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Abstract. The use of Data Assimilation methodologies, known also as a data adjustment, liaises the results of
theoretical and experimental studies improving an accuracy of simulation models and giving a confidence to
designers and regulation bodies. From the mathematical point of view, it approaches an optimized fit to
experimental data revealing unknown causes by known consequences that would be crucial for data calibration
and validation. Data assimilation adds value in a ND evaluation process, adjusting nuclear data to particular
application providing so-called optimized design-oriented library, calibrating nuclear data involving IEs since all
theories and differential experiments provide the only relative values, and providing an evidence-based
background for validation of Nuclear data libraries substantiating the UQ process. Similarly, it valorizes
experimental data and the experiments, as such involving them in a scientific turnover extracting essential
information inherently contained in legacy and newly set up experiments, and prioritizing dedicated basic
experimental programs. Given that a number of popular algorithms, including deterministic like Generalized
Linear Least Square methodology and stochastic ones like Backward and Hierarchic or Total Monte-Carlo,
Hierarchic Monte-Carlo, etc., being different in terms of particular numerical formalism are, though, commonly
grounded on the Bayesian theoretical basis. They demonstrated sufficientmaturity, providing optimized design-
oriented data libraries or evidence-based backgrounds for a science-driven validation of general-purpose libraries
in a wide range of practical applications.
1 Introduction

The first practical use of Data Assimilation (DA) in the
nuclear engineering started in the sixties to take a
maximum of benefits from rare� that time� experimental
data, developing nuclear reactor design concepts and
improving problem-oriented nuclear data libraries [1–5].

From the very beginning it involved the deterministic
algorithms, such as a Generalized Linear Least Square
methodology (GLLSM) associated that time with
Ordinary and Generalized Perturbation Theory (OPT
and GPT) [1,2,6,7]. Further trend was traced in a
progressive growth of DA fidelity supported by an
increasing of computational capacities and advances in
mathematical and computational physics [8–17].

Nowadays, available and affordable highly performant
computational facilities and high-fidelity or, even, precise
geny.ivanov@irsn.fr
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code systems allow stepping toward fully stochastic non-
intrusive1 adjustment [12–16].

Despite on the continuous evolution of the DA
algorithms the methodology always remains to be a kind
of Bayesian-based technique [1,5,7,8].

It should be noted that DA is always present in the
Nuclear Data (ND) evaluation process because all, without
any exemption, data libraries have to be somehow
calibration2 on the objective experimentally measured
invariants. DA helps, in this case, if such invariants were
not measured directly but inferred from the measurements
[2,13].

In any applications the mathematical models and data
libraries to become suitable for the adjustment should be
somehow parametrized using either Reduced Order
Models (ROM) or variables inherent to nuclear reactions
simulations [1,13,15,16].
1 The term “non-intrusive” means that one could apply high-
fidelity analytical tools without simplifications like sensitivity
calculations or so on.
2 As any physical theory.
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Fig. 1. Qualitative illustration of ND and IEs PDFs [20] (a) and a degree of coincidence between prior (b) and posterior
(c) calculational (light grey) and experimental (light-blue) values [7,19].
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Summarizing the statements above and bibliography
analysis it is easy to see that DA always comprises the
following ingredients: (1) objective observations obtained
computing representative suitcase of integral experiments
data, i.e. calculation-to-experiment ratio for given experi-
ment-based benchmarks, (2) libraries of prior experimental
and nuclear data uncertainties needed as the first guess for
Data Assimilation process, and (3) relevant Bayesian
interference framework that includes, among others,
dedicated statistical solvers and parametrized best esti-
mate simulations.

Of course, the DA algorithms in different fields of
applications have also different levels of maturity that
might be somehow characterized considering the major
drawbacks and lessons learned in DA practical implemen-
tations [1,13,18].

