
HAL Id: cea-03610950
https://cea.hal.science/cea-03610950

Submitted on 16 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Early lessons learned from the development of a local
OPC UA-based robotic testbed for research

Quang-Duy Nguyen, Fadwa Tmar, Yining Huang, Saadia Dhouib

To cite this version:
Quang-Duy Nguyen, Fadwa Tmar, Yining Huang, Saadia Dhouib. Early lessons learned from the
development of a local OPC UA-based robotic testbed for research. The 31st IEEE International
Symposium on Industrial Electronics, Jun 2022, Anchorage, Alaska, United States. pp.1-4. �cea-
03610950�

https://cea.hal.science/cea-03610950
https://hal.archives-ouvertes.fr


1

Early Lessons Learned from the Development of a
Local OPC UA-based Robotic Testbed for Research

Quang-Duy NGUYEN , Fadwa REKIK , Yining HUANG , and Saadia DHOUIB
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France.

Email:{quang-duy.nguyen, fadwa.tmar, yining.huang, saadia.dhouib}@cea.fr

Abstract—OPC UA has been emerging as a widely-adopted
standard in the industry. An OPC UA system represents its
resources using an information model. This information model
relies on the base OPC UA information model proposed by
OPC Foundation, and is extensible with information models from
other companion specifications and user-defined information
models. When the system specification and design evolve, system
developers need to update the information model from the system
design. It is tricky for testbeds that frequently are updated
with new devices, protocols, and development tools demanded by
different use cases. This paper shares our long-term OPC UA-
based robotic testbed for Industry 4.0 research and the strategy to
develop it. The testbed’s development follows the SysML standard
for system specification and design and the OPC UA standard
for system implementation. Its information model relies on the
information models: OPC UA for Devices and VDMA OPC UA
for Robotics.

Index Terms—Industry 4.0, Testbed, OPC UA, Devices, VDMA,
Robotics, Mini-waterfall, Trigger

I. INTRODUCTION

A testbed is essential for research and education since it
provides an environment for system development and testing.
Developing a testbed is different from developing a use case in
two following points. First, a testbed can provide the platform
for several use cases; thus, developers should maximize its
potential instead of focusing on the goals of a specific use case.
Second, a testbed for long-term use can grow progressively.
For example, it can integrate new devices and protocols. The
development should consider improving and reconfiguring the
testbed when there is a trigger to change.

This paper presents LocalSEA, a local robotic testbed for
multiple purpose experimentations to develop and evaluate
research contributions for Industry 4.0. It is under the develop-
ment and management of LSEA (Embedded and Autonomous
Systems Design Laboratory), CEA List. In a long-term strat-
egy, the testbed will progressively extend with different robots
and devices. However, the testbed’s development relies un-
changeably on the SysML standard in the specification and
design phase and the OPC UA standards in the implementation
phase. SysML, standing for Systems Modeling Language, is an
architecture modeling language based on UML and dedicated
to System Engineering applications [1]. SysML is developed
and maintained by Object Management Group (OMG). Its
newest version, v1.6, provides nine diagrams to describe a
system from different points of view, thus, enabling partici-
pants of system development to understand, communicate, and
exchange between them.

OPC UA, standing for Open Platform Communication Uni-
fied Architecture, is a well-known and widely-adopted stan-
dard in the industry. It is developed and maintained by the OPC
foundation. To date, OPC UA’s newest version, v1.05, consists
of more than twenty specifications for deploying industrial
systems with interoperability, security, and robustness [2]. One
of the essential advantages of OPC UA is the concept of
the OPC UA address space and information model. First, the
mechanism of OPC UA address space allows representing all
the resources of an industrial system in the form of OPC UA
nodes [3]. Second, the OPC UA information model provides
a basic vocabulary to define OPC UA nodes and to build a
semantical schema for them [4]. This vocabulary is extensible:
the companions of the OPC Foundation can extend it by
providing a new information model with the vocabulary for
a specific domain. As a result, OPC UA address space and
information model improve semantic interoperability: external
systems can browse and access the resources of an OPC UA
system through the OPC UA nodes using OPC UA services.

