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Abstract—Hsiao and extended Hamming parity-check ma-
trices can be used to define systematic linear block codes 
for Single Error Correction-Double Error Detection 
(SEC-DED). Their fixed code word parity enables the 
construction of low density parity-check matrices and fast 
hardware implementations. Fixed code word parity is 
enabled by an all-one row in extended Hamming parity-
check matrices or by the constraint that the modulo-2 sum 
of all rows is equal to the all-zero vector in Hsiao parity-
check matrices. In this paper, we show that these two con-
straints are particular instantiations of a more general 
constraint which involves an arbitrary number of rows in 
the parity-check matrix. As a consequence, sparser parity-
check matrices with faster hardware implementations can 
be found. Moreover, special instantiations of these ma-
trices enable the detection of all triple-bit and quadruple-
bit burst errors. 
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I.  INTRODUCTION 

Single Error Correction-Double Error Detection 
(SEC-DED) codes provide an effective way to increase 
the reliability of semiconductor memory subsystems 
[12]. For example, any type of one chip failure can be 
masked and two chip failures can be detected in SEC-
DED-protected memory subsystems if each bit of any 
code word is stored in a different memory chip [3].  

SEC-DED codes also have a relatively low perfor-
mance overhead which makes them an ideal candidate 
for the protection of main and cache memories [4][5]. 
Especially, SEC-DED codes with fixed code word parity 
enable efficient hardware implementations since they 
facilitate the double error detection. Another factor that 
influences the latency of these codes is the density of the 
parity-check matrix, also called H-matrix, which is de-
fined as the percentage of 1-elements with respect to the 
total number of matrix elements. 

Nowadays, only extended Hamming and Hsiao 
H-matrices are available to implement SEC-DED codes 
with fixed code word parity [7][8]. In an extended 
Hamming H-matrix, the fixed code word parity is 
encoded with the help of an all-one row, while in a 
Hsiao H-matrix, this is ensured by the restriction to have 
only columns with an odd number of 1-elements. In 
general, the Hsiao H-matrices enable faster implementa-
tions due to a lower density and to a more uniform

distribution of the 1-elements over the matrix rows. 

Here, we propose a way to reduce the H-matrix den-
sity for SEC-DED codes with fixed code word parity 
based on a generalization of the restrictions used until 
now. We prove that the fixed code word parity is en-
sured if a subset of H-matrix rows can be found such 
that it intersects each H-matrix column in an odd num-
ber of 1-elements. Hsiao and extended Hamming H-ma-
trices correspond to the extreme cases when this subset 
contains only one or all matrix rows, respectively. The 
reported experimental results prove that the generalized 
H-matrices enable faster implementations. Such gene-
ralizations can be applied to reduce the H-matrix density 
of any linear block code with fixed parity [1][2][9][13]. 

A special flavor of the new H-matrices is obtained if 
the constraint of having an odd number of 1-elements on 
a certain segment of each matrix column is reinforced to 
have a single 1-element. These special matrices enable 
the detection of all triple-bit and quadruple-bit burst 
errors. Consequently, the SEC-DED codes defined by 
such H-matrices may be helpful to protect fast on-chip 
inter-connections affected by crosstalk induced signal 
degradation [11] or fast embedded memories for which 
bit-interleaving [3] reveals as too expensive. 

After a brief review of the linear block SEC-DED 
codes in Section II, the generalized H-matrices are 
introduced in Section III. The paper achievements are 
summarized in Section IV. 

II. SYSTEMATIC LINEAR BLOCK SEC-DED CODES 

WITH FIXED PARITY 

Binary linear block codes are described by an r×n 
H-matrix such that each code word V fulfills the relation 
below [2][10]: 
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where r and n-r are the numbers of check and data-bits 
and the symbols '' and '' denote the logic exclusive 
disjunction and conjunction operators, respectively. 
Each H-matrix column corresponds to a particular bit 
position and each H-matrix row to a particular check-bit 
position in the code words. In case of systematic codes, 
the H-matrix columns that correspond to the check-bit 
positions are linearly independent and usually form an 
identity or a triangular matrix. Consequently, these 



 

H-matrix columns build an r×r triangular matrix in the 
case of extended Hamming H-matrices [7] or an r×r 
identity matrix in the case of Hsiao H-matrices [8] as 
shown in Fig. 1 and Fig. 2, respectively.  