We are discussing below some examples of good
practice and tendencies in DA deployment to characterize
in certain extent a technological readiness �maturity � of
DA methodologies.
3 Generally speaking, unknown ones, about which we could have
the only some momentums or other aggregated values.
4 Like ones based on R-matrix theory or so on.
2 Methodological background

As any Kalman filtering, DAhas a premise that, given
some disagreement between calculated and experimental
values, one adjusts parametrized data, performing the
best fit of error-weighted expected and observed param-
eters [1,5,11,17]. It links together such probabilistic
categories as conditional probabilities or probability
densities p ( . . . | . . . ), the sets of measurable parame-
ters y and parameters x inherent to modeling, and prior
information U from which the prior knowledge on x is
assumed:

p xjy;Uð Þ≈ p xjUð Þ⋅p yjx;Uð ÞZ
dx⋅p xjyð Þ⋅p xjy;Uð Þ

; ð1Þ

where the denominator is just a normalization constant
[1,17,18]. Then, assuming the high-entropy distributions
one builds up the following solving rule to estimate an
improved distribution from prior one basing on the
principle of maximum likelihood [1,8,11,18]:

posterior p xjy;Uð Þ½ �∝prior p xjUð Þ½ �
� likelihood p yjx;Uð Þ½ �: ð2Þ

According to such probabilistic definitions we are
considering the results of measurements and calculations as
high-entropy distributions represented by relevant3 Prob-
ability Density Function (PDF) [12,14]. The coincidence of
two values in this case could be graded in terms of an
overlapped area (see Fig. 1).

It is easy to see that what DAmeans is the conversion of
prior errors and uncertainties into correction factors and
quantified residual uncertainties following the maximum
likelihood principle [1,2,8,21,22].

This is why, the kinds of uncertainties we are dealing
with � whether they are of a simple error, epistemic or
ontological ones [23,24] �dictate which namely technique
to be approached to the adjustment, validation or another
ill-posed inversed problem.

The fist type of uncertainties— simple error— appears
when prior knowledge would be inconsistent or even wrong.
At this level DA clarifies given nuclear reaction models
adjusting their parameters by the best fit to pre-selected
representative sets of IEs [1,7,8,23].

It requires a robust theoretical model of nuclear
reactions4 and fully representative IEs that � a few or a
large set� should be selected in such a way to discriminate
(in a statistical sense) all contributors except for one of
interest.

Such demand could be met, inter alia, by design of
specific, for example, replacement or oscillation experi-
ments like ones performed at numerous facilities [25],
including MINERVE facility [26], IPEN/MB1 [27], and
so on.

Talking about the robust theory one could remind, for
example, such well-known tools as R-Matrix fitting codes
SAMMY [9] or REFIT [10], or CONRAD [11] where the
last one could uniformly treat the resolved resonance range
(R-Matrix approximation: Reich-Moore and Multi-Level



Fig. 2. Parametrization strategy and algorithmic options to be implemented in DA [1–3,5–7,9–12,14,16,18].
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Breit-Wigner), the unresolved resonance range (average R-
Matrix and Hauser-Feshbach theory) and the fast energy
region as it is required by a modern evaluation process.

The second ones — epistemic uncertainties — appear
due to the imprecise interpolations and extrapolations
inherent5 to the modeling. Over there, the role of DAwould
be to not adjust but to provide an evidence-based
background6 for a science-driven validation.

The last— ontological — uncertainties appear due to a
different belief system so that the only discovery could
resolve such lack of knowledge [19,23]. The role of DA in
such case will be the only to contribute in a planning of the
further dedicated researches.

2.1 Parametrization strategies

Applying DA, one should take into account that the
domain of experiments is discrete and countable while the
domain of simulations is continuous and non-countable.
Such fundamental discontinuity requires the domain of
simulation to be somehow parametrized.

