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Abstract: Compressible multi-materialflows are encountered in a wide range of natural phenomena
and industrial applications, such as supernova explosions in space, high speed flows in jet and
rocket propulsion, underwater explosions, and vapor explosions in post accidental situations in
nuclear reactors. In the numerical simulations of these flows, interfaces play a crucial role. A poor
numerical resolution of the interfaces could make it difficult to account for the physics, such as
material separation, location of the shocks and contact discontinuities, and transfer of the mass,
momentum and heat between different materials/phases. Owing to such importance, sharp interface
capturing remains an active area of research in the field of computational physics. To address this
problem in this paper we focus on the Interface Capturing (IC) strategy, and thus we make use of
a newly developed Diffuse Interface Method (DIM) called Multidimensional Limiting Process-Upper
Bound (MLP-UB). Our analysis shows that this method is easy to implement, can deal with any
number of material interfaces, and produces sharp, shape-preserving interfaces, along with their
accurate interaction with the shocks. Numerical experiments show good results even with the use of
coarse meshes.

Keywords: multi-material compressible flows; Diffuse Interface Method (DIM); MUSCL reconstruction;
compressive-shape preserving limiter; gradient reconstruction; MLP-UB method

1. Introduction

Multi-phase compressible flows are present in a wide and ever expanding range
of natural and industrial applications. Among them we can mention supernova explo-
sions [1], high speed flows in jet and rocket propulsion [2], underwater explosions [3,4],
and the scenario of vapor explosions in post accidental situations in nuclear reactors [5,6].
To compute these flows, two main families of numerical methods are used: Lagrangian and
Eulerian. In the Lagrangian approach, the objective is to describe the phenomena that gov-
ern the state of an individual fluid element, while in the Eulerian approach, the objective
is to describe the phenomena that govern the state of the fluid in a fixed volume element.
In these modeling approaches, the main concerns are the treatment of the interfaces and
the phenomena associated with them.

In the case of a Lagrangian approach, the interfaces are followed by moving and
deforming the mesh [7,8]. For the Eulerian approach, it is possible to capture or reconstruct
the interface by adding a dedicated equation. This is the approach adopted in the methods
such as Volume Of Fluid (VOF) [9–11] and Level Set [12,13]. Front tracking methods [14,15]
also exist, coupling some advantages of the Lagrangian and Eulerian representations. These
methods consider the interface as a local discontinuity. However, algorithms dedicated
for the determination of the position of interfaces are often expensive. Moreover, strong
topology changes and formation/disappearance of the interfaces are particularly complex
to deal with, especially with the increase in the number of phases present.
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There is another class of Eulerian methods called algebraic methods, which belong
to the class of sharp Interface Capturing (IC) approach [16] . These methods are often
referred to as Diffuse Interface Methods (DIM) [17], an exhaustive up-to-date review of
which can be found in [18]. In this family of methods, the diffusion of the interface is
allowed. The interfaces are not subjected to any particular geometrical treatment, which
makes their implementation easier. Moreover, these methods can handle the dynamic
formation, disappearance and large deformation of the interfaces in flows with several
phases. The propagation of the acoustic waves can also be naturally taken into account.
However, one of the drawbacks of these methods is the smearing of the already diffused
interfaces, due to the numerical diffusion. Significant smearing of the interfaces can then
result in an extended zone of a pure numerical (non-physical) mixture of the different
materials in the vicinity of the interfaces. Thus, the accurate description of any physical
phenomena at the interface may be deteriorated by this wide diffusion zone.

For our own end-use applications, we have decided to focus in this paper on the IC
approach to solve the multi-material compressible problem. To ensure the sharp interface
capturing in the solution of a compressible multi-phase model, a second-order multidimen-
sional MUSCL [19] reconstruction is used with a recently developed compressive, shape-
preserving gradient limiter, referred to as Multidimensional Limiting Process–Upper Bound
(MLP–UB) [18], which is an updated variant of the classical MLP approach demonstrated
in [20]. Sharp interface capturing methods are generally Finite Volume (FV) methods,
either based on the high order flux evaluations or on the slope reconstruction, but in all the
cases they make use of the limiters (flux or slope). Besides the MLP–UB approach adopted
here, other popular methods/schemes found in the literature are: limited downwind
scheme [21], THINC scheme [22] or the method using correction algorithms [23].

The one-pressure, compressible system of the continuous equations considered in this
work is focused on the phase volume fractions together with the evolution of the mean
mass, momentum and energy of each phase [24–26]. This system is a well-known problem
allowing the assessment of the good behavior of our IC approach together with the use of
a compressive, shape-preserving gradient limiter for an arbitrary number of phases. This
study is the sequel to the work done in [18], which was restricted to the cases modeled
with a pure advection equation. Thus, the starting point model proposed in this paper is
intended to evolve using the appropriate closure terms in order to generate the models
of industrial relevance. These added terms could be obtained by applying a statistical
averaging operator on the corresponding elementary conservation laws written for each
fluid. This produces many fluctuation correlation terms that must be closed, usually by
introducing the supplementary physical properties of the system.

This paper is organized as follows: after this introduction, we present in Section 2,
modelling and governing equations for the compressible multi-phase flows considered in
this work. Next, Sections 3–5 introduce the time discretization, and interface sharpening
strategy within the framework of space discretization. Following this we present the
numerical results obtained for the two-material flows in Section 6, and for the multi-
material flows in Section 7. Finally, the conclusions are drawn and scope for the future
work is briefly discussed.

2. Physical Model and Governing Equations

Considering a compressible multi-phase flow with N phases, where each phase is in-
dexed by φ ∈ {1, ..., N}, and is modelled as a compressible medium with a thermodynamic
state defined by its:

1. mass density ρφ;
2. specific internal energy eφ;
3. temperature Tφ;
4. pressure pφ.

