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Abstract. Designing a Model Predictive Control system requires an ac-
curate analysis of the interplay among three main components: the plant,
the control algorithm, and the processor where the algorithm is executed.
A main objective of this analysis is determining if the controller running
on the chosen hardware meets the time requirements and response time
of the plant. The constraints, in turn, should be met with a satisfactory
tradeoff between algorithm complexity and processor performance. To
carry out these analyses for an autonomous vehicle control, this paper
proposes to leverage parallel co-simulation between the plant, the model
predictive controller and the processor.

1 Introduction

Control algorithms based on model predictive control (MPC) are increasingly
being employed in embedded systems with high-performance requirements and
stringent constraints, such as automotive applications. MPC relies on the avail-
ability of a mathematical model of the controlled plant, used at each sampling
period to evaluate a prediction of the plant’s future behaviour over a given times-
pan (the prediction horizon) and choose optimal values for the control variables,
to be applied at the next sampling period [14].

Designing an MPC system for embedded applications requires an accurate
analysis of the interplay among three main components: the plant, the control
algorithm, and the processor where the algorithm is executed. With the model-
based design approach, the analysis exploits the results of the simulations. In
particular, a detailed simulation of the processing architecture executing the
control software is needed, given the role of processor performance in meeting
real-time constraints. This is a typical situation where co-simulation provides
substantial support to developers who need to model subsystems from different
areas of expertise: algorithms, processor architecture and plant physics.
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This work presents an approach to enable the analysis of MPC systems
through co-simulation. To this end, an open source library for MPC algorithm,
GRAMPC [11], has been extended with the implementation of a standard in-
terface for co-simulation, FMI (Functional Mock-up Interface) [6]. The MPC
algorithm contains a prediction model of the plant that is distinct from the ac-
tual model. This allows the analysis of the controller under a variation of the
actual model parameters. The approach also encompasses MPC performance
analysis, thanks to the use of the VPSim [8] virtual prototyping tool for com-
plex electronic Systems-on-Chip (SoC) from the SESAM framework [27], which
supports FMI co-simulation.

The application of the proposed approach is shown in a case study from
autonomous vehicle control, where the plant, the model predictive controller, and
the processor are simulated in parallel. The plant is an autonomous car that must
reach a destination along a road with a given geometry, avoiding obstacles. The
vehicle is simulated with a standard kinematic model implemented in C with the
GRAMPC framework, adapting an example from the GRAMPC distribution.
The processor architecture is an ARMv8 multi-core processor, simulated with the
VPSim framework. The metrics used to analyse different co-simulation runs are
the difference of the actual trajectory w.r.t. the reference one and the execution
time of the GRAMPC algorithm, that should be less than the co-simulation step
size.

The paper is organised as follows: Section 2 introduces a selection of related
works; background on MPC and the GRAMPC library is briefly reported in
Section 3; Section 4 illustrates the proposed approach for multi-model simulation
of automotive applications, while Section 5 shows the application to a case study
from autonomous driving; finally, Section 6 contains conclusions and further
work.

2 Related work

Among the many works available to readers looking for an extensive background
on wheeled vehicles dynamics, we may cite [15]. More specifically, Yurtsever
et al. [30] provide a survey on recent work about autonomous driving. Also
the literature on model predictive control offers many fundamental texts, such
as [14].

In model-driven development, co-simulation [12] can be applied in the anal-
ysis of complex cyber-physical systems that integrate a high-level control algo-
rithm with pre-existing closed implementations of lower-level plant dynamics.

Lee et al. [18] report on the co-simulation of an MPC-controlled heating,
ventilation and air-conditioning plant, using an ad-hoc Python-based infrastruc-
ture to connect a building simulator with a Matlab controller. Similar ad-hoc
solutions have been proposed in several works, e.g., Adhau et al. [1], who use
the USART serial protocol. Simulink S-functions were used by von Wissel et
al. [28] to connect a powertrain model developed on the Siemens LMS Amesim
simulator with an MPC controller developed in the Honeywell OnRAMP envi-



ronment. Using S-functions to couple a Simulink model to different simulators is
a common technique, used e.g., in [5], where a Simulink model of a human heart
was coupled to an executable formal model of a pacemaker.

