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Abstract—In this paper, we present a new approach to predict
monotonous functions based on approximate reasoning and in
particular on the Gradual Generalized Modus Ponens (GGMP)
in fuzzy logic. We propose to optimise the parameters of such
fuzzy rules with a genetic algorithm considering few experimental
data. We use our approach to predict some properties of materials
from their manufacturing process parameters. We automatically
extract causality, seek for graduality and then set up the GGMP.
We tested on both toy and real world datasets. We also discuss
the importance of gradual knowledge in materials science.

Index Terms—Fuzzy logic, Gradual Generalized Modus Po-
nens, Knowledge Extraction, Materials Science, Monotonous
Function Prediction, Model Interpretability.

I. INTRODUCTION

Discovering new materials is one of the main objectives
of experts in the materials science field. It requires different
experimental tasks. To guide experiments, researchers are
interested in characterising relationships between the material
properties (e.g. mechanical, physical) and its manufacturing
parameters. Artificial Intelligence has been widely used to
predict these properties from the process parameters, mostly
applying machine learning and black box models, statistics,
and sometimes expert systems [1].

We interest in extracting relevant knowledge from exper-
imental data as experts would do. To this end, we propose
a fuzzy logic approach to extract automatically insights from
the experimental data, in the form of rules, that can be then
used for properties prediction. Fuzzy logic is used here for its
closeness to natural language and its ability to deal with vague
knowledge and imprecise data.

One of the most important information materials researchers
seek is gradual relations, for instance like “the higher the
temperature, the clearer the material”. In this paper, we focus
on extracting this kind of relations from an experimental
dataset and formalizing them with fuzzy gradual rules. How-
ever, experimental data are often costly to produce: not only
because of the raw materials cost, but also because the product
characterisation is mainly performed by experts and is time
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consuming. We thus propose an approach that deal with few
data.

The paper is structured as follows. The next section presents
an overview of our approach. Section III gives the background
of this work about causality, graduality and Gradual General-
ized Modus Ponens (GGMP). We then present the extraction
of gradual rules from data (section IV) to represent specific
relations between parameters and properties, and how we use
GGMP to approximate their values (sectionV). We validate our
approach with synthetic data and show results in section VI.
Section VII presents the results on a real world dataset and in
section VIII, we compare them to the performances of other
regression methods. After discussing (section IX), we finally
draw some conclusions and perspectives.

II. APPROACH OVERVIEW

In this section, we describe our approach to extract and use
relevant gradual knowledge from data to predict the materials
properties from process parameters (Fig. 1).

The first part of our approach is the characterisation of links
between manufacturing process parameters and materials prop-
erties: (1) causality links and (2) gradual links through gradual
itemsets discovery with the GRAANK algorithm introduced
in [2] and described in section III-B.

Then we combine results obtained from causality links
detection and gradual itemsets detection to generate final
gradual links. Each gradual link binds a set of manufacturing
parameters and the property influenced by these parameters.

Each gradual link is then represented with a gradual rule,
based on the GGMP (section III-C). The gradual rules and
their parameters have to be set up regarding the learning
dataset (section IV).

Finally, the end user presents the process parameters to the
system and gets back the materials properties that should be
reached. The inference is performed, obviously, by using the
GGMP (section V) which is able to perform the prediction
from both singleton and imprecise values.

III. BACKGROUND

In this section, we give the necessary background to under-
stand this approach.



Fig. 1: Approach overview

Our work is based on fuzzy logic, which is a multivalued
logic based on the fuzzy set theory. A fuzzy set is defined by
a domain and a membership function that maps each element
of the domain to a value between 0 and 1, expressing the
membership of this element to the set.

A. Causality

Several approaches, introduced in the literature, use statisti-
cal analysis for defining the significance of the manufacturing
processing parameters. The Analysis of Variance (ANOVA)
and the statistical regression analysis are among the most
exploited methods in materials science. For instance, in [3],
ANOVA was performed to determine the level of statistical
significance of the parameters. Then, a regression model based
on a multi variable polynomial regression was developed.

Based on our literature study, without loss of generality, we
have chosen to use ANOVA for categorical parameter, when
its assumptions of normality, homogeneity of variance and
independence of observations are met. A non-parametric sta-
tistical test, such as the Kruskal-Wallis test, is used otherwise.
For continuous parameters, we use the statistical regression
analysis to evaluate their influence on each property.