During the error checking/correction operation of a 
code word V’, syndrome bits Sj  are calculated according 
to the following expression: 
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If S is an all-zero vector, the code word V’ is as-
sumed to be error-free. Otherwise, the syndrome S is 
used to correct or detect the occurred errors. A single-bit 
error generates a syndrome identical to the H-matrix 
column that corresponds to the corrupted bit position 
while a multi-bit error produces a syndrome equal to the 
modulo-2 sum of the H-matrix columns associated to the 
affected bit positions. Consequently, in order to ensure 
the SEC property, the columns of the H-matrix must be 
different from each other and from the all-zero vector. 
DED capacity is enabled if each column is also different 
from the modulo-2 sum of any other two columns. 

SEC-DED codes with fixed parity are used to facili-
tate the double-bit error detection. The H-matrix in 
Fig. 1 enables fixed code word parity due to the all-one 
row that corresponds to an overall parity bit. The same 
property is ensured by the odd number of 1-elements on 
each H-matrix column in Fig. 2. These two H-matrices 
become identical if the last H-matrix row in Fig. 1 is 
replaced by the modulo-2 sum of all initial rows. The H-
matrices in Fig. 1 and Fig. 2 define the same code words 
since (1) is still satisfied if one H-matrix row is replaced 
by any linear combination of the initial rows that in-
cludes the initial row. It makes more sense to use the 
notion of Hsiao or extended Hamming H-matrices 
instead of Hsiao or extended Hamming codes. 

If the SEC-DED code words have even parity, a 
double-bit error can be indicated if the relation below 
becomes true: 
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V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
0 0 1 0 1 1 0 1 1 0 0 0 0
0 1 0 1 0 1

0
1 0 0 1 0 0 0

1 0 0 1 1 1 1 0 0 1 0 0
1 1 1 0 0 0 1 1 0 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1

data-bit positions check-bit positions 

1  
Figure 1. 5×13 extended Hamming H-matrix. (Only the last row is 

used to enable fixed code word parity.) 

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
0 0 1 0 1 1 0 1 1 0 0 0 0
0 1 0 1 0 1

0
1 0 0 1 0 0 0

1 0 0 1 1 1 1 0 0 1 0 0
1 1 1 0 0 0 1 1 0 0 0 1 0
1 1 1 1 1 0 0 0 0 0 0 1

data-bit positions check-bit positions 

1  
Figure 2. 5×13 Hsiao H-matrix. (All rows are used to enable fixed 

code word parity.) 

where the first factor corresponds to the negated code 
word parity and the symbol '' stands for the logic 
disjunction operator. Relation (3) can also be used to 
detect any error that affects an even number of bits and 
generates a non-zero syndrome. 

In case of extended Hamming H-matrices, the first 
factor in (3) can be obtained by negating the syndrome 
bit that corresponds to the all-one row. The parity of a 
Hsiao code word can also be calculated as the overall 
parity of the syndrome bits as follows: 
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An odd parity code can be obtained from an even 
parity code by changing the polarity of an odd number 
of check-bits. As the same H-matrices can be used to 
define an even or an odd SEC-DED code, only SEC-
DED codes with even parity will be considered in the 
following. 

III. GENERALIZED H-MATRICES FOR SYSTEMATIC 

LINEAR BLOCK SEC-DED CODES 

We start from the observation already mentioned in 
the previous section: in any linear code, a code word V 
multiplied to any linear combination of the H-matrix 
rows must be zero. Based on (1), this can be formalised 
by the following expression: 
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where L contains the indices of a subset of H-matrix 
rows. If these rows intersect each H-matrix column in an 
odd number of 1-elements, then the following relations 
become true: 
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and (5) can be transformed as shown below which 
indicates a fixed code word parity: 
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L contains only the index of one matrix row in case 
of an extended Hamming H-matrix or the indices of all 
rows in case of a Hsiao H-matrix. 

Fig. 3 and Fig. 4 illustrate two generalized 
H-matrices where L contains the indices of 4 and 3 rows, 
respectively. The advantage of such generalized H-
matrices comes from their lower density. The number of 
1-elements is 28 in Fig. 3 and 27 in Fig. 4 while this 
number is 35 in Fig. 1 and 29 in Fig. 2. 