The Functional Mockup Interface 2.0 [6] is a de facto standard for co-
simulation, and INTO-CPS [17] is an integrated tool chain for model-based
design based on FMI.

An FMI infrastructure based on the TISC co-simulation platform was pre-
sented by Gräber et al. [13]. In their work, FMUs simulate the plant, an opti-
mizer, and a system estimator. The plant can be modeled with different tools,
the optimizer is built with the MUSCOD-II software package using a direct mul-
tiple shooting method. A vapor compression cycle is dicussed as an application
example. An FMI-based infrastructure was used by Ceusters et al. [7], who gen-
erate an FMU from a Modelica simulator of multi-energy systems, and use it
to communicate with a Python-based environment that models two alternative
controllers, one based on MPC and one on reinforcement learning. Another FMI-
based framework for co-simulation of human-machine interfaces was presented
in [22]. Co-simulation has been paired with formal methods to validate and verify
control systems of various kinds [3, 4], including robot vehicles [10, 21].

In the automotive field, the interaction between multi-physics modelling/sim-
ulation environments and embedded software development environments has
been addressed by many works. Recently, the eFMI (FMI for embedded sys-
tems) standard has been proposed as a result of the EMPHYSIS (Embedded
systems with physical models in the production code software) project [20].

3 Model Predictive Control and the GRAMPC
Framework

This section introduces a very succint description of the concept of model pre-
dictive control and of the GRAMPC framework [11] for the simulation of MPC
systems.

3.1 Model Predictive Control

A model predictive control system iteratively solves an Optimal Control Problem
(OCP) of the following form [11], where t ∈ [0, T ] is the MPC-internal time
coordinate and T is the prediction horizon:

min
u
J(u, xk) = V (x(T )) +

∫ T

0

l(x, u, τ)dτ (1)

Mẋ = f(x, u, tk + τ) (2)

x(0) = xk (3)

x(τ) ∈ [xmin, xmax] (4)

x(T ) ∈ Ωβ (5)

u(τ) ∈ [umin, umax] , (6)



where (1) is the cost functional, which depends on the time evolution of the
control variables’ vector u and of the sampled state variables’ vector xk. The
first term (V (x(T ))) of the cost functional represents the terminal cost associ-
ated with the final state at the end of the prediction horizon, while the second
term represents the integral cost computed over the whole trajectory over the
prediction horizon. The system dynamics are expressed by (2), where the mass
matrix M defines the inertial properties of the system, and tk = t0 + k∆t, with
0 < ∆t < T , is the k-th sampling instant.

The state of the system at the beginning of the k-th control interval is given
by (3). The remaining relations express constraints on the state and the control
inputs. In particular, Ωβ is the set of states such that the terminal cost is less
than or equal to β. This constraint is typically used to ensure stability.

The controller computes the trajectory of control variables that minimizes
(1), and its first segment of simulated length ∆t is applied as a plant input
during the actual (real-time) control period [tk, tk+1).

A common form for the cost functional uses quadratic norms of the form

V (x) = ‖x− xdes‖2P (7)

l(x, u) = ‖x− xdes‖2Q + ‖u− udes‖2R , (8)

where (xdes, udes) is the desired set-point and the norms are weighted by the
positive (semi-)definite matrices P , Q and R, defined according to the applica-
tion.

3.2 The GRAMPC Framework

The GRAMPC (Gradient-Based MPC) framework supports simulation of non-
linear systems under MPC by providing a highly configurable optimization algo-
rithm. Users must supply a model of the plant to be simulated, by coding a set
of C-language functions implementing well-defined, yet flexible interfaces. Users
also set options and parameters to customize the optimization and simulation
algorithms. In particular, a user may choose one of a set of available solvers for
the optimizer.