Further, each phase φ obeys a coupled system of governing equations, composed of
the balance equations of mass, momentum and energy for each phase. We consider here
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the situation where the pressures are at the instantaneous equilibrium everywhere, so that
we have:

pφ = p ∀φ ∈ {1, ..., N}. (1)

where p is an equilibrium pressure. We also consider that every control volume (in the
terminology of the Eulerian framework) is filled by different phases, such that:

N

∑
φ=1

αφ = 1, (2)

with αφ ∈ [0, 1] is the volume fraction of any phase φ. Additionally, the system is completed
with two equations of state (EOS), relating the four thermodynamic variables. The well-
known complete set of volume-averaged equations for any phase φ is written here in terms
of the internal energies, as shown below:

∂(ρφαφ)

∂t
+∇ · (ρφαφuφ) = 0, (3)

∂(ρφαφuφ)

∂t
+∇ · (ρφαφuφ ⊗ uφ) = −αφ∇(pφ) + Fφ, (4)

∂(ρφαφeφ)

∂t
+∇ · (ρφαφeφuφ) = −pφ

[
∂(αφ)

∂t
+∇ · (αφuφ)

]
, (5)

pφ = p ∀φ ∈ {1, ..., N}, (6)

∑
φ

αφ = 1, (7)

EOS1(ρφ, eφ, Tφ, pφ) = 0, (8)

EOS2(ρφ, eφ, Tφ, pφ) = 0 ∀φ ∈ {1, ..., N}, (9)

The above system is identified by the unknowns
[
uφ, ρφ, αφ, eφ, Tφ, pφ

]
. uφ is the

phase velocity and we denote the components of the vector uφ = (uφ, vφ) in 2D and
uφ = (uφ, vφ, wφ) in 3D. EOSi stands for the Equation Of State number i; i = 1, 2. The form
of EOSi mentioned above is generic. The specific definitions are given in Sections 6 and 7.

Furthermore, in the present study, as evident from the above system of equations,
we have separate momentum equations for each phase with independent velocities per
phase. It is known that without the velocity relaxation terms, this system is conditionally
hyperbolic with the loss of hyperbolicity under certain conditions [27,28]. This issue can be
fixed by using a large friction source term Fφ for balancing velocities between the phases.

In this work we deal with the situation where there is a full mechanical equilibrium.
This implies that the phases share a common velocity, which is achieved through the use of
a term Fφ. The form of which is:

Fφ = D

[
N

∑
φ∗ 6=φ

uφ∗ − (N − 1)uφ

]
. (10)

where D is a friction constant which determines the rate at which velocities equilibrate,
and φ∗ is a conjugate phase i.e., φ∗ 6= φ.

3. Time and Space Discretization
3.1. Time Discretization

The time segment [0, T] is split into successive time-steps [tn, tn+1] with ∆t ≡ ∆tn =
tn+1 − tn > 0 and n ∈ N. We further identify any variable or parameter ψ at time tn as
ψn. In this study we first consider a semi-discrete, first-order, semi-implicit time discretiza-
tion scheme, where discrete spatial operators are written in an explicit form, except in
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the pressure terms. The pressure terms are made implicit for numerical stability reasons
and to make use of larger time steps, choice of which is restricted by CFL-like [29] con-
ditions based on material velocities. This gives rise to a coupled, nonlinear system of
semi-discrete equations:

ρn+1
φ αn+1

φ = ρn
φαn

φ − ∆t∇ · (ρn
φαn

φun
φ), (11)

ρn
φαn

φ (u
n+1
φ − un

φ) = −∆t ρn
φαn

φ un
φ · ∇(un

φ)− ∆t αn
φ∇pn+1

φ + ∆t Fn+1
φ , (12)

ρn+1
φ αn+1

φ en+1
φ = ρn

φαn
φen

φ − ∆t∇ · (ρn
φαn

φen
φun

φ)− ∆t pn+1
φ

[
αn+1

φ − αn
φ

∆t
+∇ · (αn

φun
φ)

]
, (13)

pn+1
φ = pn+1, (14)

∑
φ

αn+1
φ = 1, (15)

EOSi(ρ
n+1
φ , en+1

φ , Tn+1
φ , pn+1

φ ) = 0, i = 1, 2. (16)

Here superscripts n and n + 1 denote the term at previous discrete time tn (explicit
terms) and next discrete time tn+1 (implicit terms), respectively. The above system of
partial differential Equations (11)–(16) is in the semi-implicit form in time. With regard
to the time scheme, we have taken a two-step approach for the numerical solution of the
system (11)–(16). These are:

1. Explicit convection/advection step: This step deals with the numerical calcula-
tion of all explicit terms in the system (11)–(16). This step is also called a convec-
tion/advection step (referred to as advection step hereafter) because these explicit
terms can be determined by simply solving the advection problems for uφ, αφ, αφρφ

and αφρφeφ, as shown below:

Time discrete system for the explicit advection step

(uφ)
c,n+1 = un

φ − ∆t un
φ · ∇un

φ, (17)

(αφ)
c,n+1 = αn

φ − ∆t∇ · (αn
φun

φ), (18)

(ρφαφ)
c,n+1 = ρn

φαn
φ − ∆t∇ · (ρn

φαn
φun

φ), (19)

(ρφαφeφ)
c,n+1 = ρn

φαn
φen

φ − ∆t∇ · (ρn
φαn

φen
φun

φ). (20)

where superscript c denotes the advected quantities.

Remark 1. In Section 5 we will focus on the application of the sharp interface capturing strategy
for the space discretization of divergence operators in Equations (18)–(20).