B. Graduality

The gradual dependencies were introduced to consider the
common variations among attribute values. Many methods
were introduced in the literature for mining gradual depen-
dencies such as [4] where contingency diagrams are used to
model fuzzy sets and linear regression analysis is applied to
validate relationships between attributes. In [5], the prece-
dence graph is used to represent the data and to detect the
gradual dependencies between attributes. In [2], the GRAdual
rANKing (GRAANK) is proposed by combining different
existing approaches to benefit both from semantic quality
and computational efficiency. Based on Kendall’s tau ranking
correlation coefficient, the authors evaluate candidate gradual
itemsets using their concordance matrix.

For its various advantages, we use GRAANK in our work.
We now present some basic notations and definitions as
defined in [2].

Definition 1 (Gradual item): A gradual item A∗ is defined as
a pair of an attribute A associated to a variation ∗ ∈ {≥,≤}.
A≥ expresses an increase in A values “the higher A”. A≤

expresses a decrease in A values “the lower A”.
For instance, the gradual item Price≥ is interpreted as “the

higher the price”.

Definition 2 (Gradual itemset): A gradual itemset GM =
A∗1A

∗
2 . . . A

∗
n is a combination of n gradual items. It implies

a simultaneous change between n attributes.
For example, the gradual itemset “the higher the quality of

the product and the higher its price” can be formalised by the
two items: Quality≥ Price≥.

Definition 3 (Gradual rule): A gradual rule GR noted as:
GM1 → GM2, is defined as a pair of gradual itemsets GM1

and GM2 that have to be related by a causality link. GM1

is the antecedent of the rule GR and GM2 represents its
consequent. This causality constraint makes the difference
between a gradual itemset and a gradual rule.

For example, the gradual rule, “the faster the car, then the
greater the fuel consumption” can be expressed as Speed≥ →
Consumption≥.

C. Gradual Generalized Modus Ponens

In this work, we study specifically the GGMP [6] as a
way to approximate monotonous functions, and thus gradual
relations between parameters and properties.

In classical logic, the Modus Ponens is used to perform
inference. Its fuzzy counterpart is the Generalized Modus
Ponens (GMP) that allows approximate reasoning: inference
can be performed on either fuzzy sets or singletons. The
special feature of the GGMP is the integration of the graduality
in the inference mechanism. It is an extended version of the
GMP that allows integrating the gradual hypothesis when it
exists, i.e, when a monotonic relationship exists between the
input and the output.

For example, for a rule: “if the price is expensive then the
quality of the product is high”, a gradual hypothesis can be
defined by “the more the price then the more the quality of
the product”.

The GGMP has the same property as the GMP: if the
input is a fuzzy set, the result will be a fuzzy set, and if the
input is a singleton, the result will be a singleton. This will
allow predicting the properties of the materials even when the
parameters are set approximately.

We now describe how the GGMP works. It is not strictly
necessary to understand the remainder of the article.

In order to consider the graduality, the GGMP approach is
based on decomposing the fuzzy sets of the premise and the
conclusion of each fuzzy rule into three parts: Smaller, Greater
and Indistinguishable.

For example, for an increasing GGMP, let X and Y be two
linguistic variables defined on the universes of discourse U
and V respectively. A is a fuzzy set of X and B a fuzzy set



of Y . We define the fuzzy rule R: “if X is A then Y is B”.
The universe of the premise (resp. of the consequence) is de-
composed into three fuzzy sets regarding the fuzzy set A (resp.
the fuzzy set B): SmallerA, GreaterA and IndistinguishableA
(resp. SmallerB, GreaterB and IndistinguishableB). Using this
decomposition, the inference is focused on the corresponding
parts of A and B. Thus, to infer the SmallerB (respectively
GreaterB and IndistinguishableB) part of B, the SmallerA
(respectively GreaterA and IndistinguishableA) part of A is
only used [6].