The optimization algorithm implements an augmented Lagrangian method,
based on the gradient-descent paradigm, also exploited in other adaptive [9]
and learning [16] control techniques for modern mechatronic systems. Such an
algorithm, at each iteration, requires the evaluation of the plant’s dynamics (for
the prediction), of the cost functional, of their partial derivatives w.r.t. state and
control variables, and of the constraint relations. As mentioned above, all these
computations are specified by the user with C functions. For example, function
ffct computes the plant dynamics, Vfct and lfct compute the terminal and
integral cost, respectively, dldx computes the gradient of the integral cost w.r.t.
the state variables, and hfct checks the inequality constraints.

The implementation of the optimization and simulation algorithm maintains
a structure (grampc) that contains all the information of the problem at hand



(including the current state of the plant, the values of the command variables,
the time). A function named grampc run takes the grampc structure as an input
and executes a step of the MPC algorithm, updating grampc.

In order to execute a simulation, a user writes a source file with the functions
modeling the system (ffct etc.) and a file with a main program where param-
eters and options are initialized. Then, a loop starts, invoking grampc run at
each iteration. The resulting values of control and state variables can be further
processed and printed out.

Figure 1 summarises how a simulation is built on top of the GRAMPC frame-
work. The framework is composed of a library providing the implementations of
the core MPC functions, and the declarations of the interfaces to be implemented
by the user, who provides the problem formulation in two source files, one with
the prediction plant model and the other with the initialization and the main
loop. It may be observed that, in the GRAMPC framework, it is not possible to
simulate the controlled plant and the controller separately, since the controlled
plant model coincides with the prediction plant model used in the controller.

grampc_run

grampc_init
grampc_opt

simulation step:

initialization:

library

dynamics:
ffct

cost functionals:
Vfct
lfct

gradients:
dldt
...

inequality constraints:
hfct

equality constraints:
gfct

user−supplied

initialization;

main program

simulation loop;

GRAMPC frameworkproblem formulation

plant model

cost functionals;
gradients;

inequality constraints;
equality constraints;

executable

dynamics;

use

build build

Fig. 1. GRAMPC library schema.

4 Proposed approach

This work is based on the idea of embedding a GRAMPC model into an
FMU written in C where the time advancing function fmi2DoStep invokes the
grampc run function. The control values updated in grampc are forwarded as
FMI output variables and the current state stored in grampc is overwritten by
the FMI input variables as shown in Figure 2. This is achieved by exploiting a
pre-existent FMU generator such as [19] or [23] to create the basic FMU struc-
ture that should be compiled together with the whole GRAMPC library source
files and the two GRAMPC files of the system at hand.



The file with the model of the plant does not require changes, while the
file with the implementation of the algorithm requires some minor changes: the
initialization of the GRAMPC parameters should be wrapped into a function
that will be invoked by the FMU initialization function fmi2SetupExperiment,
while the code for executing the MPC algorithm should be wrapped in a function
that will be invoked by the fmi2DoStep function. Finally, the values stored in
the grampc structure should be linked to the buffers where the FMU variables
are stored.

stores new state values in FMU buffer

FMI Master
Algorithm 

GRAMPC 
FMU 

fmi2SetXXX

fmi2DoStep moves new state values from FMU buffer to grampc 
invokes grampc_run 

moves new command values from grampc to FMU buffer
fmi2GetXXX provides new command values to the master

Fig. 2. Interaction Master-GRAMPC.

