be beyond
the capabilities of the current model. However, the abil-
ity to distinguish structures with the same number of Co
but a different td:oh ratio is still attainable, and impor-
tant when later accounting for different sources of en-
tropy [10].

Additional tetragonal training data

The Co-poor side of Fig. 4e shows coexistence between
tetragonal and cubic C-type structures, with the latter
corresponding to higher energies. This behaviour is con-
sistent with the tetragonal to cubic phase transition in
the pure Mn3O4 compound [12]. However, there is no
such phase transition in the pure Co3O4 compound. For
tetragonal structures, beyond the Co-poor range, our
method of creating structures based on estimated lattice
vectors will create some tetragonal phases that are not
represented in the DFT training data, which could lead
to extreme extrapolation by the ML model.

Choosing a hard cut-off composition for the existence
of tetragonal structures based on the available DFT
training data would be a large approximation. Instead,
additional tetragonal structures are calculated with DFT
and added to the training set so that some of these
types of structure are present in the training data. The
structures were selected by training a MTP for tetrago-
nal structures with just the available DFT training data
and predicting energies for thousands of randomly gen-
erated tetragonal C-type structures. The structures at
each composition 5-15 Co in the supercell that were pre-
dicted to have the lowest energy by the MTP model were
then selected for the additional DFT calculations. The
tetragonal MTP was then re-trained with this additional
data for all subsequent parts of this work.

Energy predictions when training with the estimated lattice
parameters

To assess the level of discrimination afforded by the
method, firstly MTP was trained with all cubic data ex-
cept those corresponding to (noh, ntd) = (12, 2), which
formed the hold-out set. ntd(oh) stand for the number
of Co per supercell in td(oh) sites. This test yields an
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FIG. 4. Lattice parameters (denoted a-c from largest to smallest) as a function of the number of Co atoms in the supercell from
the training DFT data for the lowest-energy structures that are a) A-type, b) B-type, c) C-type, d) all three sets combined.
Structures are identified as cubic when all lattice parameters are equal, within a tolerance of 0.05Å. e) Formation energy as
a function of composition for the same DFT data with structures identified as cubic (tetragonal) denoted by crosses (filled
circles).

RMSE of 3.61 meV per atom, but it does not achieve
good correlation between reference DFT energies and
model predictions. This suggests that one would need
a fully trained interatomic potential to distinguish be-
tween structures sharing the same (ntd, noh), which is
not possible with the available amount of training data.

On the other hand, when the hold-out sets contain dif-
ferent ntd/noh ratios, the cubic-trained MTP displays in-
creasingly larger Pearson correlation and smaller RMSE’s
as the total number of Co is increased (Table I). An ex-
ception is the 17 Co dataset, whose reduction in corre-
lation is caused by a single outlier (Fig. 5a). From ap-
proximately 16 Co in the supercell (2 per formula-unit),
the minimum energy structures for all three substitution
schemes are all cubic (Fig. 4). Therefore the volume-
composition relationship is much simpler and likely to
be better represented by our surfaces of best fit.

For cubic structures with less than 15 Co in the su-
percell, correlations were typically poorer. For the 14 Co
hold-out set, this is due to a large portion of the set being
structures with the same oh:td ratio for which, as already
discussed, the model with estimated lattice parameters
does not yield well-correlated energy predictions. Fur-
thermore, as can be seen from Fig. 4, between the differ-
ent substitution schemes there is much more variation in
cell parameters at intermediate compositions where the
phase transition occurs at different compositions for the
different substitution schemes. Energy predictions for cu-
bic structures at intermediate compositions are therefore
likely to be less reliable than those in the ‘clearly cubic’
regime for >15 Co in the supercell.

Similar hold-out tests were also performed for tetrago-

TABLE I. RMSE in meV per atom and Pearson correlation
coefficient between reference DFT energies and MTP predic-
tions for cubic holdout set C-type structures with different
total number of Co in the supercell.

# Co 13 14 15 16 17 18

RMSE 6.06 2.46 3.57 1.40 5.40 1.05
Pearson coeff. 0.278 0.0758 0.787 0.878 0.313 0.934

TABLE II. RMSE in meV per atom and Pearson correlation
coefficient between reference DFT energies and MTP predic-
tions for tetragonal hold-out set C-type structures with dif-
ferent total number of Co in the supercell.

