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Abstract—The vulnerability of Deep Neural Network (DNN)
models to maliciously crafted adversarial perturbations is a
critical topic considering their ongoing large-scale deployment.
In this work, we explore an interesting phenomenon that oc-
curs when an image is reinjected multiple times into a DNN,
according to a procedure (called reverberation) that has been
first proposed in cognitive psychology to avoid the catastrophic
forgetting issue, through its impact on adversarial perturbations.
We describe reverberation in vanilla autoencoders and propose
a new reverberant architecture combining a classifier and an
autoencoder that allows the joint observation of the logits and
reconstructed images. We experimentally measure the impact of
reverberation on adversarial perturbations placing ourselves in
a scenario of adversarial example detection. The results show
that clean and adversarial examples – even with small levels of
perturbation – behave very differently throughout reverberation.
While computationally efficient (reverberation is only based on
inferences), our approach yields promising results for adversarial
examples detection, consistent across datasets, adversarial attacks
and DNN architectures.

Index Terms—reverberation, reinjection, adversarial examples,
adversarial perturbation, hybrid deep neural network

I. INTRODUCTION

Deep neural networks (DNNs) are vulnerable to maliciously
crafted inputs that visually resembles the learned data but
translate into erroneous predictions, known as adversarial
examples [33]. This problem has the potential to cause dra-
matic damages considering the large deployment of DNNs, in
particular when the predictions involve real-world decisions
(e.g. autonomous cars, banking system, flow regulation). In
consequence, a variety of defenses against adversarial exam-
ples have been proposed.

The defenses to mitigate adversarial attacks can be broadly
classified into two categories: proactive or reactive defenses.
Proactive defenses intervene before testing time by modi-
fying the architecture of the attacked model or its training
for it to become more robust against adversarial examples.
For examples, adversarial learning belongs to this category.
Reactive defenses play the part at testing time. Methods based
on inputs transformation to filter out adversarial examples
typically belong to this category.

The first range of defenses aims at correctly classify-
ing the adversarial examples. Some of these methods rely
on a preprocessing of the inputs to reduce or remove the
adversarial perturbations, for example as in [13] by using
a denoising autoencoder. However, most of these defenses
were proved to be ineffective against advanced attackers.
A popular robustness-based defense is adversarial training,
which consists in augmenting the training set with adversarial
examples [11], [23]. Subsequent improvements were proposed
to make the models even more robust to adversarial examples
within a given range [35], [4], [9], [38]. While adversarial
training improves robustness against specific attacks, these
computationally expensive defenses target a limited range of
adversarial perturbations, and the DNNs trained this way are
still vulnerable to counter-attacks.

The difficulty of correctly classifying adversarial examples
shift some of the effort towards detecting them instead. In
the same vein as adversarial training for robustness-based
defenses, learning-based adversarial detection methods utilize
adversarial examples during the training phase, but of the
model used as a detector (e.g. [12]). Although both popular
and reliable, these methods suffer from the weaknesses men-
tioned above for adversarial training. Another class of methods
is based on extracting some knowledge from a set of data and
use it to differentiate adversarial inputs, for example using
some statistics [12], after having added random noise to the
input [26] or transformed it [14]. Other approaches capitalize
on the fact that an adversarial example may not fool all
the classifiers and accordingly pass the input through various
models to detect adversarial examples [21], [30]. Number of
adversarial detection methods were proved not to be robust [5]
and adversarial examples detection is still a challenging topic.

This paper introduces a novel approach to apprehend ad-
versarial perturbations based on a reverberation of the inputs
through an artificial neural network (ANN) . Reverberation
refers to the process of reinjecting an input multiple times
through an ANN by using as inputs the successive outputs
produced by the model. It requires an architecture imple-
menting an autoencoder function for the output to be used
unchanged as input. When going through such a procedure,



we observe that clean and adversarial examples behave very
differently, which allows us to distinguish one from the other.
To characterize the phenomenon, we place ourselves in an
adversarial examples detection scenario to measure the impact
of reverberation on adversarial perturbations. More precisely,
we adopt a reactive defense scenario where we transform the
inputs using reverberation through autoencoders trained with
clean data. The principal contributions of this paper are as
follow:
• We present the reverberation procedure as proposed in

cognitive psychology to deal with catastrophic forgetting
(Section II-A) and give our motivations to introduce it in
the study of adversarial perturbations (Section III-A);

• We detail a way to implement reverberation for adversar-
ial examples detection, in particular by proposing a new
”reverberant” architecture (Section III);

• We conduct an experiment on different datasets, varying
DNN architectures and adversarial attacks, to propose a
first characterization of the impact of reverberation on
adversarial perturbations (Sections IV and V).