4.1 Advantages of GRAMPC as an FMU

The benefits deriving from the proposed approach are related to the general
advantages of an FMI based co-simulation, i.e., the possibility of easily coupling
the GRAMPC controller with other tools such as Simulink or OpenModelica for
the controlled plant component. In particular, the GRAMPC FMU may require
a simple model for the predicted trajectory, while a more complex and accurate
model can be created for the controlled plant in another FMU, using tools that
fit the problem domain. Moreover, the time required to run a co-simulation can
be easily reduced by exploiting a simple numerical integration solver (e.g., a
Euler solver) in the GRAMPC FMU while a more accurate and computation
demanding solver (e.g., Runge-Kutta) is only used in the plant FMU, which
is the one that computes the actual evolution of the system. Thanks to the
proposed approach it is also possible to run tests of the GRAMPC controller
by exploiting existing features such as the Simulink white noise generator block
for sensor errors, or the INTO-CPS Design Space Exploration (DSE) for the
analysis of the behaviour with small parametric variations.

4.2 Advantages of hardware platform modelling within VPSim

Complementary to separating GRAMPC into a standalone FMU, being able
to model the grampc run execution on a real hardware is a key to assess per-
formance bottlenecks of the control strategy. This is made possible thanks to
the VPSim [8] SoC virtual prototyping capabilities. It was developed with the



purpose of accelerating the software/hardware co-validation in the early stages
of the design development. VPSim makes it easy to model and emulate various
hardware architectures. At the same time, the user can simply test and debug
complete software stacks on these emulated architectures.
Furthermore, VPSim is distinguished by its ability to host third-party subsys-
tems using many standard and non-standard interfaces. In particular, it fully
supports the FMI standard [25]. Therefore, it can interface easily with other
modelling tools and simulators within an FMI-based co-simulation. From the
user view, FMI in VPSim is exposed as a proxy component that must be con-
nected to a compatible hardware communication interface, such as CAN bus or
I2C slave. In addition, VPSim proposes a user-friendly method for automatic
generation of the virtual platform FMU, based on a high-level description of
the hardware/software platform. Figure 3 shows the general architecture of an
FMI co-simulation involving an FMU with a GRAMPC model executed on a
processor emulated with VPSim. The deployment of GRAMPC on a simulated
architecture with VPSim enables (i) evaluating the behavior of grampc run on
the target hardware architecture, (ii) identifying the best hardware support for
the control code, and (iii) devising software improvement strategies such as par-
allel implementation.

Fig. 3. The architecture for a co-simulation with VPSim FMU.

5 Case Study

The specific case study concerns the autonomous driving of a vehicle modelled for
simplicity by kinematics laws through the GRAMPC library. The problem ad-
dressed is to follow a sinusoidal trajectory that follows the carriageway, avoiding
some obstacles (modelled as circular areas). Figure 4 shows a possible trajectory
of a car avoiding an obstacle (red circle).

The case study is taken from an example available in the GRAMPC distri-
bution, based on a paper by Werling et al. [29]. Obviously, in a realistic case,



Fig. 4. Example of a trajectory.

Fig. 5. Kinematic bicycle model of the vehicle, redrawn from [24].

the MPC control algorithm, which is a low-level control, will have to be inte-
grated with the vision and decision system for the waypoints to be reached at
each iteration. This information is assumed to be given as input to the system
statically, at the beginning of the simulation, and the vision system will not be
considered.

5.1 Vehicle Model

The model used for the case study is the kinematic bicycle model of the vehicle
shown in Figure 5, adapted from [24]. This model, commonly used in the field
of MPC, approximates a four-wheel vehicle by replacing the two wheels of each
axle with one wheel on the longitudinal axis.

The kinematic behaviour of the model is described by the following equations,
where the control command inputs are the acceleration a (m/s2) and the front
wheel steering angle δ (rad).



ẋ = V cos(ψ + β(δ)) (9)

ẏ = V sin(ψ + β(δ)) (10)

V̇ = a (11)

ψ̇ =
V

lr + lf
cos (β(δ)) tan (δ) (12)

Angle β is the slip angle at the centre of gravity G and it is described by Equa-
tion (13), where lr and lf are the distances from G of the rear and front wheel,
respectively.

