
HAL Id: cea-03605065
https://cea.hal.science/cea-03605065v2

Submitted on 10 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep anomaly detection using self-supervised learning:
application to time series of cellular data

Romain Bailly, Marielle Malfante, Cédric Allier, Lamya Ghenim, Jérôme I.
Mars

To cite this version:
Romain Bailly, Marielle Malfante, Cédric Allier, Lamya Ghenim, Jérôme I. Mars. Deep anomaly
detection using self-supervised learning: application to time series of cellular data. ASPAI 2021 -
3rd International Conference on Advances in Signal Processing and Artificial Intelligence, Nov 2021,
Porto, Portugal. �cea-03605065v2�

https://cea.hal.science/cea-03605065v2
https://hal.archives-ouvertes.fr


3rd International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2020),  
17-19 November 2021, Porto, Portugal 

Special session Topic: Biomedical signal processing 

Deep anomaly detection using self-supervised learning: 
application to time series of cellular data 

 
Romain Bailly 1, 4, Marielle Malfante 1, Cédric Allier 2, Lamya Ghenim 3, and Jérôme Mars 4 

     1 Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France  
2 Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France 

3 Univ. Grenoble Alpes, CNRS, CRA, INSERM, IRIG, F-38000 Grenoble, France 
4 Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France 
Email: 1, 2, 3 firstname.name@cea.fr , 4 fistname.name@gipsa-lab.grenoble-inp.fr  

 
 

Summary: We present a deep self-supervised method for anomaly detection on time series. We apply this methodology to 
detect anomalies from cellular times series, in particular cell dry mass, obtained in the context of lens-free microscopy.  

We propose an innovative, self-supervised, two-step method for anomaly detection on time series. As a first step, a 
representation of the time series is learned thanks to a 1D-convolutional neural network without any labels. Then, the learned 
representation is used to feed a threshold anomaly detector. This new self-supervised learning method is tested on an unlabeled 
dataset of 9100 time series of dry mass and succeeded in detecting abnormal time series with a precision of 96.6%. 

 
Keywords: Self-supervised learning, 1D-CNN, Anomaly detection, Cellular anomaly, Time series, Lens-free microscopy 
 

 
1. Introduction 

Lens-free microscopy is a recently developed 
imaging technique [1] overcoming some limitations of 
classical microscopy. Typically, it allows the rendering 
of thousands of cells in a single frame with a much less 
cubersome dispositive. [2] proposes to analyse 
sequences of images, from which a dataset of time 
series of cells’ dry mass is built. 

 
The dry mass of a cell, measured in picograms (pg), 

is related to its metabolic and structural functions. 
Amongst the thousand of cells in a petri dish, it may 
happen that some cells deviate from their typical 
behaviour, thus impacting their dry mass. It has been 
shown that cells that deviate from healthy trajectories 
can further drive tissues toward diseases [3]. Detecting 
abnormal cells automatically is thus crucial.  
 

We propose an innovative method for 
automatically detecting abnormal cells using their dry 
mass. The proposed approach is design for unlabeled 
datasets and is in two steps: first, a representation of 
the time series is learned using self-supervised 
learning. In a second step, an anomaly detection block 
is used overt the learned representation to determine if 
a cell is abnormal. This self-supervised method 
benefits from the representation power of deep 
learning without the usual labelling constraint.  

 
2. Methods 

 
2.1. Representation Learning neural network 

 
The neural network used to learn a representation 

of the time series is trained in a self-supervised 
framework. Self-supervision allows the model to learn 
a deep representation of the signal without any 

labelisation effort. It uses a pretext task, to learn this 
representation. In our application and in agreement 
with the experts, we chose the pretext task to be time 
series prediction as presented Fig. 1. In this study, the 
input vector length is set to 120 timesteps and the label 
vector to 60 timesteps. 

 
 

 
Fig. 1. Time series are split in an input vector of size i 

and label vector of size l. 
 

A 1D-Convolutional neural network architecture 
[4] is used to capture the representation of the signal. 
A more extensive study of the neural network 
architecture is discussed in the main paper. It is 
trainined using a Root Mean Squared Error (RMSE) 
loss eq. (1) between the true future of the time series 
and the predicted one with y୬ the ground truth value at 
time step n and 𝑦௡ෞ the prediction value at time step n. 
Fig. 2. describes the full anomaly detection pipeline, 
including the representation learning neural network. 
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Neural networks in this study are trained on a signle 
NVIDIA Titan X with a batch size of 32, a 
learning rate of 0.001 and with ADAM 
optimizer. 
 
2.2. Anomaly detection 

 
The proposed method relies on a second anomaly 

detection  block. Experimental results have shown that 
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the use of a treshold over the prediction RMSE allow 
the model to detect abnormal cells. The threshold τ is 
computed following eq. (2) such as  the metric values 
outside the 95% interval of the metrics are flagged 
abnormal, assuming the metric distribution over the 
test set to be gaussian. 

 τ =  μ୲ୣୱ୲ − σ୲ୣୱ୲, (2) 
where μ୲ୣୱ୲ and σ୲ୣୱ୲  are respectively the mean and 
standard deviation of RMSEs over the test set. 
 
2.3. Evaluation 

 
The dataset used in this study contains cellular dry 

mass times series split into train, validation and  test 
sets, indepently augmented with window slicing. An 
extensive description of the dataset is available in the 
main paper. 

 
Experts have identified four possible causes of 

anomalies raised by the developed methodology.  
True positives TP: 

1. Cellular Anomaly (CA): The cell grows in an 
unexpected way and should be analysed. 

2. Measurement Anomaly (MA):  the upstream 
dataset generation software was not able to track the 
cell properly. 

3. Measurement Anomaly because of a cellular 
anomaly (CMA): because of a CA, a MA occured. 
False Positives FP:  

4. Prediction Anomaly (PA): the neural network 
was not able to predict the cell future correctly whereas 
the cell is normal 
 

Precision P eq. (3) is computed thanks to the expert 
annotation of the raised anomalies. The proposed 
method is designed to analyse unlabeled datasets. It 
is therefore not possible to compute the recall of the 
anomaly detection. To fully evaluate our model 
performances in term of both precision and recall, we 
propose an estimate of the recall by muanually 
annotating a random 5% sample of the detected-normal 
cells to estimate the False Negative count. 
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3. Results 
 
The anomaly threshold on RMSE on the test set is 

computed to τ =  230.87  pg thus raising 208 
abnormal tracks. The category distribution of those 
cells is detailed in Table 1. Then, 31 false negatives 
were counted during the annotation of 447 samples 
(5%) of the cells predicted as normal. Anomaly 
detection has been achieved with a precision             
P =  96.6% and an estimated recall R෡  =  24.5%. 

 
Table 1. Expert classification of the anomalies raised. 

 
Anomaly CA CMA MA PA 

Ratio 
40% 31% 26% 3% 

97% 3% 

 
4. Conclusions 
 

 We propose an innovative two-step method for 
automatically detecting abnormal cells using their dry 
mass time series. This method focuses on unlabeled 
datasets thanks to the use of self-supervised learning. 
First, a representation of the time series is learned 
using a self-supervised 1D-convolutional neural 
network trained on a pretext prediction task. In a 
second step, the predicted dry mass value is compared 
to the ground truth. An anomaly is raised if the RMSE 
is above a given threshold. A precision of 96.6% and 
an estimated recall of 24.4% are achieved. 
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Fig. 2. Full anomaly detection pipeline. A 1D-CNN neural network is trained to predict the future of the time series. The 
RMSE between ground truth and predictio is compared to a threshold to define is a cell is abnormal. 