Technically speaking, the LocalSEA testbed includes an
OPC UA server managing an information model represent-
ing all internal resources, such as robots, peripherals, and
networks. This information model relies mainly on three
information models: the base OPC UA information model part
5, the OPC UA for Devices information model part 100 [5],
and VDMA OPC UA for Robotics information model [6]. All
devices inside the testbed connect respecting the OPC UA
communication and security standards.

The motivation of this research is to share our early lessons
learned in developing the LocalSEA testbed. First, we in-
troduce a strategy for a long-term testbed development: to
use the mini-waterfall with triggers methodology. This new
methodology is dedicated to testbeds since they can be up-
dated frequently with new devices, protocols, and development
tools demanded by new use cases. Second, this research also
presents some obstacles specifying OPC UA-based testbed
development that can be helpful experiences for the industrial
research community.

The rest of this paper is organized as follows. The second
section presents some other research about testbeds in Industry.
The third section introduces mini-waterfall with triggers, the
methodology used in LocalSEA development. The fourth
section is a sample of using the mini-waterfall with triggers
methodology in developing the testbed. The fifth section dis-
cusses our encountered difficulties and future works. Finally,
a brief conclusion sums up this paper.

https://orcid.org/0000-0002-3517-0945
https://orcid.org/0000-0002-8334-0259
https://orcid.org/0000-0003-0106-8771
https://orcid.org/0000-0003-3896-7295


2

II. RELATED WORK

Many industrial testbeds and platforms to develop testbeds
and case studies address Industrie 4.0 [7]. They are well-
maintained and developed by credible organizations. This
paper focuses on sharing the experience and strategy of
developing a long-term testbed rather than presenting another.
The study of Frank et al. has some commons with this research
[8]. First is the distinguishing between the development of a
testbed and a use case. Second, it presents a new method-
ology to design a testbed. However, they are different in
the domain, the development strategy, and the testbed’s core
technology—the OPC UA standard.

The testbed presented by Okuda et al. uses the OPC UA
communication standard for the system network and an OPC
UA information model to represent the resources needed for
its use cases [9]. However, this work has no clear strategy to
develop its testbed for new changes.

III. MINI-WATERFALL WITH TRIGGERS

The methodology to develop the LocalSEA testbed is mini-
waterfall with triggers. Mini-waterfall inspired by the well-
known waterfall methodology also contains fives phases: (1)
specification, (2) design, (3) implementation, (4) testing, and
(5) maintenance [10]. However, the system’s developers with
the mini-waterfall methodology divide their system’s work into
small jobs. Each job should have a clear goal. They repeat
the sequence of the five phases for each job to progressively
develop the system. In this paper, a repeat of mini-waterfall is
called sprint, as in the scrum/agile methodology [11]. System
developers have two solutions when they find an error in one
of the previous phases. The first solution is to note the error,
temporarily ignore it and finish the current sprint, then fix it
in the next sprint. The second solution is to jump back to the
phase with that error, fix it, and refollow the sprint. The first
solution is encouraged. The mini-waterfall with triggers use
triggers as a point to start a sprint. Figure 1 illustrates the
methodology mini-waterfall with triggers.

Specification 

Design

Implementation

Testing

Maintenance

New Use CaseNew Device / Protocol New Development Tool

Methodology: Mini-waterfall

 Trigger

Fig. 1. Testbed development methodology: Mini-waterfall with triggers

Three following triggers is specified for the development of
a robotic testbed.

• First, the trigger activates a sprint when deploying a new
device or a protocol/standard in a testbed. It is neces-
sary to improve the information model to represent new

resources from the device or the protocol. Also, system
developers must apply new programs or configurations
into the testbed.

• Second, the trigger activates a sprint when using a new
development tool. The tool must change one or several
development activities and become part of the develop-
ment toolset.

• Third, the trigger activates a sprint when implementing a
new use case. The use case may require adding, adjust-
ing, and modifying the testbed, such as improving the
information model with new view nodes corresponding
to the required data of the use case.

The result of each sprint should be a testbed’s new version
and a new report that presents the procedure to develop and
the guide to use the testbed.