β(δ) = arctan
(

tan(δ)
lr

lr + lf

)
(13)

5.2 Simulink Model of the Plant

Equations (9), (10), (11), (12), and (13) have been implemented with the Simulink
model shown in Figure 6, using the base blocks of the Simulink trigonometry
library. The Simulink model comprises four integrators to output the actual val-
ues of the variables. The initial state of these integrators corresponds to the
initial values of the plant’s state variables.

The Simulink environment generates an FMU whose model parameters (such
as lr, lf , and the initial state) can be set in the INTO-CPS co-simulation envi-
ronment. The Simulink environment also chooses the ode45 variable step size
and the default parameters for the explicit Runge-Kutta integrator.

s

1
cos

1/L

tan l_r/L atan

s

1

sin

s

1

cos

s

1

+

4

psi

3

V

2

y

1

x

1

a

2

delta

dot_psi

dot_y

dot_x

beta

psi+beta

Plant

Fig. 6. Simulink model of the plant. Parameter L equals lr + lf
.



5.3 Vehicle and controller in GRAMPC

The model of the vehicle in GRAMPC is shown in Listing 1.1 and matches the
equations shown in Section 5.1, using the notation of C. The same model is used
to solve the optimisation problem and for executing a self-contained simulation
in the GRAMPC framework.

Listing 1.2 shows the four constraints on the optimisation problem:

– out[0] on line 1 represents the constraint for obstacle avoidance and is
represented by a circle of radius 1 located at (50, -0.2) in the XY plane.

– out[1] on line 2 and out[2] on line 3 are the constraints representing the
edges of the road, represented by two sinusoids,

– out[3] on line 4 represents the speed limit that the vehicle must respect.

1 double beta = ATAN(param [18]* TAN(u[0])/(param [18]+ param

[19]));

2 out[0] = COS(x[2]+ beta)*x[3];

3 out[1] = SIN(x[2]+ beta)*x[3];

4 out[2] = x[3]* COS(beta)*TAN(u[0])/( param [18]+ param [19]);

5 out[3] = u[1];

Listing 1.1. Implementation of the vehicle model in GRAMPC

1 out [0] = (2 - POW2(-50 + x[0]) - POW2(( 0.2 + x[1])));

2 out [1] = -x[1] + 4*SIN(2 * pi * 0.01 * x[0]) -1.5;

3 out [2] = x[1] - 4*SIN(2 * pi * 0.01 * x[0]) -4.5;

4 out [3] = x[3] - 40;

Listing 1.2. Definition of the constraints in GRAMPC

1 State* tick(State* st) {

2 grampc ->sol ->xnext [0] = (typeRNum)st ->x;

3 grampc ->sol ->xnext [1] = (typeRNum)st ->y;

4 grampc ->sol ->xnext [3] = (typeRNum)st ->V;

5 grampc ->sol ->xnext [2] = (typeRNum)st ->psi;

6 grampc_setparam_real_vector(grampc ,"x0",grampc ->sol ->xnext);

7 grampc_run(grampc);

8 t = t + grampc ->param ->dt;

9 st->a = grampc ->sol ->unext [1];

10 st->delta = grampc ->sol ->unext [0];

11 }

Listing 1.3. Algorithm evolution in GRAMPC

Listing 1.3 shows the custom function tick, called by the master every co-
simulation step through the fmi2Dostep function:

– lines 3-7 move the values received from the controlled plant to grampc

– lines 9-10 invoke grampc and increase the time variable by dt



– lines 12-13 save the newly generated commands

The co-simulation architecture is shown in Figure 7, with the INTO-CPS
Co-simulation Orchestration Engine (COE) playing the role of the FMI master
algorithm.