2. Implicit step: This step deals with the numerical solution of only implicit terms in the
system (11)–(16) after calculating the explicit ones by solving the explicit advection
step. To rewrite the system (11)–(16) in form of only implicit quantities, we perform the
following substitution: (19) in (11); (17) in (12); (20) and (18) in (13). We consequently
get the system of equations containing only implicit terms at time tn+1:

ρn+1
φ αn+1

φ = (ρφαφ)
c,n+1, (21)

ρn
φαn

φ (u
n+1
φ − (uφ)

c,n+1) = −∆t αn
φ∇(pn+1

φ ) + ∆t Fn+1
φ , (22)

ρn+1
φ αn+1

φ en+1
φ = (ρφαφeφ)

c,n+1 − pn+1
φ (αn+1

φ − (αφ)
c,n+1), (23)

pn+1
φ = pn+1, (24)
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∑
φ

αn+1
φ = 1, (25)

EOSi(ρ
n+1
φ , en+1

φ , Tn+1
φ , pn+1

φ ) = 0, i = 1, 2. (26)

At this point it is worth mentioning that the time scheme presented here is a modified
version of the so-called Implicit Continuous Eulerian (ICE) scheme [30,31]. But unlike
ICE, where velocity variables (uφ) are made implicit in the advection equations of volume
fractions (αφ), partial masses (ρφαφ) and partial energies (ρφαφeφ), we have used instead
explicit time discretization. Indeed, in this first approach, we made the choice to solve
only pressure terms in an implicit way because, as explained in [32] for a two-phase flow
system, the characteristic time scale for the pressure propagation is much smaller than that
of advection. Thus, choosing an implicit time discretization for pressure will avoid the
choice of very small time steps for its numerical resolution.

Next, rewriting Equations (21)–(26) in the form of phase volumes (Vφ = αφV, where
V denotes the sum of volumes of all the phases) and mass (mφ) is preferred:

mn+1
φ = ρn+1

φ Vn+1
φ = V (ρφαφ)

c,n+1, (27)

mn
φ (u

n+1
φ − (uφ)

c,n+1) = −∆t Vn
φ ∇(pn+1

φ ) + ∆t Fn+1
V,φ , (28)

where mn
φ = V(ρφαφ)n and Fn+1

V,φ = V Fn+1
φ ,

mn+1
φ en+1

φ = (Eφ)
c,n+1 − pn+1

φ (Vn+1
φ − (Vφ)

c,n+1), (29)

where (Eφ)c,n+1 = V (ρφαφeφ)c,n+1 and (Vφ)c,n+1 = Vαc,n+1
φ ,

pn+1
φ = pn+1, (30)

∑
φ

Vn+1
φ = V, (31)

EOSi(mn+1
φ /Vn+1

φ , en+1
φ , Tn+1

φ , pn+1
φ ) = 0, i = 1, 2. (32)

The first relation given by Equation (27) will be solved after solving the following
ones in order to compute partial mass density for each phase (see Section 4). Notice that the
operation mn+1

φ /Vn+1
φ in Equation (32) to get ρn+1

φ forbids the use of a zero phase volume.
Thus, we summarize the final time discrete system for the implicit step with the new

unknowns
[
un+1

φ , mn+1
φ , Vn+1

φ , en+1
φ , Tn+1

φ , pn+1
φ

]
:

Time discrete system for the implicit step

mn
φ (u

n+1
φ − (uφ)

c,n+1) = −∆t Vn
φ ∇pn+1

φ + ∆t Fn+1
V,φ , (33)

mn+1
φ en+1

φ = (Eφ)
c,n+1 − pn+1

φ (Vn+1
φ − (Vφ)

c,n+1), (34)

pn+1
φ = pn+1 (35)

∑
φ

Vn+1
φ = V, (36)

EOSi(mn+1
φ /Vn+1

φ , en+1
φ , Tn+1

φ , pn+1
φ ) = 0, i = 1, 2. (37)

This time discrete system in this implicit step is coupled and non-linear. We generically
denote it for any phase φ by:

Qtime
(

un+1
φ , mn+1

φ , Vn+1
φ , en+1

φ , Tn+1
φ , pn+1

φ

)
= 0. (38)
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where Qtime represents the system of Equations (33)–(37) in the implicit step, and discretized
only with respect to time.

3.2. Space Discretization

In our study we deal with the Finite Volume method (FVM) [33] discretization of
Equations (33)–(37). It is important to remark at this point that here in this section, for the
sake of conciseness, we prefer not to highlight the numerical strategy for the FV discretiza-
tion of the divergence operators in the advection problems’ set (17)–(20), we reserve that
analysis for Section 5. Further, the two-dimensional (2D) and three-dimensional (3D)
versions have been implemented, but at this step, only a 2D version has been validated and
thus presented in this paper. We thus consider a two-dimensional (2D) uniform Cartesian
mesh [34] with staggered variables for space discretization (in the spirit of Raviart–Thomas
finite elements), in order to avoid the pressure oscillations due to the checkerboard prob-
lem [33]. Thus, as usual, the normal velocity variables are stored at faces of control volumes,
whereas all other scalars (volume fractions and thermodynamic variables, generically noted
by Π hereafter) are stored at cell centers, as shown in Figure 1 [35].

After performing a finite volume space discretization of time discrete model (33)–(37),
we get a non-linear and coupled algebraic model, which generically can be written as:

Qtime
space

(
un+1

φ, f ace, vn+1
φ, f ace, mn+1

φ,center, Vn+1
φ,center, en+1

φ,center, Tn+1
φ,center, pn+1

φ,center

)
= 0. (39)

where Qtime
space represents the system of Equations (33)–(37) in the implicit step, and dis-

cretized with respect to time and space.
Further, to find the numerical solution of the above model on 2D Cartesian meshes,

we have used the Newton’s method [36] from PETSc library (see Section 4), and thus for any
phase φ we can express it in the general form of a solvable linear system at time tn+1:

J(Xk)(Xk+1 − Xk) = −(Qtime
space)(X

k), k = 0, 1, ..., (40)

where

Xk =



un+1,k
φ, f ace

vn+1,k
φ, f ace

mn+1,k
φ,center

Vn+1,k
φ,center

en+1,k
φ,center

Tn+1,k
φ,center

pn+1,k
φ,center


with superscript k refering to the kth Newton iteration, and X0 is an initial approximation
given by the values: (un

