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Analyse numérique La condensation de la matrice masse, ou mass-lumping, pour les éléments finis mixtes de Raviart-Thomas-Nédélec d'ordre 1

On présente un moyen pratique de réaliser la condensation de masse des éléments finis de Raviart-Thomas-Nédélec d'ordre 1. Appliqué à l'intégration des équations de Maxwell posées au second ordre, cela permet d'utiliser des méthodes explicites d'intégration du système.

Abridged English version

A few years ago we exposed here, an algebraic and simple manner [START_REF] Haugazeau | Condensation de la matrice masse pour les éléments finis mixtes de H (rot)[END_REF] to obtain lumped mass from the consistent mass matrix resulting from an approximation by mean of mixed finite elements of H (curl). Its use leads to effective time integration methods [START_REF] Benhassine | Comparison of mass lumping techniques for solving the 3d Maxwell's equations in the time domain[END_REF], but presents a major drawback: depending on the mesh regularity (obtuse angles), the lumped mass matrix may become null or negative. We build here a numerical process to avoid such a difficulty. We proceed as follows, using notations defined above. Let (m ij ) and (k ij ) be respectively the mass and stiffness matrices; let (α i ) and (f i ) be respectively the vectors of degrees of freedom and external forces -in our case arising from Maxwell equation at second order in a lossless bounded medium (see [START_REF] Monk | A simple proof of convergence for an edge element discretization of Maxwell's equations[END_REF], for example) -built with H (curl) conforming finite elements [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] of order 1, on a triangle in R 2 , or on a tetrahedron, in R 3 . That is, we consider the problem resulting in the following differential equation for the d.o.f . on an edge number i (after the well-known assembling process): m ii αi + N c j =1 m ii j αi j +k ii α i + N c j =1 k ii j α i j = f i where i 1 , i 2 , . . . , i N c are the number of edges connected to the edge i and distincts from i (N c = 4 on Fig. 2(a), N c = 9 on Fig. 2(b)). Following Théorème 2.1 and Proposition 3.1, we can substitute equivalently to (m ij ), a diagonal matrix diag(m L ii ) given by Eq. ( 5) in dimension 2 for a triangle K, and by Eq. (6) in dimension 3, for a tetrahedron K. Then we can consider instead of the problem above, the following differential equation:

m L ii αi + k ii α i + N c j =1 k ii j α i j = f i .
The problem occurs when the sum of all the cotangent terms in the above expression m L ii , is less or equal to zero. The goal of this paper is to prove that we can replace the previous and consistent mass matrix by an invertible mass matrix, and then we are lead to the formulation: αi + kii α i + N c j =1 kii j α i j = F (α l 1 , α l 2 , . . . , α l Na ) where the ( kij )'s are new stiffness terms, F is a new second member, and α l 1 , α l 2 , . . . , α l Na are new artificial degrees of freedom lying on the edge i, and where the integer N a indicates the number of elements linked to the edge i (N a = 2 on Fig. 2(a) and N a = 3 on Fig. 2(b)).

Introduction

On a présenté il y a quelques années ici même [START_REF] Haugazeau | Condensation de la matrice masse pour les éléments finis mixtes de H (rot)[END_REF], une technique de condensation de masse des éléments finis de H (rot). Son utilisation est efficace [START_REF] Benhassine | Comparison of mass lumping techniques for solving the 3d Maxwell's equations in the time domain[END_REF], mais cette méthode a l'important défaut de la possible perte de définie positivité pour des maillages non de Delaunay. On présente dans cette Note un moyen d'y remédier.

On choisit comme problème type les équations de Maxwell posées au second ordre, dans un ouvert borné Ω d'un milieu sans pertes, de bord conducteur parfait Γ de normale extérieure n, après éliminations du champ magnétique, dans lesquelles pour simplifier on a imposé toutes les constantes arbitrairement à 1. Pour J donné, il faut trouver E dans H (rot, Ω; E ∧ n| Γ = 0), solution de [START_REF] Monk | A simple proof of convergence for an edge element discretization of Maxwell's equations[END_REF] :

∂ t 2 E + rot rot E = -∂ t J .
Une formulation variationnelle de ce problème conduit, pour tout E ∈ H (rot, Ω; E ∧ n| Γ = 0), à : 

Ω ∂ t 2 E.E dx + Ω rot E. rot E dx = -Ω ∂ t J
M α + Kα = F (1) où les matrices M = (m ij ), K = (k ij ), F = (f i ), α = (α i )
, dont la taille égale le nombre d'arêtes de τ h , sont obtenues par l'assemblage de matrices élémentaires définies sur τ , analogues aux suivantes :

m ij = τ p i • p j dx, k ij = τ rot p i • rot p j dx, i, j = 1, N, et f i = - τ ∂ t J. • p i dx, i = 1, N (2) 
si on a posé E| τ ≈ N i=1 α i p i et α| τ = (α i ) i=1,N , où N = 3 en dimension 2, N = 6 en dimension 3.