In GGMP, A and B have to be convex, normalized and
continuous, and their supports have to be bounded. The defi-
nition of the membership functions of the three parts, Smaller,
Greater and Indistinguishable of both the premise and the
consequence of R, is based on the core and the complement of
A and B [6]. Let the interval [AL, AR] be the core of the fuzzy
set A where ∀x ∈ [AL, AR], µA(x) = 1, the membership
functions for the Smaller, Greater and Indistinguishable parts
of A are defined as follows:

φSmallerA(x) =

{
µA(x) = 1− µA(x) if x < AL

0 otherwise
(1)

φGreaterA(x) =

{
µA(x) = 1− µA(x) if x > AR

0 otherwise
(2)

φIndistinguishableA(x) =

{
1 if x ∈ [AL, AR]
0 otherwise

(3)

GGMP has been defined for rules with multiple inputs and
for monotonic decreasing relations. For more details about the
GGMP, we invite the reader to refer to [6], [7].

IV. GRADUAL RULES EXTRACTION FROM DATA

As in many types of fuzzy rules, the universe of discourse
has to be partitioned. Thus, to set a gradual rule based on
GGMP, the following parameters have to be set.

First, we have to consider the level of granularity of each
linguistic variable included in the rule. Specifically, the number
of fuzzy sets partitioning the premises and the consequence
universes of discourse are chosen. The number of fuzzy sets
has to be defined either according to the number of data, or to
the complexity of the shape of the function to approximate.

For example, let us consider the gradual rule RG: “The
higher the pressure then the thicker the material”. The com-
plexity of the curve representing the material thickness values
regarding the pressure is used to define the number of fuzzy
sets of the two linguistic variables.

We assume that at least one triangular fuzzy set is required
for a monotonic linear curve. Furthermore, in order to preserve
the membership functions requirements defined in the GGMP
mechanism, two half-triangles have to be added in the final
partitioning, at both ends of the universe of discourse. The
more complex the shape of the curve, the higher the number
of fuzzy sets needed to represent the corresponding data and
its graduality aspect as defined in the rule.

Once the partitioning is set, we can consider a first set of
parameters: the location of the critical points of the triangular
membership functions of the rule’s premise and consequence
fuzzy sets. More precisely, we are interested in determining
the positions of the vertex of each membership function. We
assume that the half-triangular membership functions have
each one fixed vertex position corresponding to one extrema
of the universe of discourse.

Then, we introduce a second set of parameters that measures
the contribution weight of each variable in the premise of the
rule in the inference of its the consequence. This is particularly
useful to consider an asymmetric contribution of the different
input variables. Considering these weights allows detecting the
optimised contribution of each manufacturing parameter that
yields to the best property values prediction.

Finally, a genetic algorithm optimises these last two sets of
parameters. The size of the individuals depends on the number
of the premises in the rule and the number of the fuzzy sets
identified for the premises and the consequence. Moreover,
we add a constraint on the genes corresponding to the vertex
positions to preserve the ascending order of the fuzzy sets
vertex positions of each linguistic variable. For this, we start
with defining population of genes respecting this constraint.

To sort the individuals, we use as fitness function the
Root Mean Square Error (RMSE) value between the predicted
values and the real ones.

V. PREDICTION OF PROPERTIES FROM PARAMETERS

Let a fuzzy rule R: “if X is A then Y is B”. Let A′ be a
new observation for X , A′ being a fuzzy set. The conclusion’s
membership function µ′B is defined as follows [6]:

∀y ∈ V, µB′(y) = sup
x∈ψ(y)

>(µA′(x), I(µA(x), µB(y))) (4)

where > is a t-norm, I is a fuzzy implication operator, and

ψ(y) =
{
x ∈ U |φPA(x) = φPB(y) and φPB(y) > 0,

P ∈ {Smaller,Greater, Indistinguishable}
}

(5)

where φP are defined by equ. 1 to 3 .
In fuzzy logic, a t-norm (unabbreviated triangular norm) is

a binary operation that stands for the intersection of fuzzy sets
or the conjunction in logic.

In the case of multiple crisp inputs and rules, and consid-
ering the weights we added in the definition, the equation
proposed in [7] to obtain the aggregated and defuzzified
conclusion yf has been changed into:

yf =

∑m
i=1

∑n
j=1 w

j
iµBi

(
yji
)
µB′

i
j

(
yji
)
yji∑m

i=1

∑n
j=1 w

j
iµBi

(
yji
)
µB′

i
j

(
yji
) . (6)

where each wji ∈ [0; 1] represents the weight of the input j in
the rule i; yji represents the points at which B′i

j has positive
membership values.



VI. VALIDATION

In this section, we show that a properly set GGMP can be
used to approximate monotonous functions. We remind that in
our application, we have few data so we are not able to assess
if the relation between parameters and properties is linear,
polynomial, etc.