The simplest parametrization strategy is using of
ROMto replace physics behind the phenomena of interest
by a set of linear response functions, i.e. the following
sensitivity coefficients [1,7,28–34]:

SR;u ¼ u

R
⋅
DR

Du
¼ u

R
⋅

∂R
∂u

þ
X ∂R

∂a
⋅
∂a
∂u

� �
; ð3Þ

where SR,u, R, a, and u are sensitivity coefficient for a given
system’s response to a given parameter of nuclear reaction
modeling, the system response, nuclear cross section and
parameters inherent to nuclear reaction calculations,
correspondingly. Two components �explicit ∂R

∂u

� �
and

implicit ∂R
∂a ⋅

∂a
∂u

� � �reflect parameters common for different
nuclides and reactions parameters [1,2,7,8].

The next kind of strategies presumes the following
dependence of the nuclear reactions’ model on the
countable set variables:

LibADJ ≈ fun a1;a2; . . . ;aKju1; u2; . . . ; uLð Þ; ð4Þ
5 Typically, we are covering the scales from femto- to centimeters.
6 We are using the term “an evidence-based background” instead
of experiments data because in opposite to the values the
uncertainty never could be validated against experimental data.
whereLibADJ, {ak : k∈ 1 . . . K} and {ul : l∈ 1 . . . L} are
the synthesized/adjusted library, adjusted and non-
adjusted parameters, correspondingly.

Apparently, such formalism might give a fully consis-
tent evaluation going deeply to the theoretical models and
the best-estimated metamodels inherent to nuclear data
calculations. Unfortunately, it would require so many
experimental cases making adjustment unaffordable.
Nevertheless, the strategy was recognized as sufficient in
many practical applications [12,13,15].

Another group represents true (but unknown) library
as a weighted superposition of different profiles given as
follows:

Libsyn ≈ a1⋅Lib1 þ a2⋅Lib2 þ . . .þ aN⋅LibN ¼
X
n

an⋅Libn;

ð5Þ

where Libsyn, Libn and an are the desirable synthetic
library, n-th generated nuclear data profile (ACE files,
typically) and weight factors to be matched, correspond-
ingly, and n∈ 1 . . . N.

For example, Hierarchic Monte-Carlo [14] operates
with such strategy generating the profiles Libn in an
iterative randomized process fitting to a given set of IEs
data.

Basing on the reasoning above and the bibliography
overview we could conventionally consider the variety of
DA algorithms as it is shown on Figure 2.

Of course, DA always suffers from the dimensionality of
physical model. Indeed, if use discretized modeling in the
field of particle transport and reactor physics we are
dealing with, as minimum, Ns parameters determined as a
Ns=NIZ ⋅NREA ⋅NEG, where NIZ, NREA and NEG are the
number of nuclides, the number of channels and the
integral number of energy-angular intervals. If use Reich-
Moore approximation the dimension will be extended on
the numbers of particle and g-ray channels for each
resonance areas.

Since DA assimilation algorithms being different in
details all are based on the same theoretical basis we could
illustrate the major DA ideas via Master-Equations used in
a deterministic methodology like the following one:

Ds

s
¼ cW ⋅SIE⋅ bV IE þ bV CLC þ S

T

IE⋅cW ⋅SIE

� ��1

⋅
DRIE

RIE

;

ð6Þ



Fig. 3. Prior (a) and posterior (b) covariance matrices for a selected set of nuclide-reactions [19].
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where Ds
s

� �
, DRIE

RIE

, cW , SIE, bV IE and bV CLC are a vector of

correction factors, a vector of relative discrepancies, prior
covariance matrix of nuclear data (CND), calculated
vector of sensitivity coefficients for IEs, experimental and
calculational covariance matrices, respectively [1,2,10,19].

It gives also a quantified posterior covariance matrix

(cW 0
) as follows:

cW 0 ¼ cW � S
T

IE⋅cW ⋅SIE

� �
⋅ bV IE þ bV CLC þ S

T

IE⋅cW ⋅SIE

� ��1

⋅

� S
T

IE⋅cW ⋅SIE

� �
; ð7Þ

where all notations are similar to given above
[1,2,10,19].