II. RELATED WORK

In this section, we first describe the reverberation procedure
that has been first proposed in cognitive psychology (Section
II-A) and then present the adversarial examples detection
methods that relates to the work presented in this paper
(Section II-B).

A. The reverberation procedure as proposed in cognitive psy-
chology

In contrast to human brain, ANNs tend to forget their previ-
ous knowledge when learning new information, a well-known
problem called catastrophic forgetting. Research in cognitive
psychology [2], that aims at computationally modelling human
memory in a biologically plausible way, proposed an original
solution to this problem. The core idea is to reinject several
times a noise into an ANN to create ”pseudo-examples” that
reflect its current state of knowledge, to be learned with new
information. To implement a ”reverberant” architecture into a
ANN, Ans and Rousset add backward connections between
some layers besides the regular forward connections. They
found that using these pseudo-examples along with the new
information during subsequent training benefit the preservation
of the anterior knowledge. This result was further confirmed
by recent work [32]. Beyond continual learning scenarios,
research efforts on autoencoders highlighted that regularized
autoencoders can automatically model the training distribution
and generate synthetic data through an iterative sampling [27],
[3], [37], [8]. A recent study suggests that this ability would
not only be present in regularized autoencoders but also in
autoencoders that replicate the input with a marginal loss
[31]. In our case this means that a noise that reverberates
into an ANN converges one way or another towards the
internal information distributed within its parameters since it
enables to capture it. To the best of our knowledge, nowhere
this thinking was applied and reverberation-based approaches

proposed in the study of adversarial perturbations or detection
in the broad sense (including detection of novelty, anomalies
and adversarial examples).

B. Adversarial examples detection

Adversarial examples detection methods try to categorize
inputs as clean or adversarial. Among them, the learning-based
detection methods [12], [10] utilize a network to detect adver-
sarial examples. For example, the authors of [24] trained on
both clean and adversarial examples a sub-network classifier
to detect adversarial examples for each adversarial attack con-
sidered. The detector sounds to achieve a good performance
when the adversarial examples to be detected at testing time
and the ones used to train the detector were generated with the
same adversarial attack, but the generalization across different
adversarial attacks and attacks parameters is poor. This high-
lights a major drawback of these methods: to achieve a proper
accuracy, they require to train the detector on adversarial
examples generated using all adversarial attacks in addition
to clean data. Besides being computationally expensive, they
may not be useful against new adversarial attacks. In [6],
MagNet uses detectors, but they are not trained on adversarial
examples: they learn the manifold of clean data and compare
the inputs with the manifold at testing time. The detection
scenario in which we explore the impact of reverberation on
adversarial perturbations (see Section III-C) also requires only
clean data.

Some methods try to remove the effect of adversarial
attacks by adding random noise to the inputs [28], [15]
or by transforming them. In [22], the authors compare the
classification results of the input and its denoised version
to detect adversarial examples. The authors of [36] compare
the predictions of the model for the original input and for
a squeezed version of the same input to detect adversarial
examples. In [14], PCA is used to transform the inputs. In
[25], noises are added to the PCA transformations of the
inputs which substantially help to detect adversarial examples
which are close to or far from the decision boundary. In this
paper, reverberation is explored as an input transformation-
based procedure that operates the transformation directly into
the detector model as explained in Section III-B.

DNNs give wrong predictions with high confidence values
to adversarial examples. Some methods try to detect adver-
sarial examples based on the observation of the logits (i.e.
the absolute logit activation values that usually are the input
of the last, softmax layer in classifiers). In [1], the authors
study how the logits are distributed for adversarial examples
compared to clean data and show that the logits provide
relevant information to differentiate them. Consequently, they
train a network that takes the logits as input and predict if
the classification is correct or not. In [28], the authors observe
that robustness of logits to noise depend on whether the input
is clean or adversarial, which allows them to differentiate the
two sorts by using a statistical test. In this paper, we introduce
a new reverberant architecture that enables us to quantify the



change in the logits while the inputs are reverberated (see
Section III-B2).