COE
PLANT

FMU

psi

y
x

V

delta

a

prediction

plant model

GRAMPC
FMU

delta

a

psi

y
x

V

Fig. 7. Co-simulation architecture of the case study.

5.4 Hardware platform with VPSim

VPSim can simulate a large variety of architectures using both its integrated
models and external model providers such as QEMU [2], ARM fast models, or
open virtual platforms. In the context of this paper, as shown in Figure 3, VPSim
emulates a quad-core ARMv8 64-bit processor architecture using QEMU. Each
core has private L1 & L2 caches. All the cores share four slices of LLC banks,
which are connected to the NoC and peripheral devices. The platform runs a
Linux OS which executes the GRAMPC algorithm. A CAN controller model
provides FMI interfaces and makes it possible to receive and transmit control
I/O data to and from the grampc run application that uses the SocketCAN
API [26] to retrieve them, as would be the case on real hardware.

It must be stated that a real-time OS could be supported by the proposed
methodology. It would be required for industrial development and validation to
ensure the periodic scheduling of the grampc run function. Yet, using a standard
Linux - executing a single application triggered by CAN events - is relevant for
the exploration of the control strategy while accounting for potential execution
performance bottlenecks. Indeed, if grampc run executes in less time than the
period of CAN messages, it is then periodically executed. Otherwise, it will fail
to process all incoming messages and meet its deadlines, as would be the case
when considering an RTOS.

5.5 Results

The GRAMPC framework uses a single model as the prediction model, needed
for MPC optimization, and as the controlled plant model. While this choice is



often convenient, it may be the case that an embedded application must use a
prediction model simplified with respect to the controlled plant model. In such
cases, co-simulation makes it possible to use two distinct models.

As a preliminary step towards the co-simulation of distinct models, in this
work it has been checked that co-simulation does not introduce significant de-
viations from the case of GRAMPC simulation with a single model. In order to
verify the consistency between the two simulation methods, the same mathemat-
ical vehicle model has been implemented in C for the prediction model, and in
Simulink for the plant model. The results of co-simulations are consistent with
the results of self-contained simulations in GRAMPC, producing a difference less
than one millimetre.

This section reports results of co-simulations in case of the decoupling of the
two models, making the co-simulated system more realistic with respect to the
GRAMPC self-contained one. The main parameters of the analyzed scenarios
are shown in Table 1.

Table 1. Parameter values

parameter value

δmin −0.5 rad
δmax 0.5 rad
amin −11.2 m/s2

amax 5.34 m/s2

Front track lf 1.670 m
Rear track lr 1.394 m
Time horizon 1 s

MPC solver Euler

Nominal co-simulation results The vehicle starts at the position (0,0) and
must follow the sinusoidal trajectory avoiding the obstacle at (50,−0.2). Figure 8
shows a co-simulation run with a fixed step size of 0.001 seconds and an end time
of 20 seconds.

The maximum computation time of the GRAMPC algorithm is less than a
millisecond and the simulation time is 50 seconds on an Intel® Core™ i7-7700
CPU @ 3.60GHz × 8. The choice of the Euler solver inside the MPC model,
together with the GRAMPC setup, leads to a computation time less than the co-
simulation step-size, which guarantees a realtime-like throughput. Notoriously,
the Euler solver is computationally less demanding than other solvers.

As shown in Figure 8, the vehicle follows the trajectory avoiding the obstacle.
The mean error of the actual trajectory against the reference trajectory without
the obstacle is 0.08 m (first row in Table 2) and the maximum absolute error is
0.76 m, both evaluated excluding the area around the obstacle. With respect to
the limits imposed on the constrained optimisation problem, as far as the obsta-
cle avoidance section is concerned, it was verified that the trajectory calculated



Fig. 8. Results of a co-simulation run.

by GRAMPC is such that the centre of mass of the vehicle completely avoids the
obstacle. This translates into verifying that the distance between the trajectory
and the centre of the obstacle is always greater than the radius of the circle
that formally defines the obstacle region itself. The closest distance between the
obstacle and the centre of mass of the vehicle is 0.4 m.