# Co 4 5 6 7 8 9 10

RMSE 2.38 7.51 7.52 8.29 16.9 8.58 4.63
Pearson coeff. 0.889 0.726 0.0160 0.661 0.597 0.249 -0.133

nal C-type structures and a MTP trained only on tetrag-
onal data (Fig. 5b and Table II). In this case, better cor-
relation was typically achieved for Co-poor structures,
i.e. in the ‘more tetragonal’ regime. However tetragonal
structures have considerably more variation in lattice pa-
rameters than cubic ones, even for as few as 4 Co in the
supercell in set B (Fig. 4b). It is therefore likely that the
lattice parameter estimates are less accurate for tetrago-
nal structures, especially those compositionally closer to
being B-type. This is reflected by the relatively large
RMSE’s presented in Table II. The correlation substan-
tially decreases upon increasing number of Co in the su-
percell.
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FIG. 5. Scatter plots for calculated DFT total energies
against MTP predictions for hold-out sets of C-type struc-
tures with different total number of Co in the supercell for a)
cubic structures, b) tetragonal structures.

Intermediate compositions have a complex
composition-dependent phase coexistence and sub-
stantial cell volume variation. There, accurate energy
predictions likely can only be obtained using a trained
full potential capable of performing structural relax-
ation. However, for very Co-poor structures and those
with >15 Co in the supercell, energy predictions with
estimated lattice parameters are expected to be more
reliable. In all hold-out set tests performed in this
section, the settings for MTP training that achieved the
best RMSE were the level-eight (i.e. with levmax = 8,
see Section III B) with weights of 1.0 for energy and 0.0
for stress and forces (due to lack of force information in
initial training data). The cutoff radius was Rcut = 5Å.
These settings were therefore used in all subsequent
parts of this work for sampling the configuration space
of set C-type structures.

2. Filling in the configuration space

Random sampling of set C

To sample the millions of possible configurations of
the 56-atom supercell for C-type structures, we gener-
ate random structures and only retain unique configu-
rations. Fig. 6 compares the distribution of total ener-
gies for configurations with 10 Co in the supercell pre-
dicted by MTP for random batches of 1,000, 100,000 and
1,949,176 unique structures (the limit of possible con-
figurations for this particular composition is 1,961,256).
The lowest energy side of the distributions deserves par-
ticular attention, as these configurations contribute the
most to the total free energy (Fig. 6d and f). The mean
and standard deviation of the distribution for the sam-
ple of 100,000 structures (Fig. 6c and d) has converged
to that of the (almost) complete sample (Fig. 6e and f).
Therefore, for all compositions of set C, the generation
of 100,000 unique structures is attempted (noting that
at some compositions there are not as many as 100,000
unique structures in the total configuration space). To-
tal energies are then predicted for these structures with
MTP and EMF models to sample the full composition
space of set C.

Recovering the symmetry degeneracy of the training data

During the generation of the training data for set A-
and B-type structures in Ref. 1, the software package
CASM [47] was used to select only symmetrically unique
structures in order to reduce the total number of neces-
sary DFT calculations. However, this introduces a bias
into the data. A similar approach is adopted by the SOD
software package [48] to reduce the number of calcula-
tions to perform when modelling disordered solids, but
in this case the degeneracy is retained to allow the com-
putation of ‘entropy-reduced’ energy. For the set A- and
B-type training data, it was necessary to first recover the
symmetry degeneracy to remove the bias when sampling
the configuration space and we outline our procedure for
this in the SI (Section 5).

Scaling data by combinatorial space

To scale by the total number of possible combinatorial
substitutions, the data is grouped by total number of Co
atoms in the supercell and then by the total number of
Co on oh sites. A scaling factor is then determined by
finding the factor necessary to scale up the total group
size to be equal to the total combination space for that
particular number of Co and Co-on-oh-sites,

ctot =
ntd

tot!

ntd
Co!(ntd

tot − ntd
Co)!

× noh
tot!

noh
Co!(noh

tot − noh
Co)!

, (22)
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FIG. 6. MTP total energy predictions for random samples of set C type structures of (CoxMn1−x)3O4 with 10 Co in the
supercell. a) 1k attempts batch. b) Batch from (a) augmented with a second 1k batch. c) 100k attempts batch. d) Lowest
0.1 eV of distribution in (c). e) 2 million attempts batch. f) Lowest 0.1 eV of distribution in (e). The mean (µ) and standard
deviation (σ) of each distribution is given in the legend.

where ntd
tot is the total number of td sites in the 56 atom

supercell, ntd
Co is the number of the td sites occupied by

Co. Similarly, noh
tot is the total number of oh sites and

noh
Co is the number of these sites occupied by Co.

For the randomly generated set C structures, this sim-
ply results in multiplying each structure by the scaling
factor. However for set A and B, which were set up to be
symmetrically distinct structures, instead the symmetry
degeneracies of all structures with the same Co count and
Co-on-oh-sites count are summed to determine the total
group size for each Co count and Co-on-oh-sites count.
The symmetry degeneracies are then scaled so that the
total symmetry degeneracy for each group equals the to-
tal combination space for the particular number of Co
and Co-on-oh-sites. This preserves the weight of each
structure in set A and B, where some structures would
have had more equivalent structures if they had been gen-
erated randomly. Note that not all configurations gen-
erated by CASM were successfully relaxed, but by scal-
ing the structures that did relax by configuration space,
essentially an average is being taken over the structures
that did relax as an approximation for missing structures
from the training set.