φ, f ace, vn
φ, f ace, mn

φ,center, Vn
φ,center, en

φ,center, Tn
φ,center, pn

φ,center). Matrix J =

(Qtime
space)

′ is a block and sparse Jacobian matrix of the non-linear and coupled system (39).
Again, block nature of the Jacobian matrix highlights the fact that the algebraic system (39)
is coupled.
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𝑐𝑒𝑛𝑡𝑒𝑟

𝑓𝑎𝑐𝑒

𝒖𝜙. 𝒆𝑥

𝒖𝜙. 𝒆𝑦

𝒖𝜙. 𝒆𝑥

𝒖𝜙. 𝒆𝑦
𝒆𝑥

𝒆𝑦

Figure 1. A pictorial depiction of a staggered variable layout with normal phase velocities stored at
the faces, and all scalars (Π) stored at the cell centers.

4. Software Architecture for Numerical Resolution of The Model

To compute the solution of the nonlinear, coupled multi-phase model, we use our
in-house high-performance software platform MMICADO: Mesh based Multi-phase Inter-
action Capabilities for severe Accident Dedicated cOdes. MMICADO is a CEA’s proprietary
software designed by following the Object-Oriented Programming (OOP) principles in
the modern C++. MMICADO provides a flexible framework for meshes, parallelism (us-
ing DUNE library [37]), numerical methods, input data parsers (TinyXML library [38]),
solvers (mainly with PETSc library [39]), primarily for developing any new multi-phase
application. An overview of such a platform is shown in Figure 2.

Management of Phases, Fields, Laws, Inputs 
(XML) and Solvers (PETSc etc.) 

Multiphase Models and Numerical
Methods

Different Physical Laws

Mesh Management Parallelism

Any Multiphase 
Application

MMICADO

Figure 2. An overview of the MMICADO software.

For example, to solve system (39) we have used PETSc’s Linear Search Newton
(SNESNEWTONLS) [40] method (a non-linear solver) within the framework of MMICADO,
where the Jacobian matrix is computed numerically using a finite difference approximation.
This is followed by the use of PETSc’s linear solver KSPPREONLY [41] for solving the final
global linear matrix, which uses the LU factorization (specifically the PETSc’s PCLU [41])
as a pre-conditioner only once. Having said that, we now summarize the time algorithm in
Figure 3 showing the sequence in which the model is solved in MMICADO.
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Remark 2. To get the numerical solution of the system (39), the following CFL condition based on
the material velocities should be fulfilled:

∆t
h

max
φ
‖un

φ‖∞ ≤ η,

where η ≤ 1
2 , ∆t is the discrete time step and h is the constant distance between cell centers in a 2D

Cartesian mesh.

In the next section we will show the details of the interface sharpening approach for the
advection step shown in Figure 3.

Assemble: 𝒖𝜙, 𝑓𝑎𝑐𝑒
𝑛 and Π𝜙, 𝑐𝑒𝑛𝑡𝑒𝑟

𝑛 (𝛼𝜙
𝑛 , 𝜌𝜙

𝑛 , 𝑒𝜙
𝑛, 𝑝𝜙

𝑛)

𝐐𝑠𝑝𝑎𝑐𝑒
𝑡𝑖𝑚𝑒 = 0; Eq. (39)

Coupled Non-Linear Solver

Advection Step

Get: 𝒖𝜙,𝑓𝑎𝑐𝑒
𝑛+1 and Π𝜙,𝑐𝑒𝑛𝑡𝑒𝑟

𝑛+1 (𝑉𝜙
𝑛+1,𝑚𝜙

𝑛+1, 𝑒𝜙
𝑛+1, 𝑇𝜙

𝑛+1, 𝑝𝜙
𝑛+1)

Compute: 𝛼𝜙,𝑐𝑒𝑛𝑡𝑒𝑟
𝑛+1 =

𝑉𝜙,𝑐𝑒𝑛𝑡𝑒𝑟
𝑛+1

𝑉𝑐𝑒𝑛𝑡𝑒𝑟
and 𝜌𝜙,𝑐𝑒𝑛𝑡𝑒𝑟

𝑛+1 =
𝑚𝜙,𝑐𝑒𝑛𝑡𝑒𝑟
𝑛+1

𝑉𝜙,𝑐𝑒𝑛𝑡𝑒𝑟
𝑛+1

𝑛 = 𝑛 + 1

Within 
MMICADO.

𝜌𝜙𝛼𝜙 𝑐𝑒𝑛𝑡𝑒𝑟

𝑐,𝑛+1

𝜌𝜙𝛼𝜙𝑒𝜙 𝑐𝑒𝑛𝑡𝑒𝑟

𝑐,𝑛+1

𝛼𝜙 𝑐𝑒𝑛𝑡𝑒𝑟

𝑐,𝑛+1

𝒖𝜙 𝑓𝑎𝑐𝑒

𝑐,𝑛+1

Advection Step: Eq. (17) – (20)

st1 order
Upwind

Figure 3. The time algorithm showing the sequence in which the model is solved in MMICADO
(details of the interface sharpening method for the advection step are given in Section 5). In this
figure, Πn

φ,center refers to the set of scalars αn
φ, ρn

φ, en
φ, pn

φ at a discrete time tn, and computed at cell

center. Similarly, Πn+1
φ,center refers to the set of scalars Vn+1

φ , mn+1
φ , en+1

φ , Tn+1
φ , pn+1

φ computed at cell

centers at a discrete time tn+1.