Response to physical parameters variation By exploiting the decoupling
of the model used within GRAMPC and the model used for plant in Simulink
it is possible to run robustness tests against small variations of the physical pa-
rameters of the vehicle under analysis. Table 2 shows the four different scenarios
where the parameters lf and lr of the Simulink model have a ± 5% deviation
with respect to the nominal values used in the first experiment, reported in the
first row of the table. This variation of the parameters emulates a reasonable
measurement error.

It is possible to state that the GRAMPC algorithm is robust as the mean
error is scarcely affected by the physical variations. Moreover, the maximum
absolute error is not affected by the physical variation and therefore it is not
shown.

Table 2. Different parameters

front track ll (m) rear track lr (m) error (m)

1.67 1.394 0.08
1.67 1.464 0.09
1.67 1.324 0.09
1.75 1.394 0.08
1.59 1.394 0.10

Enabling perturbation analysis Figure 10 shows the results of the co-simula-
tion with a perturbation in the y and ψ values produced by the plant FMU and
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Fig. 9. Simulink model of the plant with AWGN.

consumed by the GRAMPC algorithm. The perturbation has been implemented
with the Simulink AWGN block, which has been applied to the y coordinate with
a variance of 0.1 (10 cm of measurement error) and to angle ψ with a variance of
0.01 (1 degree of measurement error), obtaining the model in Figure 9. As shown
in Figure 10, the vehicle is still capable of avoiding the obstacle but the error has
increased to 0.240 m and the maximum absolute error has increased to 1.58 m.
The framework can be leveraged for perturbation analysis by considering more
cases.

Fig. 10. Results of a co-simulation run with AWGN on sensors.

Co-simulation with VPSim As a benefit of the proposed approach, it is pos-
sible to generate the FMU that executes the grampc run algorithm on a specific
hardware platform. In the following, we show the nominal co-simulation in case
of GRAMPC executed on top of an ARMv8 quad-core processor emulated with
VPSim. With respect to Figure 7, the FMU generated with VPSim can replace
the GRAMPC FMU. The results, shown in Figure 11, present a mean error of
0.262 m, while the vehicle is still able to avoid the obstacle. This increase in
the mean error is consistent with the fact that the average execution time of



grampc run (2.4 ms) is longer than the expected co-simulation stepsize (1 ms).
From this point on, several improvement strategies to the grampc run imple-
mentation could be sought by the designer such as parallelizing the algorithm,
changing the prediction window or the optimization solver, or even choosing
more appropriate hardware.

Fig. 11. Results of a co-simulation run with VPSim.

6 Conclusions

This paper has shown an approach to enable the analysis of an MPC algorithm
through co-simulations involving relevant aspects of three different domains: (i)
physical laws, defining the evolution of the system, (ii) control algorithm, opti-
mising the response of the system, and (iii) processor architecture imposing con-
straints on the execution time. The proposed approach is based on the strategy of
embedding into an FMU a GRAMPC controller running on a VPSim-simulated
processor to assess the performance of the processor.

The case study has shown some of the possibilities opened by the proposed
approach, such as the response to physical parameter variations or the evaluation
of the impact of processor architecture on the system. Each different analysis can
be extended with knowledge and tools deriving from the respective domain. Users
expert in parallel computation could improve the architecture performances by
optimising the code, users expert in fault tolerance could decrease the impact of
faulty sensors by applying, for example, redundancy in the plant model. Finally,
experts in MPC could be interested in finding the best trade-off between accuracy
and performance. Working all together on the same artefacts, and combining
effort in different fields would lead towards the implementation of optimal and
robust systems.

As further work, in order to get better results in the parallelisation of MPC,
it could be also interesting to investigate the usage of a quite different structure
of the control algorithm allowing a more effective parallelism.
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