IV. DEVELOPMENT SAMPLE: THE FIRST SPRINT

The first sprint is also the start point of the testbed devel-
opment. This sprint has three main jobs: (1) install an OPC
UA server on a Raspberry Pi1 3 Model B+, (2) install Niryo
Ned2, a robotic arm, and (3) deploy an OPC UA transport
profile for the communication between the OPC UA server
and the robot. The trigger, in this case, is a new robot and a
new protocol. In this first sprint, we only considered the OPC
UA standard for the specification, design and implementation
of the system. SysML standard will be used in the second
sprint for the specification and design phases.

In the specification phase, our developers’ team studied the
following documents: the technical specification of Niryo Ned,
OPC UA specifications, the OPC UA for robotics companion
specification, and information about current conditions and
future orientations of LocalSEA. The result is a specification
document synthesizing essential information for the first sprint.

In the design phase, our developers’ team first listed pos-
sible solutions for the communication inside LocalSEA. The
selected solution is OPC UA PubSub in the brokerless mode.
Since the publish-subscribe communication pattern fits the
Internet-of-Things (IoT) requirements, the testbed is also ready
for Industrial IoT use cases in the future. Figure 2 illustrates
the architecture of LocalSEA, in which an OPC UA server ran
on the Raspberry Pi manages an address space representing the
resources of Niryo Ned. Niryo Ned plays as a publisher, and
the OPC UA server plays as a subscriber. The users outside
LocalSEA can interact with this testbed through the server.
Figure 3 shows essential nodes of the information model of
LocalSEA. Most of the types in this information model are
basically from the base OPC UA information model part 5,
the OPC UA for Devices information model part 100, and
the VDMA OPC UA for Robotics information model. Only
instances and some new specific types are newly created. The
tool used for design is UaModeler3.

1https://www.raspberrypi.com/
2https://niryo.com/product/ned/
3UaModeler is an OPC UA information model designer developed by

Unified Automation GmbH. The tool provides a user-friendly design to design
information models and generate them into NodeSet2.XML format. However,
it requires purchasing a license for the full-featured of the latter function.



3

LocalSEA robotic testbed
Address space

Legends: 

  Connection inside LocalSEA

  Connection outside LocalSEA

Fig. 2. The architecture of the LocalSEA testbed after the first sprint

Our developers implemented the OPC UA server using
the Open625414 library. The OPC UA PubSub UDP UADP
transport profile5 and the None security profile6 realized in
a C-codes program allow Niryo Ned to exchange with the
server. The manually-made information model in the Node-
Set2.xml format was converted into C codes using the NodeSet
Compiler tool. This tool is also proposed by Open62541.

Since this is the first sprint, it lacks data and scenarios to
verify if the testbed can work stably in different conditions.
Thus, the verification phase is only about testing whether the
other users outside the system can connect and retrieve data
from Niryo Ned. One tool to test the information model of the
OPC UA server is UaExpert7.

In the maintenance phase, our developers’ team records
every feedback from the testbed’s users and resolves their
issues. Note that the testbed’s users of this sprint are only
colleagues in our research team.

V. DISCUSSION AND FUTURE WORKS

Figure 4 shows the development plan for LocalSEA, with
five sprints. The first sprint, presented in Chapter IV, ter-
minated. It has two main jobs: (1) installing a new Niryo
Ned robot and (2) deploying the OPC UA PubSub brokerless
network profile. Some remarks learned from this sprint are
as follows. First, the Robotics information model is still a
developing specification. Indeed, its current vocabulary can
cover only robotic arms but no other types of robots, such as
mobile robots. Also, the concepts of some robotic parts, for
example, the end effectors of a robotic arm, are missing. Thus,
the Robotics information model users must wait for a new
version or extend it with some new custom-defined vocabulary.
Second, the concept of OPC UA views helps distinguish the
use cases deployed in the same testbed simultaneously. Since
the information model of an OPC UA server represents all
resources available in the testbed, an OPC UA view enable
users to focus on a subset of OPC UA nodes.

The second sprint is currently in progress. In detail, a
new extension for the Eclipse Papyrus8 enables to specify
and design a system using SysML, then to add OPC UA
specific concepts on top of the SysML models in order to
automate the generation of the OPC UA information model.