B. Prediction of free energies

The thermodynamic stability of alloys, or other mixed
phases such as (CoxMn1−x)3O4, depends on minimising
the Gibbs free energy,

G(N,P, T ; ~x) = H − TS, (23)

where N is the number of atoms, P is the pressure, T
is the temperature, H is the enthalpy, S is the entropy
and ~x is a vector representing the full set of molar frac-
tions of the alloying species [5]. For solids at atmospheric
pressure, G can be approximated to the Helmholtz free
energy, F [49, 50]. As shown in Eq. 23, the free energy
is reduced by S. At low temperatures, the product of
TS is small, so the magnitude of the free energy is dom-
inated by H. However, at higher temperatures, there is
a stronger reduction of the free energy by the entropic
term.

There are many different possible contributions to the
entropic term, such as: the different chemical substitu-
tions within the alloy (Schem), vibrational entropy (Svib),
degrees of freedom due to electronic and magnetic exci-
tations (Selec and Smag respectively) [5], giving

S = Schem + Svib + Selec + Smag + ... (24)

From a statistical-mechanics perspective, the reduction
in the free energy by an increased number of states of the
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FIG. 7. Formation energy as a function of Co composition in supercells of (CoxMn1−x)3O4 with set C predicted energies shown
in black from a) the MTP model and b) the EMF model. Free energy curves calculated across a temperature range of 1200-1440
K including: magnetic, vibrational and configurational entropy as obtained from c) the MTP model sampling of set C and d)
that of the EMF model. Solubility gaps obtained from the tangents of the free energy curves (black lines in (c) and (d)) are
shown in (e) and (f) respectively, where experimental data is taken from Ref. 13. Configurational entropy extracted from each
model is shown in g) for MTP and h) for EMF.

system (from various entropic contributions) can be un-
derstood as the phase enclosing more states in its phase
space being more likely to be visited as the system under-
goes microscopic transitions and hence has an increased
stability relative to other phases [49]. The stabilisation
of multicomponent alloys due to the entropy of mixing
from chemical substitution is a fundamental concept of
high entropy alloys (HEAs) and there are a number of
reviews on this particular subject such as Ref. 5, 51 and
52. (CoxMn1−x)3O4 does not technically meet the speci-
fications to be considered a HEA, such as containing five
or more elements in nearly equal atomic ratios [52]. How-
ever, this does not eliminate the possibility of stabilisa-
tion of this system from configurational or other entropy
sources.

All available training data was used to train a MTP
and EMF model, where for the MTP model the train-
ing data was split into tetragonal and cubic structures.
While our EMF model takes only number of oh and td
Co in the supercell as inputs for describing the system, it
was necessary to estimate lattice parameters for all of the
randomly generated structures used to sample the config-

uration space of set C with the MTP model, as described
earlier. The EMF model involved 10 fitting parameters
compared to 156 for the MTP model when training with
the 8g basis set and 3 different atomic species. These
trained models were used to predict the energies of the
full composition space of set C using the randomly gen-
erated structures and scaling by combination space. As
the EMF model is unable to distinguish structures with
the same number of oh and td Co in the supercell, but
with different cell shapes and energies, only the minimum
energy structure in the training set for each number of
oh and td Co is used to train the model. When predict-
ing the free energies with the EMF model, the scaling
factor for set C structures is divided by two as with the
EMF model there is not a cubic and tetragonal version
of the same structure. With this model, there is only the
minimum energy phase at each composition.

Total energies for C-type configurations of
(CoxMn1−x)3O4 predicted by the MTP and EMF
models were used to produce plots of formation energy
vs. composition via Eq. 20, which are shown in Fig. 7a
and b for MTP and EMF models respectively. It can
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be seen that the EMF model produces much more
discretised energy predictions due to its inability to
distinguish structures with the same number of oh and
td Co. These formation energies were used to calculate
F as a function of temperature and Co concentration,
x, including also magnetic entropy, vibrational entropy
and a correction to the configurational entropy at the
composition edges (due to finite-size limitations of the
supercells). These methods are outlined in Ref. 10,
where the importance of each of these contributions
was demonstrated. Calculated F curves from MTP and
EMF are shown in Fig. 7c and d respectively.

The calculated F from each model is then used to
compute the SG (or phase coexistence region) between
tetragonal (H) and cubic (S) phases of (CoxMn1−x)3O4.
This method is again described in Ref. 10. Calculated
SG’s from MTP and EMF are shown in Fig. 7e and
f respectively and compared to experimental data from
Ref. 13. Both methods gave similar SG’s in this low-Co
concentration range, but the EMF model predictions di-
verge more from the experimental SG, especially at very
Co-poor compositions and higher temperatures.