La condensation de masse des éléments finis de Nédélec d'ordre 1

On démontre dans [START_REF] Haugazeau | Condensation de la matrice masse pour les éléments finis mixtes de H (rot)[END_REF], le résultat suivant : On prouve qu'en dimension 2, avec l'orientation de la Fig. 1(a), on a :

Théorème 2.1. Il existe une matrice diagonale m L et une seule telle que les formes bilinéaires symétriques définies respectivement par

m = (m ij ) et m L = diag(m L ii ) sur l'espace (V h )| τ ,

coïncident sur le sous-espace des champs

m L ii = m ii + m jk -m ij -m ik , pour i, j, k = 1, 3 deux à deux distincts (3) 
et en dimension 3 (voir [START_REF] Haugazeau | Condensation de la matrice masse pour les éléments finis mixtes de H (rot)[END_REF]), avec l'orientation de la Fig. 1(b), on a :

m L ii = m ii + j,k connectés à i jk • m jk , pour i = 1, 6 et où jk = 1 si les arêtes j et k convergent ou (4) 
divergent au même sommet du tétraèdre, et jk = -1 sinon.

Expression géométrique de la masse lumpée

On définit les quantités suivantes, aussi bien pour les triangles que pour les tétraèdres (Figs. 1(a) et (b)), constitués de N s sommets : pour i = 1, N s , M i et λ i sont respectivement les sommets et leurs coordonnées barycentriques du triangle ou du tétraèdre, n i la normale à l'arête du triangle ou à la face du tétraèdre, opposé au sommet M i , S i et H i sont respectivement l' aire du triangle opposé au sommet M i et la hauteur issue du sommet M i du tétraèdre ; pour i, j, k = 1, N s deux à deux distincts, l ij est la longueur de l'arête de sommets M i et M j du triangle ou du tétraèdre, h k ij est la hauteur issue du sommet

M k du triangle M i M j M k et enfin θ k ij et Θ ij désignent respectivement l'angle issue du sommet M k dans le triangle M i M j M k et l'angle définis par les vecteurs n i , n j (ou ---→ grad λ i , ---→ grad λ j ).
Avec ces grandeurs on prouve la Proposition 3.1. On a en dimension 2, pour le triangle K :

m L ii = 1 2 cot Θ jk , pour i, j, k = 1, N s deux à deux distincts ( 5 
)
et en dimension 3, pour le tétraèdre K :

m L ii = 1 6 l pq • cot Θ jk , j, k, p, q = 1, N s deux à deux distincts, i = numéro de l'arête(p, q). ( 6 
)
Démonstration. Les calculs sont élémentaires. Les champs constants sont définis par { ---→ grad λ i } i=1,N s . En dimension 2 d'espace, on a :

---→ grad λ i = -n i h i jk . On a par définition :

m L ii = K ---→ grad λ j • ---→ grad λ k dx = mes(K) n j • n k h j ik • h k ij = mes(K) h j ik • h k ij cos Θ jk = 1 4 l ij • l ik mes(K) cos Θ jk , or : mes(K) = 1 2 l ij • l ik sin Θ jk , donc : m L ii = 1 2 cot Θ jk .
En dimension 3 d'espace, si on pose i = numéro de l'arête(p, q), on a :

m L ii = mes(K) H j • H k cos Θ jk = 1 3 S k H j cos Θ jk , or : S k = 1 2 h j pq • h k jp = 1 2 (sin θ l jp • l jq ) • l pq , et : H j = sin Θ jk • h j pq = sin Θ jk (sin θ l jp • l jq ), donc : m L ii = 1 6 l pq cot Θ jk . 2
Définition 3.2 (Assemblage). On définit, pour une arêtes i du maillage, (K i j ) j =1,N a , l'ensemble des N a mailles (éléments) du maillage ayant l'arête i en commun. Si l'on note m ii (τ ) le terme élémentaire définit par la relation [START_REF] Haugazeau | Condensation de la matrice masse pour les éléments finis mixtes de H (rot)[END_REF], il en résulte que les termes m ii , sont données par :

m ii = m ii K i 1 + m ii K i 2 + • • • + m ii K i N a (7)
et de même pour le terme de la relation ( 5) ou (6) :

m L ii = m L ii K i 1 + m L ii K i 2 + • • • + m L ii K i N a . (8) 
L'approximation par éléments finis selon (1) et (2) conduit pour le d.d.l. i à l'équation :

m ii αi + j ∈K i j m ij αj + k ii α i + j ∈K i j k ij α j = f i . (9) 
L'opération de condensation de masse conduit au système différentiel ordinaire :

m L ii αi + k ii α i + j ∈K i j k ij α j = f i (10)
où m L ii est fourni par (8). Il est clair que le terme m L ii , qui en vertu de la Proposition 3.1 est une somme de cotangentes, en nombre N a , peut être négatif ou nul. Cela résulte, par exemple, en dimension 2 d'espace (N a = 2), de la propriété simple suivante : Propriété 3.3. Dans un quadrilatère convexe (Fig. 1(c)), on a toujours :