III. PROPOSED METHOD

In this section, we first reveal our motivations behind intro-
ducing reverberation in the study of adversarial perturbations
(Section III-A). Then, we detail the reverberation procedure
and propose a new reverberant architecture (Section III-B).
We finally propose to measure the impact of reverberation on
adversarial perturbations in an adversarial examples detection
scenario (Section III-C).

A. Motivations

Our main source of inspiration is [2], where the authors
propose the reverberation procedure to model the functioning
of human memory, and in particular to deal with catastrophic
forgetting. They show that reinjecting multiple times a noise
within an ANN captures a part of its internal knowledge.
Moreover, reinjecting different noises allows them to sample
the learned data distribution to generate synthetic examples
diverse enough to reflect the anterior state of knowledge of
the ANN. Since reverberation produces from noises synthetic
data that resembles the learned data, then it makes the noises
to converge one way or another towards the ANN internal
knowledge and not all noises converge towards the same part
of this knowledge. This inspired us this hypothesis: while
reverberated, the inputs converge differently depending on
their resemblance with the learned data distribution, which
enables to detect novel or abnormal data. Accordingly, we
expect adversarial data not to behave the same way as clean
data when reverberated, and that this to translate into a
quantifiable difference.

Additionally, several studies proposing defenses against
adversarial examples inspired us to import reverberation to
study adversarial perturbations, in particular the ones focusing
on input transformation and using autoencoders to remove
amounts of the adversarial perturbations. In some ways, by
applying reverberation to study adversarial perturbations, we
push the idea of input transformation by multiplying inferences
in an autoencoder. Moreover, studies that observe the logits to
detect adversarial examples inspired us the reverberant hybrid
model we introduce in Section III-B2, which combines a
classifier and an autoencoder and enables us to observe the
displacement of the logits through reverberation.

B. Reverberant models

We define reverberation as the process of reinjecting an
input into an ANN at least one time. One way to implement
it is to use an autoencoder that reconstructs the input for the
output to be reinjected in the same format. In this section, we
present two reverberant architectures: a vanilla autoencoder
(Section III-B1) and a hybrid model combining an autoencoder
and a classifier (Section III-B2).

1) Reverberation through autoencoders: The simplest ar-
chitecture, inherently reverberant, is the basic autoencoder.
As such, this is one of the two architectures we propose
to conduct a first analysis of the effect of reverberation on
adversarial perturbations. Reverberation into an autoencoder
simply consists in using as input of the model its own output.
Figure 1 shows examples of reverberated MNIST test set
images [20] and adversarial examples generated by using the
Fast Gradient Sign Method (FGSM) [11] (see Section IV-A for
details about the parameters of the attack). We can observe that
clean images tend to remain stable when reverberated through
the autoencoder while adversarial examples change, even for
a small level of perturbation. Figure 2 illustrates a similar
phenomenon for reverberated Fashion-MNIST test set images
[34] and adversarial examples generated by using the L∞-
norm Projected Gradient Descent attack (L∞-PGD) [18].

2) Reverberation through hybrid models: To study rever-
beration in more complex datasets, we propose a hybrid archi-
tecture that combines a classifier and an autoencoder. Figure 3
shows such a vanilla hybrid reverberant architecture. The ANN
has two outputs: an output intended for the input replication
and an output for the classification. Besides enabling us to
use the logits information, we propose this hybrid architecture
for two reasons. Carlini et al. [5] find that using a second
neural network to identify adversarial examples is the least
effective defense among ten tested. While we propose in this
paper a first study of reverberation in an adversarial examples
detection scenario, we want the reverberation to possibly be
integrated directly into the attacked model. This a point we will
address in a further paper (while we briefly discuss this point in
Section VI): the hybrid architecture enables to directly address
the problem of robustness of DNNs to adversarial examples
(i.e. their correct classification) instead of the problem of
detection. As part of the experiment presented in this paper,
to study the impact of reverberation on adversarial examples
generated from CIFAR-10 images [17] we build a hybrid
architecture on a DenseNet classifier (see Section IV-B).