Fig. 7g and h show the extracted configurational en-
tropy from MTP and EMF models respectively. This is
extracted from the predicted configurational free energy,
Fconfig, via,

Sconfig = −

(
∂Fconfig

∂T

)
V

. (25)

The most noticeable difference between the configura-
tional entropy predictions by the two models is the Co-
poor side where the EMF model gives larger configura-
tional entropies than with the MTP model at the same
Co concentrations.

Based on the better agreement between the MTP pre-
diction and experimental data for the SG in the Co-poor
region of the phase diagram, and from comparing the
set C energy predictions to the DFT data for C-type
structures (shown in Fig. 4e), the MTP predictions ap-
pear to reproduce the known features of the system more
accurately. One may also ask how classical force fields
would perform versus ML predictions. However, it is
hard to make a comparison between classical force fields
and machine-learned potentials on an equal footing be-
cause of the different methodologies and philosophies of
their development: the classical potentials are typically
developed through many loops of trial-and-error, while
the machine-learned potentials are trained automatically
on an ab initio database generated ad hoc for the present
problem. Some explicit comparisons can be found in
refs. [53, 54].

With the experimental data available for the H+S SG,
we are only able to investigate the accuracy in the cal-
culation of the phase diagram, and the different ML
methods used to sample set C, for the Co-poor side
of the phase diagram, up to approximately x = 0.3 in
(CoxMn1−x)3O4. Further experimental data for Co-rich

phases would provide valuable information for assessing
the accuracy of the ML predictions, similar to the cation
site occupancy measurements performed in Ref. 55 for a
Mn-rich composition. It was demonstrated in Ref. 10
that composition-dependent magnetic entropy and, in
particular, the vibrational entropy from a higher energy
cubic phase are vital to accurately reproduce the SG in
the Co-poor region. However, on the Co-rich side, where
there is no such higher energy phase, vibrational entropy
may be less dominant in determining F and hence other
factors such as the accuracy in the sampling of C-type
configurations (which appear to be closer in energy to
the ground state on the Co-rich side in Fig. 7a) may play
a stronger role in the calculation of F . In the SI (section
6) we compare the dominant set structure type as a func-
tion of temperature and Co composition as predicted by
the EMF and MTP models.

V. SUMMARY & FURTHER WORK

We have explored the use of three different ML
methods to sample the full configuration space of
(CoxMn1−x)3O4: ANNs and MTPs, originally developed
to implement ML potentials; and a much simpler EMF
method, requiring as inputs only the number of substi-
tuting species occupying particular types of crystallo-
graphic site (i.e. octahedral or tetrahedral in the case
of (CoxMn1−x)3O4).

Our ANN model was capable of achieving some of
the lowest validation RMSE’s in many test cases. How-
ever, in an imbalanced data set, as in the case of
(CoxMn1−x)3O4 with fewer possible configurations at the
composition extremes without any data pre-treatment,
the ANN performed more poorly than the other meth-
ods on minority type data. For the MTP model, due to
the lack of force information in our initial data set, it
was necessary to obtain estimates for the relaxed lattice
parameters of the set C structures based on the DFT
training data. In the Co-poor composition range of the
phase diagram we have compared available experimental
data [13] to model predictions. In this composition range
both EMF and MTP models provide reasonably accurate
predictions, with the MTP predictions being superior to
those of the EMF model at the lowest Co concentrations
and highest temperatures.

Studying the Co-rich side of the phase diagram of
(CoxMn1−x)3O4 and the spinel-rocksalt phase coexis-
tence region [13] could provide valuable insights for en-
ergy storage via redox reactions [1–3]. To study this part
of the phase diagram, further experimental data to check
the accuracy of ML energy predictions would be very
valuable. For example, the predicted relative occupation
of td and oh sites by Co atoms at different temperatures
and concentrations becomes non-trivial beyond 8 atoms
per supercell: as we show in the supplementary materials,
MTP and EMF models predict slightly different occupa-
tions, which could be experimentally verified to assess
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the validity of the models [45]. Furthermore, it would be
necessary to have additional ab initio data for rocksalt
structures. It may also be important to consider the ef-
fect of a possible partial low-to-high spin-state transition
of oh Co in Co3O4 [56–59], which we have neglected in
this work as it focused on the Co-poor side of the phase
diagram, but could impact the magnetic entropy for Co-
rich structures.
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[20] A. P. Bartók and G. Csányi, Gaussian approximation

potentials: A brief tutorial introduction, International
Journal of Quantum Chemistry 115, 1051 (2015).
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