(cot θ 1 + cot θ 2 ) • (cot θ 1 + cot θ 2 ) 0.
Si lorsque la matrice lumpée M L = (m L ii ) est définie positive, l'intégration de (1) est aisée -et construite à cet effet -cette perte éventuelle de positivité interdit l'intégration de ce système. Nous présentons dans ce qui suit une solution pour remédier à ce problème de perte de positivité.

Modification de la masse lumpée

Aussi bien en dimension 2 qu'en dimension 3 d'espace, on se place dans le cas où la partie du maillage τ i = N a j =1 K i j , c'est-à-dire les mailles qui ont l'arête i en commun, produit un terme m L ii 0. On va alors fabriquer un sous-maillage de τ i qui subdivise les angles concernés dans le calcul de m L ii et substituer à la relation (10), dans laquelle m L ii est négatif, une équation différentielle intégrable. C'est l'objet de la 

m ii αi + j ∈K i j m ij αj + k ii α i + j ∈K i j k ij α j = f i . ( 11 
)
La condensation de masse de (11) se traduit, à l'aide de m L ii donné par (8) et lorsque m L ii > 0, par : 

m L ii αi + k ii α i + j ∈K i j k ij α j = f i , ( 12 
)
lorsque m L ii 0, il existe des constantes ( kij ), un second membre F ne dépendant que des données initiales et de valeurs de type d.d.l. α l 1 , α l 2 , . . . , α l Na situées sur l'arête i, telles que la condensation de masse de (11) s'écrit :

αi + kii α i + j ∈K i j kij α ij = F (α l 1 , α l 2 , . . . , α l Na ). (13) 
Démonstration. On considère le cas où m L ii est négatif. La mise sous forme (13) exige de rompre avec la technique de l'assemblage matriciel. C'est pourquoi on raisonne sur un modèle de maille τ i générique (i.e. dont les arêtes sont numérotées de 1 à N c ) et où l'arête i est numérotée N c + 1.

Cas de la dimension 2. On considère les deux triangles de la Fig. 2(a), pour lesquels le terme m L ii est suposé négatif pour l'arête numéro N c + 1 = 5 (m L 55 < 0). On procède à un sous-découpage de ces deux triangles comme suit : on trace sur ces deux triangles les deux bissectrices des angles opposés à l'arête 5, puis chacune est prolongée jusqu'au sommet opposé, de telle sorte que -d'une manière générale -chaque angle opposé est au plus divisé en 3 angles strictement inférieur à π/2 (donc avec des cotangentes strictement positives) et en sorte que l'arête numéro 5 est partagée en trois arêtes numérotées 6, 7, 8. L'approximation par éléments finis dans τ i conduit aux relations : 

m L 6 6 α6 + k 2 6 α 2 + k 3 6 α 3 + k 6 9 α 9 + k 6 11 α 11 + k 6 6 α 6 = f 6 , dans K 6 1 ∪ K 6 2 , m L 7 7 α7 + k 79 α 9 + k 7 10 α 10 + k 7 11 α 11 + k 7 12 α 12 + k 7 7 α 7 = f 7 , dans K 7 1 ∪ K 7 2 , m L 8 8 α8 + k 1 8 α 1 + k 4 8 α 4 + k 8 10 α 10 + k 8 12 α 12 + k 8 8 α 8 = f 8 , dans K 8 1 ∪ K 8 2 . ( 14 
α 9 = -α 2 -α 6 + K 6 1 rot E dx, α 10 = +α 1 + α 8 -K 8 1 rot E dx, α 11 = -α 3 + α 6 + K 6 2 rot E dx, α 12 = +α 4 -α 8 -K 8 2 rot E dx, α 8 = -α 1 -α 2 -α 6 -α 7 + K 5 1 rot E dx = α 3 + α 4 -α 6 -α 7 -K 5 2 rot E dx. ( 15 
)
On obtient au final une expression du type (13), avec un second membre F dépendant d'une part de (α 6 , α 7 ), des données f i et d'autre part des intégrales de rot E sur les K i j . Cas de la dimension 3. On considère les N a tétraèdres de la Fig. 2(b) (on choisit N a = 3, qui est le minimum d'une quantité variable), pour lesquels le terme m L ii est supposé négatif pour l'arête numéro N c + 1 = 10 (m L 1010 < 0). On procède à un sous-découpage de ces trois tétraèdres comme suit : on trace dans ces tétraèdres les plans bissecteurs des angles opposés à l'arête 10 de sorte que l'arête numéro 10 est partagée en quatre arêtes numérotées 11, 12, 13, 14. A partir des points ainsi définis sur l'arête 10, on prolonge chacun des plans bissecteurs aux N a -1 = 2 tétraèdres restants, de telle sorte qu'en général, chaque angle opposé est au plus divisé en N a + 1 = 4 angles strictement inférieur à π/2. L'approximation par éléments finis dans τ i conduit dans les tétraèdres (K On obtient au final une expression du type (13), avec un second membre F dépendant d'une part de (α 11 , α 12 , α 13 ), des données f i , et enfin des intégrales de rot E sur des K M i j . On montre finalement qu'il est possible, à l'aide des relations (12) et (13), d'obtenir un système général (1) pourvu d'une matrice diagonale (définie) positive et donc utiliser un schéma explicite pour son intégration, comme par exemple le schéma de Newmark. Les résultats s'étendent, mutatis mutendis, à l'opérateur divergence et aux éléments finis mixtes de l'espace H (div) à l'ordre un [START_REF] Raviart | A Mixed Finite Element Method for Second Order Elliptic Problems[END_REF]. 2