C. Adversarial examples detection

We observed that clean and adversarial examples behave
very differently when reverberated. To measure the impact
of reverberation on adversarial perturbation, one can place
himself in an adversarial examples detection scenario (this is
the case in our experiment detailed in Section IV). To detect
adversarial examples with a basic autoencoder trained on clean
data, each new incoming input is reverberated several times
through the model. After n reverberations, an image similarity
metric can be used to measure the difference between the
original input and the last reconstructed input.

The detection is slightly more complex in reverberant hybrid
models. As shown in Figure 3b, this new architecture allows us
to measure the difference between logits across reverberations
besides the image similarity. Importantly, we observed that the
Mean Squared Error (MSE) between the logits resulting from
the first inference and the logits resulting from subsequent
inferences for clean CIFAR-10 images and their adversarial ex-



(a) Clean images

(b) ε = 0.05

(c) ε = 0.3

Fig. 1: Reverberations through a vanilla autoencoder of
MNIST images and adversarial examples generated by at-
tacking a LeNet model with FGSM attack. We can observe
that while clean images remain stable during reverberation,
adversarial images change. This is particularly the case when
the perturbation size ε is high. Measuring the difference be-
tween the original input and the output resulting from the fifth
reverberation is enough to distinguish adversarial examples
from clean images, as proved by the experiment presented
below (see Section IV).

amples counterparts generated by attacking our hybrid model
(presented in Section IV-B) with FGSM (detailed in Section
IV-A) enables to discriminate to a certain extent between
clean and adversarial examples. This discriminatory power was
the most significant when the MSE involved a comparison
between the logits resulting from the first inference and the
logits resulting from the 10th reverberation.

IV. EXPERIMENTAL SETUP

We conduct an experiment to measure the impact of rever-
beration on adversarial perturbations by adopting an adver-
sarial examples detection scenario. More precisely, we set up

(a) Clean images

(b) ε = 0.2

Fig. 2: Reverberations through a vanilla autoencoder of
Fashion-MNIST images and adversarial examples generated
by using the L∞-PGD attack. We can observe a phenomenon
similar to the one observed in Figure 1 for MNIST images
and adversarial examples generated with the FGSM attack.

a reactive defense scheme where the detector is independent
from the model under attack (i.e. it does not modify the target
model) and from the adversarial attack. Consequently, the
proposed models for adversarial examples detection use only
clean data (in our case, only the training set of the considered
datasets) to build their knowledge.

A. Data and adversarial examples generation

We measure the effect of reverberation on adversarial ex-
amples detection on three datasets: MNIST [20], Fashion-
MNIST [34] and CIFAR-10 [17]. For each dataset, we generate
adversarial examples from 10, 000 images of the test set by
attacking classifiers with an untargeted attack (i.e. to generate
adversarial examples misclassified by the classifier into any
class as long as it is different from the true class). For
MNIST, the attacked classifier is a LeNet [19] that achieves a
classification accuracy of 98.76% on the test set. For Fashion-
MNIST, it is a CNN-classifier that achieves a classification
accuracy of 90.91% on the test set. For CIFAR-10, we vary
the architecture of the models under attack to evaluate its
impact on the detection rate of our detector (which is based on
a DenseNet architecture [16], as explained in Section IV-B).
Hence we use a DenseNet-121 and a VGG-13 [29] classifiers,
that achieve a very close classification accuracy on the test
set: 94.14% and 94.29% respectively.