One can see that posterior covariance matrix (cW 0
) and,

therefore, posterior uncertainties for a Quantity of Interest
(QoI) do not depend on calculation-to-measurement

discrepancies; while correction factors Ds
s

� �
do and the

only vector of sensitivities (SIE) represents the physics
behind the IEs and the applications.

Available nowadays continues energy and arbitrary
geometry Monte-Carlo sensitivity analysis allows perform-
ing fine-resolution adjustment as it is demonstrated in such
tools as SAMINT (nuclear data adjustment with SAMMY
based on Integral Experiments) [9,16] which complements
Bayesian fit performed using SAMMY (multilevel R-
matrix fits to neutron and charged-particle cross-section
data using Bayes’ equations) tool.

2.2 Integral experiments data and an evidence-based
background

As said, the adjustment critically depends on a quality of
IEs data, including consistency of their uncertainties and
covariance (see component bV IE in Eqs. (6) and (7)).

These uncertainties and experimental covariance
matrices are resulted from the physics-based evaluation
of measurements, as such, and the experimental conditions
in the manner similar to what has been implemented in the
International Criticality Safety Benchmark Experiments
Project(ICSBEP) and the International Reactor Physics
Experiments (IRPhE) Project, for example [7,25].

Historically, IEs were considered, mainly, as mock-ups
allowing to study major characteristics of nuclear systems,
optimizing and examining reactor control systems, radia-
tion shielding and others using zero or low power facilities
to minimize all risks associated with nuclear safety and
radiation protection. Nowadays, due to a progress in
numerical simulations and increased requirements to an
accuracy of modeling, such vision, except for very rare
cases, seems to be obsolete.

Of course, experiments would be of different kinds,
including criticality and reactivity studies, reaction rates
measurements, depletion analysis and so on. The only
required experimental data to be stringently evaluated.
Unfortunately, we have to note that the experimental
covariances are scarcely available even in the popular
Handbooks.

2.3 Information content of the posterior bias and
uncertainties

The next essential ingredient of DA� prior uncertainties�
is crucial for any Bayesian inference technique
[1,19,35–37].

Historically,nucleardatauncertaintiesareavailableinse-
veralgroup-wise matrix formats associated with the most
popular libraries such as JEFF, JENDL, ENDF, TENDL,
SCALE, etc. In this context we could mention such
covariances data libraries as BOLNA created in a
collaboration among BNL, ORNL, LANL, NRG, ANL,
COMMARA-2.0 derived for ENDF-based nuclear data in
one ofOECD-NEA project and COMACV1 and others
attached to JENDL, TENDL and SCALE projects [35,38].

In the past the covariance matrices have been based,
largely, on the expert judgements. Albeit today extensive
world-wide efforts weremounted to determine the scientific
basis to establish relevant CND (Fig. 3).
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However, posterior CND � generated after adjustment
� never fully inherits the prior CND. In fact, DA integrate
somehow an information brought with the used IEs onto
corrected nuclear parameters and their uncertainties [35].
In the years of DA practical implementations an intensive
discussion arisen on the question how to interpret an
appearance in posterior CND cross-covariance members
have not been in prior ones [36]. It was found that the cross-
covariance members in a posterior CND always contain the
traces of IEs data [1,19,36,37], characterizing in certain
extent an efficiency of the adjustment [19].

3 Best practice in data assimilation
worldwide

From the very beginning, nuclear technological science
intended all concepts and statements to have a solid basis
in reality. In all domains of nuclear engineering from design
to safety regulation, it seems crucial having access to
objective observations, including operational background,
basic and dedicated Integral Experimental (IE) programs
[39–44].

However, we could use both legacy and newly
established IEs to improve or to validated nuclear data
libraries. The only issue is that we have to unfold somehow
the IEs data using them in a nuclear data evaluation
process. It is possible to do if IEs are numerous, their set is
statistically significant and there is a robust DA approach
consistent for a given field of interest [1,2,8,19].