5. Modification of the Advection Step: Sharp Interface Capturing (IC) Approach
5.1. Interface Capturing (IC) Strategy: Multidimensional Limiting Process with the Upper Bound
Limiter (MLP–UB)

To ensure the sharp interface capturing in the solution of the compressible multi-
material model, the reconstruction of the scalars Π(αφ, ρφ, eφ) in each finite volume cell
during the advection step depicted in time algorithm (see Figure 3) is done using a second-
order multidimensional MUSCL slope reconstruction strategy [19], where the predicted
slope/gradient is limited using a recently developed, compressive, shape-preserving
limiter, referred to as Multidimensional Limiting Process–Upper Bound (MLP–UB) (see [18]),
which is an updated version of the MLP methodology detailed in [20]. We briefly elaborate
this new MLP–UB method for a generic scalar variable z(x, t) advected in a medium with
velocity u:

∂z
∂t

+∇ · (zu) = 0. (41)
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Let us use K as a generic notation for a given finite volume cell, A as an edge (or a face
in 3D) of this volume K, and a vector νA being a normal unit vector to A pointing out of
the cell K (see Figure 4). We look for the semi-discrete finite volume schemes of the form:

dzK
dt

= − 1
|K| ∑

A⊂∂K
|A| zA uA · νA. (42)

where zK is the value of z defined at the center of a cell K, and zA (resp. uA) denotes a
certain value of z (resp. u) at the midpoint xA of an edge A.

As usual for a finite volume scheme, flux is linearly reconstructed in each cell, and a
slope limiter is applied to limit this reconstructed gradient. The general expression of a
MUSCL [19] linear reconstruction of a discrete field zK in cell K is:

I h
K z(x) = zK + ΘK (∇hz)K · (x− xK). (43)

where xK is the center of mass of cell K, (∇hz)K is a predicted estimate of the gradient,
and ΘK is a positive scalar intended for limiting this gradient. Next the reconstructed
value zA at the midpoint xA of an edge A in cell K is given by:

zA = I h
K z(xA) = zK + ΘK (∇hz)K · (xA − xK).

which, in case of a Cartesian mesh with h as a constant distance between cell centers, can
be simplified as:

zA = zK +
h
2

ΘK (∇hz)K · νA.

Type equation
here.

𝑥(

𝐾

𝑥+
𝜐+

𝑐

Figure 4. Geometric entities of a finite volume cell K: mass center xK , edge A, edge center xA, normal
unit vector νA, corner c.

Main steps for the calculation of gradient limiter (ΘK):

Here we summarize main steps of the MLP-UB method. Detailed analysis of these
steps can be found in [18].

Step 1: Prediction of the gradient

In this study, gradient is predicted with a 8-point formula (see [18]). This 8-point
formula for calculating the gradient of a scalar zK in cell K of a 2D Cartesian mesh (see
Figure 5) is:

(∇hz)K =
1
h


1

12 (zK8 − zK6) +
1
3 (zK5 − zK4)

+ 1
12 (zK3 − zK1)

1
12 (zK8 − zK3) +

1
3 (zK7 − zK2)

+ 1
12 (zK6 − zK1)

. (44)
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c
ℎ

ℎ

𝑥

𝑦

𝐾1 𝐾2 𝐾3

𝐾4 𝐾5

𝐾6 𝐾7 𝐾8

𝐾

𝑧𝐾1 𝑧𝐾2 𝑧𝐾3

𝑧𝐾4 𝑧𝐾5

𝑧𝐾6 𝑧𝐾7 𝑧𝐾8

𝑧𝐾

Figure 5. Layout of a 2D Cartesian mesh, where finite volume cells are represented by K, corners by
c, value of a scalar z at cell centers by zK , and constant distance between cell centers by h.

Step 2: Calculate limiters at cell corners (c)

In order to define the scalar limiting functions Θc for each corner of a cell K, we
compute a non-limited (NL) reconstructed value with the predicted centered gradient:

I NL
K z(x) = zK + (∇hz)K · (x− xK).

We denote it by ẑK(x) = I NL
K z(x) for convenience in the next formulae, and we define

the extremum value zextr
c as:

zextr
c =

{
z̄c if ẑK(xc) > zK,
zc otherwise.

depending on whether the non-limited reconstructed value is greater or smaller than the
cell value. Here, z̄c and zc are the local extremum values at each corner (c) determined
from the different cell neighbors around a cell corner (c) (see Figure 5) by the formulae:

z̄c = max
K′ ∈Cells(c)

(zK′), zc = min
K′ ∈Cells(c)

(zK′),

where Cells(c) refers to the set of neighbor cells around a cell corner c. The formula for the
corner limiting function is then given as (see [18]):

Θc = min
(

β,
zextr

c − zK
ẑK(xc)− zK

)
. (45)

In case of a zero denominator in the above formula, Θc is set to zero, which corresponds
to zero gradient. In order to provide the method an ability to limit compressive effects,
a threshold value of β is introduced (see [18]), such that the centered gradient can be
multiplied at most by β. If β = 1, no compressive effect is allowed, otherwise β ∈
(1, 2], and some compressive effect is allowed; the value β = 2 corresponds to the most
compressive effect.

Remark 3. β ≤ 2 bound can be interpreted as the multidimensional equivalent of Ultrabee [42]
stability bounds in 1D.
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Step 3: Calculate limiters at cell centers (K)

Finally, limiters at the cell centers are given by the following formula (see [18]):

ΘK = min
c∈Corners(K)

(Θc). (46)

5.2. Reformulation of the Advection Step with the MLP-UB Method for the Sharp
Interface Capturing

In this section we describe the methodology for the application of the above discussed
MLP-UB [18] method to the advection Equations (18)–(20) of scalars Π(αφ, ρφ, eφ). The main
points are discussed in the following sub-sections.

5.2.1. Reconstruction of Primitive Form of Scalars Instead of Their Conservative Form

In the present study, although we work with the conservative form of advection
equations for αφ, ρφ, eφ (see Equations (19) and (20)), we perform the reconstruction of
primitive scalars αφ, ρφ, eφ with MUSCL followed by the gradient limiting with MLP-UB to
get their convective fluxes. This is mainly done to serve two purposes:

1. As shown by [27,43,44], the application of the MUSCL on the primitive form of scalars
leads to a more accurate reconstruction at the interface.