4https://open62541.org/
5http://opcfoundation.org/UA-Profile/Transport/pubsub-udp-uadp
6http://opcfoundation.org/UA/SecurityPolicy#None
7UaExpert is another tool of Unified Automation GmbH. It is a full-featured

OPC UA Client for general purpose tests.
8https://www.eclipse.org/papyrus/

Consequently, this extension proposes a UML profile for the
design of the Robotics information model. Since the manual
serialization of an information model is quite a painful job,
Papyrus generates automatically the NodeSet2.xml file from
the models. The generated information models are compatible
with the Robotics information model. This tool is essential
and helpful for our testbed’s development.

After finishing the second sprint, there will be the third
sprint. In detail, TurtleBot3 Waffle Pi9, a mobile robot, will
join the testbed system. Until the beginning of this sprint,
if there is no update in the Robotics information model, our
developers’ team will design a custom-defined vocabulary for
this robot. The plugin of Eclipse Papyrus of the second sprint
will generate a new information model for the testbed.

The fourth sprint concerns the design of simple robotic
cell scenario orchestration, including the Niryo Ned, the
TurtleBot3 Waffe Pi, and a human operator. The orchestration
process will be described in Node-RED10, this allows the
whole system deployment in a single click. At this stage, the
relevant algorithms will be set up on the robots to complete
the task required by the scenario.

Then the establishment of a digital twin system will grad-
ually be achieved in the final sprint. The Eclipse Papyrus
provides an AAS (Asset Administration Shell) modeling
environment for manufacturing, where one can model the
production assets and communicate with the physical device
via the OPC UA server. The capability-based engineering
process will be integrated into Papyrus in the future, which
provides the management of reconfiguration and automated
operation of flexible production lines. The AAS models, phys-
ical assets, and their bijective communications form a digital
twin system that ensures the monitoring, analysis, simulation,
and deployment of the Cyber-Physical system. During this
sprint, more complex use cases will be designed and tested
to demonstrate the controllability of the digital twin system in
different scenarios.

VI. CONCLUSION

This work-in-progress paper presents the development strat-
egy and early lessons learned from developing LocalSEA, an
OPC UA-based robotic testbed for multipurpose research and
education. One strategic principle is to use our new-defined
testbed development methodology called mini-waterfall with
triggers, in which a trigger can be a new device/protocol, a
new development tool, or a new use case. The testbed uses
an information model based on the base OPC UA information
model part 5, the OPC UA for Devices information model part
100, and the VDMA OPC UA for Robotics information model.
Since the Robotics information model is still a developing
specification, it shows some omissions needed to improve: (1)
it cannot cover other types of robots except robotics arms, and
(2) the missing vocabulary for some robotic parts, such as end
effectors. Also, this paper outlines some of our future works
promising to be helpful to the industrial research community.
First, we will present a new extension for Eclipse Papyrus to

9https://www.robotis.us/turtlebot-3-waffle-pi/
10https://nodered.org/



4

 Organizes  DeviceSetLocal_SEA

MotionDevideSystemType

Niryo_Ned

Axes PowerTrains

Legends: 


<Object_Instance>

<Object_Type>

Namespace:

        0 : http://opcfoundation.org/UA

        2 : http://opcfoundation.org/UA/DI

        3 : http://opcfoundation.org/UA/Robotics

        4 : http://lsea.org/localsea


BaseObjectType

MotionDeviceType

FolderType FolderType

 Moves Joint_

Base

Joint_

Shoulder

AxisType

AxisType

Joint_

Elbow

AxisType

Joint_

Forearm

AxisType

Joint_

Wrist

AxisType

Joint_

Hand

AxisType

PowerTrain_

Base

PowerTrainType

PowerTrain_

Shoulder

PowerTrainType

PowerTrain_

Elbow


PowerTrainType

PowerTrain_

Forearm

PowerTrainType

PowerTrain_

Wrist


PowerTrainType

PowerTrain_

Hand

PowerTrainType

 Moves 

 Moves 

 Moves 

 Moves 

 Moves 

Controllers

FolderType

MotionDevices

FolderType

Niryo_Ned_Raspberry_Pi_4

ControllerType

NetworkSet

BaseObjectType

Hotspot_

Local_SEA

NetworkType

OpcUa_PubSub_Brokerless

OpcUaType

Wifi_802_11_n

WifiType

Components

FolderType

 ConnectsTo 

Raspberry_Pi_4_CP

WirelessCardType

Organizes

NetworkAddress

FolderType

<Variable_Instance>::<Data_Type>

<Variable_Type>

Address_IPv4::String

BaseDataVariableType

AdditionalComponents

FolderType

End_Effector_1

GripperType

Objects

FolderType

 Organizes 

 Organizes 

IsDrivenBy

Motor_Base
MotorType

IsDrivenBy

IsConnectedTo
Motor_Shoulder


MotorType

IsDrivenBy

IsConnectedTo
Motor_Elbow


MotorType

IsDrivenBy

IsConnectedTo
Motor_Forearm


MotorType

IsDrivenBy

IsConnectedTo
Motor_Wrist

MotorType

IsDrivenBy

IsConnectedTo
Motor_Hand

MotorType

Multislot_Drive

DriveType

Gear_Base
GearType

Gear_Shoulder
GearType

Gear_Elbow

GearType

Gear_Forearm
GearType

Gear_Wrist

GearType

Gear_Hand
GearType

IsConnectedTo

ParameterSet

BaseObjectType

Fig. 3. OPC UA Information Model after integrating Niryo Ned and PubSub UDP UADP protocol into the LocalSEA testbed

- Niryo Ned
- OPC UA
PubSub
brokerless

- Tool Papyrus
convert SysML
into  the format
NodeSet2.xml

- TurtleBot3
Waffle Pi

- Orchestration
case study

- Digital Twin
case study

  Legends:
  Done  Doing  To do Development Timeline

Fig. 4. Development plan for the LocalSEA testbed

design and generate OPC UA information models based on
SysML. Second, two planned use-cases address the robots’
orchestration and the digital twin.

REFERENCES

[1] M. Hause, “The sysml modelling language,” in Fifteenth European
Systems Engineering Conference, vol. 9, September 2006, pp. 1–12.

[2] OPC Foundation, “OPC Unified Architecture - Part 1: Overview and
Concepts,” Industry Standard Specification OPC 10000-1, 2017.

[3] OPC Foundation, “OPC Unified Architecture - Part 3: Address Space
Model,” Industry Standard Specification OPC 10000-3, 2017.

[4] OPC Foundation, “OPC Unified Architecture - Part 5: Information
Model,” Industry Standard Specification OPC 10000-5, 2017.

[5] OPC Foundation, “OPC Unified Architecture - Part 100: Devices,” OPC
Foundation, Industry Standard Specification OPC 10000-100, 2021.

[6] Mechanical Engineering Industry Association (VDMA), “OPC UA for
Robotics - Part 1: Vertical Integration,” VDMA, Industry Standard
Specification VDMA 40010-1, 2019.

[7] C. Koch and K. Blind, “Towards Agile Standardization: Testbeds in Sup-
port of Standardization for the IIoT,” IEEE Transactions on Engineering
Management, vol. 68, no. 1, pp. 59–74, February 2021, conference
Name: IEEE Transactions on Engineering Management.

[8] M. Frank, M. Leitner, and T. Pahi, “Design Considerations for Cyber
Security Testbeds: A Case Study on a Cyber Security Testbed for
Education,” in 2017 IEEE 15th Intl Conf on Dependable, Autonomic
and Secure Computing, 15th Intl Conf on Pervasive Intelligence and
Computing, 3rd Intl Conf on Big Data Intelligence and Computing
and Cyber Science and Technology Congress. Orlando, USA: IEEE,
November 2017, pp. 38–46.

[9] M. Okuda, T. Mizuya, and T. Nagao, “Development of IoT testbed using
OPC UA and database on cloud,” in 2017 56th Annual Conference of the
Society of Instrument and Control Engineers of Japan (SICE), September
2017, pp. 607–610.

[10] P.-A. Muller and N. Gaertner, Modélisation objet avec UML. Paris:
Eyrolles, 2004.

[11] K. Schwaber and M. Beedle, Agile software development with Scrum,
ser. Series in agile software development. Upper Saddle River, NJ:
Prentice Hall, 2002.


	Introduction
	Related Work
	Mini-Waterfall with Triggers
	Development Sample: The First Sprint
	Discussion and Future Works
	Conclusion
	References