From more general points of view, one might distin-
guish three the following major groups of DA practical
applications: (1) simple data adjustment contributing to
problem-oriented and general-purpose libraries [1,2,4,5,7],
(2) science-driven validation of nuclear data libraries and
simulations [2,6,19], and (3) knowledge-based prioritiza-
tion of dedicated basic research programs [19].

As far as DA techniques have different backgrounds for
different applications one seems reasonable to characterize
them below in terms of the level of maturity.

3.1 1st application: simple data adjustment

As said, the very basic idea of nuclear data adjustment is an
optimized fit of the modeling of nuclear reaction or of
nuclear systems to the well-evaluated consistent and
credible IEs data [1]. Such simple adjustment requires to
use fully representative [2,39] sets of high-fidelity IEs data
[25].

In the past, in the early 70s, one of such criteria of
representativity factor (rIE,QoI) was derived as follows:

rIE;QoI ¼
S
T

QoI ⋅cW ⋅SIE

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
T

QoI ⋅cW ⋅SQoI

� �
⋅ S

T

IE⋅cW ⋅SIE

� �r ; ð8Þ

where experiments assumed to be independent and all
notations are similar to ones given above [1,39]. In case of
correlated experiments, one should implement one or
another iterative process to quantify a representative
factor for each single experiment [19].

Furthermore, historically, the DA in nuclear engineer-
ing have been applied in two the following axes: (1) to
generate data libraries adjusted to a given set of
applications like, for example, ERALIB1 [4] and early
versions of ABBN library [1], and (2) to refine knowledge on
certain parameters of nuclear reaction models [5,9,10,12].

Practically, there are only two major ideas of an
adjustment: (1) to fit some aggregated parameters like
group-wise cross sections and, then, to refine the adjusted
integral values, correcting the very basic parameters of the
nuclear process model; (2) to correct these parameters
directly fitting the models of nuclear processes to IEs data.

One can see that in both axes Data Assimilation
demonstrated maturity sufficient for current requirements
of nuclear data evaluations [7,38,40,45].

3.2 2nd application: science-driven V & UQ

Together with corrected ND section DA quantifies their
uncertainties generating posterior CNDs. It could be used
evaluating the quality of the adjustment process as well as
validating the nuclear data libraries. Such application� to
support a validation process � may become even more
important than the data correction. Indeed, we have a few
well-elaborated and recognized brands of nuclear data
projects (ENDF/B, JENDL, JEFF, BROND, ROSFOND,
CENDL and TENDL, and some others [7,38]). It seems
unlikely to repeat or improve any of them by a single design
or scientific organization but they could be characterized in
terms of anticipated uncertainties in the field of users’
interests.

The Validation through Uncertainty Quantification
requires DA algorithms to be, mainly, robust and the only
on the second order to be of high resolution.

It should be noted that a science-driven validation �
that is exactly our case � separates domains of validation
and applications. It means that we can use whatever kinds
of experiments � critical, reactivity, reaction rates and so
on � to estimate biases and uncertainties for any Quantity
of Interest (QoI). What is needed is to have relevant
sensitivity coefficients or functional models to be combined
with corrections and posterior CNDs. Thus, in terms of
GLLS methodology the bias of QoI could be computed as
follows:

DQoI

QoI
¼ S

T

QoI ⋅
Ds 0

s 0 ; ð9Þ

where DQoI
QoI

and SAO area scalar bias predicted by DA and

a vector of sensitivity coefficient for the QoI, correspond-
ingly; and the uncertainties as

d2QoI ¼ S
T

AO⋅cW 0
⋅SAO

� �
; ð10Þ

where dQoI is the relative standard deviation when other
notations are similar to given above.



Fig. 4. Energy spanned cross sections and relative data gain indicators (XSADDED).