We thus tested on some toy monotonic functions. For
each case, we generated a dataset with some points regularly
sampled in the universe of discourse of the input variable
for the training phase. Note that the actual function used to
generate the datasets is not used by our method.

First, we tested the quadratic increasing function f(x) =
2x2 on [1; 100]. To take into account the complexity of this
relation, we used 6 fuzzy sets to partition the input and the
output universes; 4 triangles and 2 half-triangles were used.
The Mean Absolute Percentage of Errors (MAPE) value is
about 9%.

Then, we tested a sigmoid relation defined by the function
f(x) = 1/(1 + e−x) on [−5; 5]. Given the complexity of this
relation, we have chosen to use 7 fuzzy sets to partition the
universe of discourse of the input and the output, that is to say
we used 5 triangles and 2 half-triangles. The MAPE value is
about 6.5%.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate our method on an experi-
mental dataset from Physical Vapor Deposition manufactur-
ing method. More precisely, the dataset is provided from
a case study aiming at producing thin films of zinc oxide
by cathodic sputtering. It contains 59 experiments obtained
from four experiments designed by the Taguchi method. This
method selects only few values for each possible influencing
parameter. In the experiments, there are five controlled process
parameters. Four of them are considered as categorical and
numerical: Pressure (Pr), Partial Pressure (PP ), Power (P )
and Scroll Speed (SS). Indeed, on the machine that has
been used, it is only possible to select some values for these
parameters. The last one, the Number of Passages (NP ),
is quantitative. Different types of materials properties are
measured: mechanical, optical and physical.

As example of properties, we have the Deposition Speed
(DeS). The deposition speed values range between 2 nm/min
and 45 nm/min. We started with detecting parameters influ-
encing this property values by using the graduality detection
test. After applying the Kruskal-Wallis statistical test and
statistical regression analysis, we deduced that DeS is more
influenced by two parameters: Pr and P . We detected also
two gradual itemsets using the GRAANK algorithm. Thus,
we detected the following gradual link for the DeS (noted
GL1): P≥, P r≤ → DeS≥.

We worked also on the film’s thickness (Th) property. The
thickness values vary between 7 nm and 743 nm. We deduced
that Th is influenced by three parameters: SS, P and NP .
We detected also three gradual itemsets using the GRAANK
algorithm. Thus, we can conclude this gradual link holds for
the Th (noted GL2): P≥, NP≥, SS≤ → Th≥.

For each property, we extract the gradual rules from the
experimental data as presented in section IV with five fuzzy
sets for each linguistic variable representing the antecedent and
the consequent of each rule. We used 5-fold cross validation
to evaluate the performance of our approach. According to the
results of the 5 folds, the prediction of the property DeS is
performed with an average MAPE of 9.5% (with a standard
deviation of 2.23%) and an average RMSE of 1.8 (with a
standard deviation of 0.31). The prediction of the property
Th is obtained with an average MAPE of 57.49% (with a
standard deviation of 5.77%) and an average RMSE of 59.12
(with a standard deviation of 19.51).

VIII. COMPARISON WITH OTHER METHODS

In this part, we compare the predictive performance of our
approach with the performance of other predictors from the
literature.

We use the same experimental dataset from Physical Va-
por Deposition manufacturing method. We apply the chosen
predictors to infer the values of the material properties DeS
and Th based on its influencing process parameters measures.
First, we use the Adaptive Neuro-Fuzzy Inference System
(ANFIS). For each input, we train a model by testing several
gaussian membership functions ranging from 3 to 6 and
respecting fuzzy strong partitioning. We also train a model
using polynomial regression method by performing different
tests with several polynomial degrees ranging from 2 to 7.
Then, we use the support Vector Regression (SVR) method
by testing a linear and a radial basis function kernel with
default hyperparameters. For ANFIS, polynomial regression
and SVR, we keep the configuration that optimizes the mean
and standard deviation of the metrics RMSE and MAPE.
Finally, we investigate two ensemble methods: the random
forest and the Extreme gradient boosting (XGBoost) with
monotonicity enforced.