We consider three adversarial attacks: FGSM [11], L∞-
PGD [18] and L2 Carlini and Wagner attack (L2-CW) [7].
Depending of their parameters, not all attacks are always
successful at creating a ”true” adversarial example that fool
the classifier under attack. Moreover, some of the test set
images are misclassified by the models before the adversarial
attack. We discard these two sorts of images before adversarial



(a) Training

(b) Reverberations

Fig. 3: Training and reverberations into a vanilla hybrid rever-
berant model for adversarial examples detection. The inputs
are MNIST images (784 pixels, 10 classes). (a) The training
is done by reducing the binary cross-entropy loss functions
for reconstruction and classification. (b) Once the training is
complete, the model can be used in detection mode. Each new
incoming input is reverberated multiple times, and we measure
the discrepancy between the logits and reconstructed images
throughout the reverberation process.

examples detection, retaining only true adversarial examples.
Consequently, in each condition tested, the attacked model
obtain a classification accuracy of 0% on the adversarial ex-
amples retained for detection. Note that this implies a number
of true adversarial examples different in each condition, the
minimum of all the conditions being 2356 true examples at
testing time. Table I provides details about the parameters of
the adversarial attacks in each experimental condition.

B. Reverberant models parameters and training

For MNIST and Fashion-MNIST, we train basic autoen-
coders with the images of the training set of the respective
datasets. As previously mentioned, for CIFAR-10 we train a
hybrid model, combining a classifier and an autoencoder, as
presented in Figure 3. However, while the figure presents a
vanilla hybrid model for the sake of clarity, we use a more
complex model, based on a DenseNet architecture augmented
with an autoencoder. As illustrated in Figure 3a, we use two
loss functions for the training: the binary cross-entropy to
translate the difference between the input images and their
replications and the cross-entropy to translate the difference
between the outputted labels and ground truth labels. The

total loss function to be minimized by iteratively updating
the model’s parameters was the sum of these two functions.
Our trained hybrid model achieves a classification accuracy of
92.83% on CIFAR-10 test set and the reconstructed images
were as good as for the autoencoder without the classification
part.

C. Metrics and method

At testing time, in each experimental condition the detector
model is provided with 10, 000 clean examples from the
test set of the considered dataset and the corresponding true
adversarial examples (as defined in Section IV-A). For MNIST
and Fashion-MNIST, each input is reverberated five times
into the autoencoder, then we calculate the MSE between the
original input and the image resulting of the last inference.
For CIFAR-10, we calculate the MSE between the logits
resulting from the first inference and the logits resulting from
the 10th inference. Note that we use only MSE for the sake
of comparison, while we found other metrics (such as the
Pearson correlation coefficient or Structural Similarity Index
Measure) being occasionally better. A pretest enabled us to
determine that five reverberations for MNIST and Fashion-
MNIST, ten for CIFAR-10, if not always optimal, is enough
to observe a clear divergence in the behaviour of clean and
adversarial examples. Furthermore, for MNIST and Fashion-
MNIST, we observed that the function that associates our
metrics and reverberation is always monotonic during the first
five reverberations: the MSE between the first inference output
and the nth inference output is always smaller that with the
nth + 1 output.

To decide if an input is adversarial, a natural way is to ex-
tract some statistical descriptor from clean data to be compared
with the inputs during testing time. In our experiment, we
reverberate five times (ten for CIFAR-10) a sample of the clean
data drawn from the considered dataset. Then, we compute a
threshold to decide if the input is adversarial that depends on
the tolerated false positive rate (FPR). We vary the FPR from
0 to 100 with steps equal to 0.1 and obtain a threshold T for
each FPR i calculated as follows:

Ti = max(MSEclean) (1)

with MSEclean being the list of MSE for each of the
reverberated clean inputs minus the ith highest MSE values.
For example, for FPR = 1, which means that 1% of false
positives is tolerated, the threshold is equal to the maximum
of the 99% lowest values of the clean MSE list. At testing
time, for each input we compare the MSE calculated after
five (10 for CIFAR-10) reverberations with the threshold of
the corresponding dataset in such a way that, if it is lower,
the detector classifies the input as clean, or as adversarial
otherwise. By varying the FPR, we calculate the Area Under
the Receiver Operating Characteristic curve (AUROC).

V. RESULTS

Table II shows the results obtained for adversarial example
detection. The perturbation size ε tends to change depending



FGSM L∞-PGD L2-C&W
MNIST ε=0.3 ε=0.3, α=0.01, nbiter=100 c=5, κ=0, steps=1000, lr=0.1

Fashion-MNIST ε=0.2 ε=0.2, α=0.01, nbiter=100 c=5, κ=0, steps=1000, lr=0.1
CIFAR-10 ε=8/255 ε=8/255, alpha=2/255, nbiter=100 c=5, κ=0, steps=1000, lr=0.1

TABLE I: Parameters of the conducted adversarial attacks.