The only restriction that must be fulfilled by the ele-
ments of the H-matrix rows with indices outside L 
comes from the single-bit error correction capability 
which requires that any H-matrix column is different 
from the all-zero vector and from each other. 

Another advantage of the generalized H-matrices 
with respect to the Hsiao H-matrices comes from the 
lower cost of computing the overall parity of a code 
word V’ during the decoding process. For an arbitrary 
code word V’ only the first equality of (7) is true and



 

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
0 0 0 0 1 1 1 1 1 0 0 0 0
0 1 1 1 0 1

0
0 0 0 1 0 0 0

1 1 1 0 1 1 0 0 0 1 0 0
1 1 0 1 1 0 0 1 0 0 0 1 0
1 0 1 1 1 0 0 0 1 0 0 0 1

data-bit positions check-bit positions 

 
Figure 3. 5×13 SEC-DED H-matrix with 4 rows used to enable fixed 

code word parity. 

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
0 1 1 1 1 0 1 0 1 0 0 0 0
0 1 1 1 0 1

0
0 1 0 1 0 0 0

1 1 0 0 1 0 1 0 0 1 0 0
1 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 1 0 0 1

data-bit positions check-bit positions 

 
Figure 4. 5×13 SEC-DED H-matrix with 3 rows used to enable fixed 

code word parity. 

based on (2) it comes out that the overall parity of V’ is 
equal to the parity of the syndrome bits with indices in 
the subset L as illustrated below. 
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As long as the cardinality of L is smaller than the 
number of rows r in the H-matrix, the modulo-2 sum in 
the right-hand side of (8) requires a smaller hardware 
overhead as compared to (4). 

An existing H-matrix can be optimized based on the 
property expressed in (5): a code word that fulfils (1) 
will also fulfill it if the H-matrix is replaced by an 
H’-matrix whose rows are linear combinations of the 
initial H-matrix rows provided that each row of H 
contributes to at least one row of H’. For example, the 
code words defined by the H-matrix in Fig. 1 can also be 
defined by the H’-matrix in Fig. 5 obtained by replacing 
the last matrix row in Fig. 1 with the modulo-2 sum of 
the last two rows. In this way, the number of 1-elements 
in the H-matrix has been reduced from 35 to 29. Such 
transformations can be performed on the H-matrices of 
any linear block code. For example, this can be applied 
to double error correction-triple error detection BCH 
codes [1][2][9][13]. 

In Table I, we present the 1-element ratios between 
generalized, Hsiao and extended Hamming H-matrices 
for some of the most commonly used SEC-DED codes. 
Only generalized H-matrices that are different from ex-
tended Hamming and Hsiao H-matrices are considered. 
As compared to Hsiao matrices, the generalized 
H-matrices have a lower density except for the case 
when the number of data bits is equal to 32 and 64. The 
most important density reduction, 7.4%, was obtained 
for codes with 8 data-bits. Non-negligible reductions 
were also achieved for SEC-DED codes with wide code 
words which are interesting due to their reduced check-
bit overhead. 

The densities of extended Hamming H-matrices are 
more important due to the presence of the all-one row. 
As it will be seen later, this does not necessarily result in

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
0 0 1 0 1 1 0 1 1 0 0 0 0
0 1 0 1 0 1

0
1 0 0 1 0 0 0

1 0 0 1 1 1 1 0 0 1 0 0
1 1 1 0 0 0 1 1 0 0 0 1 0
0 0 0 1 1 0 0 1 1 1 0 1

data-bit positions check-bit positions 

1  
Figure 5. 5×13 SEC-DED H-matrix with 2 complementary rows used 

to enable fixed code word parity. 

TABLE I. NUMBER OF 1-ELEMENTS IN DIFFERENT TYPES OF  
SEC-DED H-MATRICES 

Dat
a 

bits     
(n-r) 

Extended 
Hammin

g 

Hsia
o 

Gene-
ra-

lized 

Generalize
d w.r.t. 

Extended 
Hamming 

Generalized 
w.r.t. Hsiao 

8 35 29 27 17.1% 7.4 % 

16 65 54 51 21.5% 5.6 % 

32 126 103 104 18.3% -1.0% 

64 258 216 216 16.3% 0.0% 

128 545 481 461 15.4% 4.2% 

256 1153 1050 1010 12.4% 3.8% 

512 2508 2241 2182 13.0% 2.6% 

 
a slower implementation since the all-one row takes into 
account all operations required for the calculation of the 
code word parity, which is not the case with the other 
H-matrices. Moreover, as long as only the correction of 
data-bit errors is required, only r-1 H-matrix rows need 
to be considered to perform single error correction and 
the only row that can be neglected in extended 
Hamming H-matrices is the all-one row.  