To compare the prediction performance of our approach to
other predictors, we applied a 5-fold cross-validation using
the same folds to train and test the different models. We use
only singleton values for inputs, expecting singleton values
for outputs, since our method is the only one to deal with
more than singletons. We calculated the RMSE and MAPE
metrics to evaluate the trained models for each fold. Then
we considered the average and the standard deviation of the
RMSE and MAPE obtained for all the folds to assess the
performances of a predictor to another one.

The table I presents the results of testing the models trained
using the selected methods and our method to predict the
DeS values. Our method (adapted GGMP) gives the best
results in terms of mean and standard deviation of RMSE and
MAPE metrics. The table II shows the results of assessing
the different trained models performance to predict the Th
values. Our method gives the best results in terms of mean
and standard deviation of RMSE. The XGBOOST model has
the best performance in terms of the average of MAPE.



TABLE I: Performance of the prediction of DeS values based
on Pr and P measures using the different selected predictors

RMSE MAPE (%)
SVR 3.61± 1.09 18.75± 7.67

Polynomial Regression 1.9± 0.5 11.83± 3.02

Random Forest 2.83± 1.54 12.22± 4.15

ANFIS 4.6± 3.9 18.10± 15.19

XGBOOST 2.62± 1.17 14.65± 9.45

Adapted GGMP 1.8± 0.31 9.5± 2.23

TABLE II: Performance of the prediction of Th values based
on P , NP and SS measures using the different selected
predictors

RMSE MAPE (%)

SVR 108.83± 29.09 118.31± 43.81

Polynomial Regression 94.19± 61.05 43.31± 22.67

Random Forest 73.5± 20.98 80.12± 38.48

ANFIS 96.5± 25.87 75.8± 32.01

XGBOOST 59.33± 23.23 39.47± 9.42

Adapted GGMP 59.12± 19.51 57.49± 5.77

IX. DISCUSSION

The interpretation of the results allows us to draw some
conclusions. Indeed, the number of fuzzy sets partitioning
the premises and the consequence of the rule represents a
significant hyperparameter in this approach.

An insufficient number of fuzzy sets and few experimental
data limit the ability to learn an accurate model. When the
data are very few, we can use almost as many partitions as
different values for each parameter and property. It will learn
the segments between two points. When the data are more
numerous, it is important to choose a partitioning that allows
good performances, depending on the precision needed by the
application. In addition, if the partitioning has an impact on
the learning time, it does not affect the inference time (only
few memberships are used to perform the GGMP).

In the experiments above, we made different tests to select
the number of fuzzy sets to use for each gradual rule. It would
be interesting to automate the selection of the optimal number.

We have also checked the gradual rules extracted from the
data with materials scientists and they confirm both the interest
of our approach and the results we obtained.

The proposed approach allows extracting useful knowledge
from few data. On the one hand, other methods, such as
ANFIS, require large datasets and their interpretability is
not always guaranteed due to the number of the generated
rules [8]. On the other hand, Sugeno approaches needs to know
a priori the shape of the function to approximate.

The advantage of our method is:

• it is a good predictor for properties from process param-
eters;

• it is directly representable with a sentence, e.g. “the more
... the more”, which is understandable by the end user;

• it extracts gradual rules that can cohabit with other types
of rules to manage other relations between parameters
and properties;

• it deals with singleton values as well as fuzzy sets that
can represent imprecise values or intervals.

Indirectly, the gradual rules can help during the search for
optimal process parameters to get some specific properties.
For instance, with a rule like “the higher the temperature, the
clearer the material”, it is obvious that to obtain the clearest
material, the temperature must be set to its maximal value.

X. CONCLUSION

In this paper, we present an original use of the GGMP
to approximate monotonous functions. It does not need any
assumption about the shape of the monotonous function to
approximate and can deal with both a single value and fuzzy
sets. In this paper, we focused on the availability of few
data, but without loss of generality, our approach could also
work with more data. This method has thus the advantage
of extracting useful knowledge from the data, interpretable
by humans, instead of only providing the results as other
approaches provide.

In this work, we focus only on gradual rules. We extract
them from the data by detecting causality, then graduality,
and finally setting up a set of gradual rules that are based
on GGMP.

We successfully applied our approach to materials science
and showed we are able to predict the properties of the
materials from process parameters. We also compared to other
models and our approach sometimes outperforms XGBoost.

Since the approach has been approved by materials scientists
and since the gradual links discovered have been verified, we
will continue to improve this approach by generalising to other
kinds of relations.
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