MNIST Fashion-MNIST CIFAR-10
LeNet Basic CNN VGG-13 DenseNet-121

FGSM 0.999 (ε = 0.3) 0.9869 (ε = 0.2) 0.7286 (ε = 8/255) 0.7449 (ε = 8/255)
L∞-PGD 0.9989 (ε = 0.3) 0.9725 (ε = 0.2) 0.7015 (ε = 8/255) 0.7224 (ε = 8/255)
L2-C&W 0.7712 0.7308 0.6518 0.6625

TABLE II: AUROC (%) scores for adversarial examples detection. Only clean data have been used to train the ANNs and to
estimate the thresholds. The detection is based on the MSE, calculated between original inputs and outputs resulting from the
last reverberation, or between logits resulting from the first and last inferences.

on the considered dataset. We report in the table the results
for attack parameters commonly found in the literature. The
results show that reverberation has an important impact on
adversarial perturbations, as measured through their detection.
This is true for all the considered datasets and adversarial
attacks, while the detection values are lower for CIFAR-10
and L2-C&W. This is result one could expect, however, as
CIFAR-10 is the most complex of the three datasets consid-
ered and L2-C&W the most powerful adversarial attack of
the three considered with the retained parameters. Keep in
mind, however, that the difference between attack parameters
and reverberant models makes not all the conditions fully
comparable.

As mentioned, our reverberant hybrid model for CIFAR-
10 is built on a DenseNet architecture similar to one of
the classifier under attack – the other classifier having a
VGG architecture. The results show no substantial difference
regarding detection between the two architectures, which is
consistent with the scenario of a detector fully independent
from the model under attack.

For MNIST and Fashion-MNIST, we additionally tested a
range of perturbation sizes for FGSM and PGD and observed
that, regardless of the dataset or attack, the detection is always
made easier by a greater perturbation size (ε). At a certain
level of perturbation, almost all the adversarial examples are
detected even for low levels of tolerated false positives.

VI. DISCUSSION

We proposed a first analysis of the impact of reverberation
on adversarial perturbations through a scenario of adversarial
examples detection. Our experiment shows that, while simple
and fast, reverberation has a different effect on clean and
adversarial examples that allows for their differentiation to
some extent. This is the first characterization of this phe-
nomenon: there is probably room for improvement. The first
thing one could do to maximise the distortions of adversarial
examples under the effect of reverberation is to conduct an
extensive study of the parameters that affect them. Besides
obvious parameters that widely affect ANNs, a list would
include: the reverberant ANN architecture (e.g. classification
and autoencoding can be realized in different parts of the

network), the size of the bottleneck in autoencoders, the
number of reverberations and the images and logits similarity
measures.

We measured the impact of reverberation on adversarial
perturbations thanks to the implementation of an adversarial
examples detection-based reactive defense. Another interesting
scenario to explore would be the embedding of reverberation
in a robustness-based defense. This way, one could measure
whether a reverberant DNN under attack better classify ad-
versarial examples than its regular counterpart. If we take
a careful look at the Figures 1 and 2, we can observe that
adversarial examples tend to change into something else that
resembles a prototypical image of another class under the
effect of reverberation. It would be interesting to evaluate if
adversarial examples converge towards their true class. As the
case may be, a built-in reverberation-based defense could be
simply based on multiple reverberations of the inputs before
classification.

VII. CONCLUSION

We introduced reverberation in the study of adversarial
perturbations and proposed a first experimental analysis of
its impact through an adversarial detection scenario. We also
proposed an original reverberant hybrid DNN architecture that
combines a classifier and an autoencoder. Our results show that
reverberation has a different impact on clean and adversarial
images. There are a number of unanswered questions regarding
the reasons of this phenomenon, and a research effort is still
to be done to fully benefit from its implementation. Further
research on reverberation may advance our understanding
of adversarial perturbations. Beyond this topic, reverberation
could bring solutions in other machine learning tasks. The
most obvious are anomaly and novelty detection tasks. Rever-
beration has also a natural potential for data augmentation.
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