We implemented SEC-DED decoders for several 
Hsiao, extended Hamming and generalized H-matrices 
with the goal to get the minimum possible latency under 
the constraint that single error correction and double 
error detection can be performed in one clock cycle. 
Relation (3) was used to indicate the presence of double-
bit errors. The overall code word parities were calcu-
lated with the first factor in (3) for all H-matrices, alter-
natively with (4) for all Hsiao H-matrices and with (8) in 
the case of generalized SEC-DED H-matrices. Synthesis 
results obtained with Synopsys Design Compiler and a 
45nm standard cell library (TSMC N40LP CMOS) are 
reported in Table II and Table III. These results corres-
pond to the case when only the data bits were made 
available at the decoder output. 

The generalized H-matrices provided the smallest 
latencies despite the fact that hand-optimized versions of 
Hsiao H-matrices from [8] were used. Not only the 
lower density of the generalized H-matrices contributed 
to these improvements but also to the usage of (8) that 
simplifies the computation of the overall parity and 
implicitly the detection of double-bit errors.  The only 
two cases reported in Table II for which no latency 
reduction could be obtained correspond to the two cases 
in Table I for which no improvements of the Hsiao 
H-matrix density could be achieved. 

Since the main synthesis target was the improvement



 

of the decoder speed, the best latency results were 
accompanied by a certain logic overhead as reported in 
Table III. The negative figures represent a reduction of 
the decoder area. The largest overhead was slightly 
above 10% which can be considered as acceptable due 
to the very small size of these decoders. 

Special versions of the generalized H-matrices ena-
ble fast detection of certain triple-bit and quadruple-bit 
errors. In these H-matrices, the rows with indices in the 
subset L are complementary. This means that all these 
rows define a sub-matrix with one and only one 
1-element in each column. 

An example of an H-matrix with 3 complementary rows 
for a SEC-DED code with 16 data-bits is shown in Fig. 
6. In case of a single-bit error, one and only one of the 3 
syndrome bits which corresponds to complementary H-
matrix rows becomes equal to 1. However, in case of 
burst errors that affect 3 or 4 adjacent bit positions at 
least 2 of these 3 syndrome bits become 1. The H-matrix 
in Fig. 6 is sparser than any 6×22 Hsiao H-matrix. 

TABLE II. IMPROVEMENTS OF MINIMAL DECODER LATENCY 

OBTAINED WITH THE GENERALIZED H-MATRICES 

Data-bits     
(n-r) 

Generalized w.r.t. 
extended Hamming 

Generalized 
w.r.t. Hsiao 

8 0.0% 3.1% 

16 4.1% 5.3% 

32 1.2% 0.0% 

64 3.1% 0.0% 

128 6.1% 2.7% 

256 1.0% 5.4% 

512 4.9% 2.8% 

TABLE III.  DECODER LOGIC OVERHEAD FOR MINIMAL DECODER 

LATENCY 

Data-bits     
(n-r) 

Generalized w.r.t. 
extended Hamming 

Generalized w.r.t. 
Hsiao 

8 -7.3% 3.0% 

16 0.5% 10.9% 

32 5.8% -1.2% 

64 4.6% 2.2% 

128 3.6% 1.7% 

256 -2.6% -0.8% 

512 3.5% 0.8% 

IV. CONCLUSIONS 

We proposed the concept of generalized H-matrices 
for SEC-DED codes according to which a variable 
number of H-matrix rows can be used to provide fixed 
code word parity. Hsiao and extended Hamming 
H-matrices become particular cases of the new concept 
and sparser H-matrices can be found for a wide range of 
code word sizes. Moreover, with the generalized 
H-matrices a lower number of syndrome bits can be 
used to compute the overall code word parity as 
compared to Hsiao H-matrices. Synthesis results proved 
the potential of the generalized H-matrices to increase 
the design space of SEC-DED codes with fixed code 
word parity and to enable more efficient hardware 
implementations. 
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1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 01
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Figure 6. 6×22 H-matrix with 3 complementary rows that resembles the H-matrix of a Fire code [6]. 