2. Reconstructing αφ, ρφ, eφ in their primitive form provides us the freedom to use differ-
ent types of gradient limiters for αφ and ρφ, eφ. Here, we prefer to use a compressive
flux limiter (MLP-UB in present case) for αφ, and a less compressive one for ρφ and eφ

individually. For instance we have used MINMOD [45] type limiter for ρφ and eφ.

Further elaborating on point 2 given above, we choose to do so because regular
wave solutions shown by ρφ and eφ in multi-phase test problems are prone to suffer from
staircase effect (demonstrated in Section 5.2.2) when reconstructed with compressive limiters.
However, the evolution of αφ maintains the initial discontinuous solution, and thus to
preserve this sharp discontinuity, we use a compressive limiter like MLP-UB.

5.2.2. Modification of MLP-UB Method to Include the Functionality of the Minmod
Limiter: 1D Analysis

Here we show a 1D analysis which shows the modification in Formula (45) in order
to integrate both MINMOD and MLP-UB methods into a single formula. The 1D version
of (45) reads:

ΘA = min

(
β,

zextr
A − zK

ẑK(xA)− zK

)
. (47)

We introduce a new multiplicative parameter θ in the above formula which results in:

ΘA = min

(
β, θ

zextr
A − zK

ẑK(xA)− zK

)
. (48)

In our analysis, we have tested several values of β and θ, and have observed that β = 1
and θ = 0.5 corresponds to MINMOD limiter. In Figure 6 we can see that a combination of
a smooth and hat function is chosen as a initial condition, and subsequently it is linearly
advected, where for gradient limiting after MUSCL reconstruction in each finite volume
cell, we use relation (48) with two set of values for (β, θ) ∈ {(1, 0.5), (2, 1)}. The time
scheme used is an explicit second order accurate Heun’s RK2 method [46]. We see that
the curve produced with MINMOD limiter overlaps with the curve obtained by using
relation (48) with β = 1 and θ = 0.5.

It is also interesting to see that the advection of smooth function with a compressive
limiter (using β = 2 and θ = 1 in relation (48)) leads to the staircase effect (see green curve on
left-hand side in Figure 6). Thus, we choose to only apply MLP-UB (β = 2 and θ = 1) on αφ,
which initially is discontinuous, and it is necessary to maintain this discontinuity as it gets
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advected at later times. However, for ρφ, eφ, we perform their individual reconstruction by
using MINMOD limiter (here MLP-UB with β = 1 and θ = 0.5).

Further, we also extend this analysis to 2D, and subsequently modify the advection
step (see Figure 3) with the application of MLP-UB on scalars Π(αφ, ρφ, eφ), as shown
in Figure 7.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

z(
x)

Mesh: 500 × 1

t=0 sec.
MinMod: t=2sec.
MLP1D: = 2.0; = 1.0; t=2sec.
MLP1D: = 1.0; = 0.5; t=2sec.

Figure 6. Application of Formula (48) to 1D linear advection of a smooth + hat initial condition with
β = 1 and θ = 0.5 (MINMOD type) and β = 2 and θ = 1 (MLP-UB).

𝜌𝜙 𝑐𝑒𝑛𝑡𝑒𝑟

𝑐,𝑛+1

𝑒𝜙 𝑐𝑒𝑛𝑡𝑒𝑟

𝑐,𝑛+1

𝛼𝜙 𝑐𝑒𝑛𝑡𝑒𝑟

𝑐,𝑛+1

𝒖𝜙 𝑓𝑎𝑐𝑒

𝑐,𝑛+1

Reformulated Advection Step with MUSCL+MLP-UB

1st order Upwind

𝛽 = 2
θ = 1

𝛽 = 1
θ = 0.5

(MINMOD)

MUSCL + MLP-UB

Compute:

𝜌𝜙𝛼𝜙 𝑐𝑒𝑛𝑡𝑒𝑟

𝑐,𝑛+1
= 𝜌𝜙 𝑐𝑒𝑛𝑡𝑒𝑟

𝑐,𝑛+1
𝛼𝜙 𝑐𝑒𝑛𝑡𝑒𝑟

𝑐,𝑛+1

𝜌𝜙𝛼𝜙𝑒𝜙 𝑐𝑒𝑛𝑡𝑒𝑟

𝑐,𝑛+1
= 𝜌𝜙 𝑐𝑒𝑛𝑡𝑒𝑟

𝑐,𝑛+1
𝛼𝜙 𝑐𝑒𝑛𝑡𝑒𝑟

𝑐,𝑛+1
𝑒𝜙 𝑐𝑒𝑛𝑡𝑒𝑟

𝑐,𝑛+1

Figure 7. Reformulated advection step with the application of MUSCL+MLP-UB on primitive form
of the scalars Π(αφ, ρφ, eφ).

6. Numerical Experiments: Two-Material Test Cases
6.1. Two-Dimensional (2D) Air-Helium Shock-Bubble Interaction: Experimental Validation

We focus here on the comparison of the numerical results produced with our method
for the case of an air-helium shock-bubble interaction with one of the classical experiments
shown in [47]. The goal, however, is not to have a precise quantitative comparison, but a
qualitative one, to show that the method provides physically relevant results with a good
resolution of the interfaces, especially when the coarse meshes are used. To study the
case, a suitable computational domain is designed (see Figure 8). The dimensions of the
computational domain are given in Table 1.
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In order to simulate a Mach 1.22 shock wave similar to the one generated in the
experiment, we consider the initial conditions shown in Table 2. We also assume that both
air and helium are governed by a perfect gas EOS:

pφ =
mφ

Vφ
(γφ − 1) eφ, (49)

where
eφ = Cvφ Tφ. (50)

Table 1. Dimensions used for the 2D air-helium shock-bubble interaction test case.