α 15 = α 2 -α 11 + K M 3 11 rot f E f dx, α 16 = α 2 -α 11 -α 12 + K M 3 11 rot f E f dx + K M 3 12 rot f E f dx, α 17 = α 5 + α 14 - K M 3 14 rot f E f dx,
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Fig. 1 .

 1 Fig. 1. Élément fini triangle (a), tétraèdre (b) et propriété de Delaunay dans un quadrilatère convexe (c).constants. Soit u ∈ H (rot, Ω) et α = (α i ) le vecteur des degrés de liberté de son interpolé sur V h . Si M L est la matrice diagonale obtenue par assemblage des matrices m L , alors il existe h 0 > 0 et une constante C positive, tels que pour tout h h 0 , on ait : |((M L -M)α, α)| Ch u Ω .

Proposition 4 . 1 .

 41 L'approximation par éléments finis de Raviart-Thomas-Nédélec d'ordre 1 de l'équation de Maxwell, conduit pour chaque d.d.l. de numéro i, à

Fig. 2 .

 2 Fig. 2. Découpage des mailles pour lesquelles m L ii 0 en dimension 2 (a) et en dimension 3 (b).

  ) Dans (14) les m L ii sont strictement positifs et donc en multipliant chaque relation par (m L ii ) -1 , en sommant et en utilisant la relation α 5 = α 6 + α 7 + α 8 , on obtient une équation de type (13) pour le d.d.l. numéro 5. Il faut encore éliminer les d.d.l. α 9 , . . . , α 12 , ce qui s'obtient grâce aux relations (Stokes) suivantes :

  où on note, de manière non univoque, K M i j le triangle issue du point M i et comportant l'arête numéro j et où on note, avec des orientations adèquates, E f la composante tangentielle de E sur la face f du tétraèdre concerné, de normale n, et rot f l'opérateur rotationnel surfacique sur la face f tel que rot f E f = rot E • n. Avec des relations analogues on élimine les d.d.l. intérieurs α 18 , α 19 et α 20 dans les tétraèdres K 10 2 , et les d.d.l. α 21 , α 22 et α 23 dans les tétraèdres K 10 3 . Cette élimination est indépendante de N a . Enfin on utilise aussi les relations :α 14 = α 2α 5α 11α 12α 13f E f dx = α 3α 4α 11α 12α 13 -K M 5 10rot f E f dx = α 7α 8α 11α 12α 13 -K M 4 10 rot f E f dx.

  11 j ) j =1,N a , aux relations : m L 11 11 α11 + k 1 11 α 1 + k 2 11 α 2 + k 3 11 α 3 + k 6 11 α 6 + k 7 11 α 7 + k 9 11 α 9 + k 11 15 α 15 + k 11 18 α 18 + k 11 21 α 21 + k 11 11 α 11 = f 11 . , en sommant et en utilisant la relation α 10 = α 11 + α 12 + α 13 + α 14 , on obtient une équation de type (13) pour le d.d.l. numéro 10. Comme en dimension 2, on élimine les d.d.l. intérieurs α N a +N c +3 , . . . , α N a (N a +1)+N c +2 , grâce aux relations (théorème de Stokes) suivantes dans les tétraèdres K 10 1 :

	(16)
	On a des relations analogues à (16) pour les d.d.l. numéro 12, 13 et 14, respectivement dans les tétraèdres K 12 j , K 13 j et K 14 j , et donc en multipliant chaque relation par (m L ii ) -1