7 Discussion within one of OECD-NEA/NDB projects and
personal communications with Luiz Leal (IRSN).
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3.3 3rd application: step toward ontological
uncertainty treatment

While the first two groups of DA were well-illustrated by
practical cases, conference and journal papers [1,7] the
third group � what to do if we are dealing with an
ontological issues � was not pronounced so far. As said,
neither adjustment or comparison with observations but
the only a kind of discovery would help treating an
ontological uncertainty. However, even in this case DA
could become useful bounding the impact of such kind of
uncertainties and contributing in an establishment of
further problem-oriented basic research programs
[19].

For example, years ago, the nuclear criticality safety
community considered one hypothetical case of a criticality
on a fuel powder-mixing apparatus as one of high priority.
Physically, the configuration to be assessed was a moisture
in the mixture of reactor-grade plutonium and uranium
oxides and the critical conditions were reached with an
epithermal spectrum. Because of many reasons, the
number of representative integral experiments was very
limited while a few available give a discrepancy on several
percent of keff, that correspond to one-third or, even, one-
half of critical mass. Later, the dedicated parametric experi-
mental program was established with under-moderated
240Pucontainingcriticalassemblies [19,25,41,42].Asaresult,
the experiments confirmed an existence of the issue while
used, then, DAhelped characterizing specific safetymargins
by posterior bias and uncertainties [19] remaining, though,
unclear which namely nuclide-reaction led to these discrep-
ancies.

By chance, in this particular case, we have had two sets
of IEs data. The first one �the “basic set” of experiment-
based benchmarks � taken from ones available in the
Handbooks [25]. The second � complemented � set of the
same “basic” ones complemented by the newly obtained
ones. Comparing two correction factors derived from these
two sets we could estimate the following vector of
indicators XSADDED to point down the nuclide, reaction
and energy interval “responsible” for such discrepancy:

XSADDED ¼ 1� Ds
s½ �ADDED

.
Ds
s½ �BASIC

; ð11Þ

where Ds
s

	 

BASIC

and Ds
s

	 

ADDED

are the factors adjusted
using basic and complementary sets of benchmarks,
correspondingly. In our case the energy spannedXSADDED
profile depicted on Figure 4 shows that the field to be
elaborated, most probably, relates to a right wing of
0.296 eV fission resonance on 239Pu.

It should be noted, that this conclusion has been
surprisingly confirmed by an interpretation of some recent
tests of modern ND libraries against a fuel depletion
experimental benchmark associating the issue with a right
wing of the first 239Pu fission resonance7.

Using DA [19] we revealed the questionable area to lie
below eV in a total contradiction with the intuitive
statements that this area to be validated using experiments
with thermal spectra [42,43].

4 Discussion: technology readiness level

Assessing the maturity of DA algorithms, we divided them
conventionally by three groups like: (1) ROM/ROM, (2)
linear-precise and (3) precise-precise representations
[1–3,5,7–9,12,14]. The analysis is presented on Figure 5
by applications � ND adjustment, ND Validation through
Uncertainty Quantification and contribution in basic
research planning � and by the groups of algorithms.
The bigger relevant circle on the Figure the higher level of
maturity.

The first axe�ROM/ROM�means that the models of
nuclear reactions and particle transport simulations were
replaced by their Reduced Order Modeling analogous such
as relevant sensitivity coefficients. The nuclear reaction



Fig. 5. Maturity (Technology Readiness Level) practically demonstrated using DA algorithms with respect to ND adjustment,
validation and relevant studies planning.
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model (first abbreviation)was represented as a set of group-
wise cross sections [1–3] including, normally, micro-data
with Wescott g-factors and Bondarenko f-factors and, if
possible, vectors of sub-groups or by the parameters
inherent to the high-fidelity nuclear reaction modeling
[5,9,11,18]. The particle transport model (second abbrevi-
ation) was also given as a set of group-wise sensitivity
coefficients, comprised, of course, explicit and implicit
components of sensitivity [1,2,7]. In ROM/ROM biases
and uncertainties can be used immediately [6,19], while ND
correction factors should be somehow unfolded and
assessed [1,16]. Thus, we believe that the DA maturity
over here seems to be sufficient as for data adjustment as
for validation.