Lx lx lxx Ly r

(m)

0.312 0.1 0.05 0.0445 0.025

Table 2. Initial conditions used for the 2D air-helium test case.

ρ u v p γ Cv
(kg/m3) (m/s) (m/s) (Pa) (−) (J/kgK)

zone 1 1.686 −156.26 0 250,638 1.4 720

zone 2 1.225 0 0 101,325 1.4 720

zone 3 0.228 0 0 101,325 1.648 2440

𝑒𝑥

𝑒𝑦
𝑟

𝐿𝑦

𝐿𝑥

𝑙𝑥

𝑧𝑜𝑛𝑒 2 𝑧𝑜𝑛𝑒 1

𝑧𝑜𝑛𝑒 3

shock

𝑙𝑥𝑥

Figure 8. 2D computational domain (not to scale) for the air-helium shock-bubble interaction test case.

Further, the CFL number for this problem is 0.2. We have used a coarse Cartesian
mesh of size 294× 42. Homogeneous Neumann boundary conditions are used for scalars
(Π), and slip boundary condition is used for velocities. It the present case we have
assumed symmetry in y-direction, thus only the upper half of the computational domain
is considered.

Focusing on the numerical results shown in Figure 9, we observe the interaction of
a Mach 1.22 shock wave with helium bubble while the shock travels from right to left
in the computational domain. The numerical results shown in Figure 9a,c,e are at the
three interaction times.These approximately correspond to the same time when shadow-
photographs (see Figure 9b,d,f) are taken in the experiment.

Qualitatively, the numerical results correctly depict the deformation of the lighter
helium bubble by an air-shock until the end of simulation time. It is interesting to see that
even for a relative coarse mesh of size 294× 42, we get a satisfactory phase separation.
This is mainly because of the good interface sharpening effect produced by using MLP-UB
method [18]. The results are also free from any interface oscillations or artifacts. We also
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observe that the values of cell volume fraction (α) for both air and helium are in the range
[0, 1] and thus bounded. Some slight differences in the topology could be observed between
the numerical results and experimental graphs. This difference can be explained by the
absence of a surface tension force in the current numerical model.

(a) ∼ 245 µs (b) 245 µs

(c) ∼ 674 µs (d) 674 µs

(e) ∼ 983 µs (f) 983 µs

(g)

Figure 9. 2D numerical results for an air-helium shock-bubble interaction test case. Qualitative
comparison of the cell volume fraction (α) of Helium bubble between the modeling (Figures (a,c,e))
and experimental results (Figures (b,d,f)) [47]. The scale of (α) is shown in Figure (g).

6.2. Two-Dimensional (2D) Triple Point Case: Two Materials and Three Phases

In this section we show a 2-material and 3-phase triple point test case. This is a
standard test case corresponding to a 2D Riemann problem in a rectangular computa-
tional domain, which together with the dimensions and initial conditions is displayed
in Figure 10. We also consider that the two materials are governed by an ideal gas EOS
given by Equation (49). We choose a coarse Cartesian mesh of size 140× 60. The boundary
conditions for this case are Homogeneous Neumann for scalars (Π), and slip for velocities.

Our analysis for this test case primarily focuses on the comparison between the
numerical results produced by using two different numerical recipes for the advection of
scalars Π(αφ, ρφ, eφ):
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1. MUSCL+MLP-UB for αφ, and MINMOD (MUSCL+MLP-UB with β = 1; θ = 0.5) for
ρφ, eφ.

2. MINMOD for all Π(αφ, ρφ, eφ).

𝑒𝑥

𝑒𝑦

𝜌 = 0.125
p = 0.1
𝛾 = 1.5
𝑢 = 0
𝑣 = 0

𝜌 = 1
p = 0.1
𝛾 = 1.4
𝑢 = 0
𝑣 = 0

𝜌 = 1
p = 1
𝛾 = 1.5
𝑢 = 0
𝑣 = 0

0 1 7

1.5

3

Figure 10. 2D computational domain for the 2-material, 3-phase triple point test case. The units of ρ,
p, u, v and dimensions are in S.I. unit system.

(a) α: MUSCL+MLP-UB (b) α: MUSCL+MINMOD

(c) (d)

(e) ρ: MUSCL+MLP-UB (f) ρ: MUSCL+MINMOD

(g) (h)

Figure 11. Cont.
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(i) T: MUSCL+MLP-UB (j) T: MUSCL+MINMOD

(k) (l)

Figure 11. 2D numerical results for the 2-material and 3-phase triple point test case using a Cartesian
mesh of size 140× 60. Values of α for all the three phases are presented together, and the same is
done for ρ and T. Thus, their scales (see Figures (c,d,g,h,k,l)) are scaled up accordingly.

Firstly, we can observe in Figure 11 that two shocks propagate with different speeds
due to the initial density difference between the left, top-right and top-bottom domains
(see Figure 11). This creates the shear along the initial phase interfaces, and results in the
formation of a vorticity. Regarding the coarse mesh used to compute this vorticity, we
observe in Figure 11b,f,j that the numerical solution is diffused due to the use of MINMOD
limiter in the numerical advection step of scalars Π(αφ, ρφ, eφ). However, if we focus on
Figure 11a,e,i; a significantly better capture of this vorticity can be seen. Numerical results
also show an accurate capture of the shocks and multi-phase interfaces. Again, like the
previous test case, we observe that the values of cell volume fraction (α) for all the phases
are in the range [0, 1].