The second axe–precise/precise (P/P)–means high-
fidelity or, even, precise modeling as for reactor physics as
for nuclear reactions. Apparently, it could generate fully
balanced and adjusted libraries. However, it still seems
unclear how to adjust some pre-calibrated semi-empiric
elements contained in high-fidelity theoretical model
intended to nuclear reactions calculations.

The third axe � linear/precise (L/P) �represents
nuclear data as a superposition of pre-generated high-
fidelity profiles. It is usually associated with a Hierarchical
Monte-Carlo being oriented, mainly, on validation [14].

In addition, we identified some bottlenecks for DA. First
of all, in terms of DA methodologies, one still needs to
elaborate an adjustment for composed � non-linear �
operators like, for example, one of fission production where
n-bar and PNFS are correlated ( 1

4p ⋅x⋅n⋅Sfiss ← : : :
x nð Þ⋅n : : : ).

Concerning the IEs, one still needs in high-fidelity
experimental covariance matrices that exist but not
numerous enough in the Handbooks and do not exist for
different functionals, like covariance between the measure-
ments of reaction rates and kinetic parameters, for example.

Finally, one should note that some IEs were applied in
the ND tuning. These experiments have to be withdrawn
from the adjustment and validation or, at least, users
should be informed about them.
5 Conclusions

Data Assimilation belongs, mainly, to a field of information
technology, is presented in the nuclear technological
science from the sixties of the last century. Known as
Nuclear Data adjustment, it was providing users with
so-called design-oriented multi-groups libraries and so on.

Among others, the use of the adjustment was warranted
if nuclides to be studied were rare or short-lived, or
dangerous complicating or, even, making impossible any
differential measurements.

Nowadays, despite or, may be, due to a notable
success of Data Assimilation there are no more room for
rough adjustment, because of enhanced requirements to
Nuclear Data accuracy. We are talking either about the
fine Nuclear Data calibration via parameters inherent to
the nuclear reaction modeling or about the science-
driven Validation through Uncertainty Quantification
where we could use any, even rough, Data Assimilation
algorithm.

As said, Data Assimilation contributes to a nuclear
data evaluation combining differential and integral
experiments data. In this case we are dealing with the
simple errors � discrepancies between calculated and
experimental values � and their covariances in order
to generate optimally balanced problem-oriented
libraries.

Eventually, Data Assimilation could substantiate a
science-driven Validation providing assessor with an
evidence-based background.

In addition, Data Assimilation could be used in gap
analysis somehow contributing in an establishment of
dedicated basic research programs.

Further development of Data Assimilation for Nuclear
Data evaluation could be considered, among others, by the
following axes: (1) an extension of the applications
enhancing comprehensive optimization and validation of
nuclear data libraries; (2) an improvement of numerical
algorithms involving recently developed data science
techniques; and (3) an elaboration of experimental data-
bases.

Summarizing the reasoning above we could conclude
that Data Assimilation, as an approach, has a sufficient
maturity for the nuclear engineering applications having,
at the same time, significant potential for further
refinement.

The paper is written in a memory of Dr. Massimo Salvatores. He,
among others, made a great contribution to the rise of a
Perturbation theory and Data Assimilation involvement in a
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broad range of scientific domains of nuclear engineering, including
reactor physics and control, innovative technologies and, on a top
of this, in nuclear data evaluation and validation.
We would also extend our appreciation to OECD/NEA staff and
expert groups’ members for their deep involvement in a scientific
discussion on a role and practical implementation of Bayesian-
based methodologies in a nuclear technological science.
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