7. Numerical Experiments: Three-Material Test Case
Two-Dimensional (2D) Sod-like Shock Tube: 3-Material Shock-Bubble Interaction

In this 3-material test case we have simulated a situation where a bubble of some
weakly compressible heavy material is surrounded by a vapor film. We have numerically
studied the interaction of a shock, generated in the Sod-like shock tube [48], with this
bubble-film configuration. The 2D computational domain for this case is displayed in
Figure 12, where zone 4 is a bubble of heavy material governed by a stiffened gas EOS:

pφ =
mφ

Vφ
(γφ − 1)eφ − γφ pre f ,φ, (51)

where
eφ = Cvφ Tφ +

pre f ,φ
mφ

Vφ

. (52)

zone 3 here represents a vapor film which, along with zone 1 and zone 2, is governed
by a perfect gas EOS Equation (49). The initial conditions and dimensions of the problem
are shown in Tables 3 and 4, respectively. The boundary conditions for this case are same
as the previous ones. The size of Cartesian mesh for this case is 800× 400.
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Table 3. Initial conditions used for the 2D 3-material Sod shock-bubble interaction test case.

ρ u v p pre f γ Cv
(kg/m3) (m/s) (m/s) (Pa) (Pa) (−) (J/kgK)

zone 1 1.0 0 0 1.0 0 1.4 100

zone 2 0.125 0 0 0.1 0 1.4 100

zone 3 0.0125 0 0 0.1 0 1.648 100

zone 4 2.0 0 0 0.1 100 2.0 1000

𝑒𝑥

𝑒𝑦

𝑧𝑜𝑛𝑒 2𝑧𝑜𝑛𝑒 1

𝑧𝑜𝑛𝑒 3

𝑧𝑜𝑛𝑒 4

𝑟1𝑟2

𝐿𝑥

𝑙𝑥

𝑙𝑥𝑥

𝐿𝑦

𝑙𝑦

Figure 12. 2D computational domain (not to scale) for the 3-material Sod shock-bubble interaction
test case.

Table 4. Dimensions used for the 2D 3-material Sod shock-bubble interaction test case.

Lx lx lxx Ly ly r1 r2

(m)

1.0 0.3 0.15 0.5 0.25 0.08 0.1

From the results shown in Figure 13 we can see that after an interaction with the shock,
vapor film detaches from the heavy material bubble, and consequently overturns on the
right-hand side of it. It then mixes with the heavy bubble interface as time progresses.
We can also see a complete dissociation of two small parts of the vapor film. These two
breakaway structures can be seen to have both translational and circular trajectories as they
travel towards the right boundary. At the end of simulation they break into two more parts
due to their interaction with the reflected shock wave from the right boundary.

In this case, mesh is sufficiently fine to capture the occurrence of the Richtmyer-
Meshkov [49,50] instabilities between the interface of the light vapor film and heavy material
bubble. This is evident from the mixing zone created between the two interfaces at later
times. These instabilities occur in the present case because of the perturbed shape of the
interface, which is mainly due to the initial representation of a circular interface by a piece-
wise constant profile, in each finite volume cell. After a shock interacts with multi-material
interfaces, this initial numerical perturbation grows in time in a similar fashion to the
growth of perturbations in the physical Richtmyer-Meshkov instability.

Thus, in this complex 3-material case as well we see the robustness of our method,
which ensures the sharp interface capturing for the intricate evolution of the multi-material
interfaces. Furthermore, in this test case, the values of cell volume fraction (α) for all the
three materials is observed to be bounded in the range [0, 1].
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(a) t = 0 s. (b) t = 100 µs.

(c) t = 150 µs. (d) t = 200 µs.

(e) t = 250 µs. (f) t = 300 µs.

(g) t = 350 µs. (h) t = 400 µs.

(i) t = 500 µs. (j) t = 600 µs.

(k)

Figure 13. 2D numerical results for the 3-material shock-bubble interaction test case using a Cartesian
mesh of size 800× 400. Values of α in zone 3 and zone 4 are shown together. Thus, its scale (see
Figure (k)) is scaled up accordingly.
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8. Conclusions and Scope for the Future Work

In the present work, we have considered the hyperbolic compressible Euler system of
equations, which can serve as the basis for numerical simulations of the several industrial
applications in the domain of the compressible multi-material flows. We have worked
with this model in the limit of a full mechanical equilibrium, and also considered an
instantaneous pressure equilibrium. Within the scope of such a mathematical model, we
focused on the problem of the interface sharpening, where we chose to work with the
Interface Capturing approach. We performed the analysis of interface sharpening using a
recently developed Diffuse Interface Method: Multidimensional Limiting Process-Upper
Bound (MLP-UB) [18]. This method has been proposed in a recent paper [18], where the
authors have demonstrated its robustness for the pure advection cases. The present paper
is thus considered as a natural sequel to the work presented in [18].

For performing the numerical simulations in this work we have used our in-house,
high-performance, modern software: MMICADO; within its framework, we have first
proposed a robust time scheme, where we first explicitly calculate the advection/convection
terms. Within the framework of Finite Volume space discretization on 2D Cartesian meshes,
the divergence terms in these advection/convection equations are computed by employing
a second order accurate, multidimensional MUSCL [19] slope reconstruction strategy along
with the MLP-UB gradient limiting method. A 1D analysis is also presented to highlight the
choice made for scalar reconstruction in their primitive form (instead of their conservative
form) by using the most and the least compressive form of MUSCL+MLP-UB approach.

Finally, we have provided three complex multi-material test cases, where our aim was
to produce accurate results on the coarse 2D Cartesian meshes. Looking at the results we
can conclude that our approach has produced:

1. Accurate and sharp capturing of the intricate interface evolution without numeri-
cal artifacts.

2. Accurate interaction of the shocks with the multi-material interfaces.
3. Bounded numerical results for any number of materials.

A direct extension of the work presented in this paper is to take into account the phe-
nomena of phase change by considering the heat and mass transfer across the multi-material
interfaces. Another work which is conceptualized is the study of sliding interfaces, where
we want to consider the relative motion between the multi-material interfaces. Another
immediate work concerns the verification and validation of the 3D version, and theoretical
demonstration of the positivity preserving property (boundedness) of the method. We plan
to address these issues in the future research articles.
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