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An accurate prediction of atomic diffusion in Fe alloys is challenging due to thermal magnetic excitations
and magnetic transitions. We investigate the diffusion of Mn in bcc Fe using an effective interaction model and
first-principles based spin-space averaged relaxations in magnetically disordered systems. The theoretical results
are compared with the dedicated radiotracer measurements of 54Mn diffusion in a wide temperature range of 773
to 1173 K, performed by combining the precision grinding (higher temperatures) and ion-beam sputtering (low
temperatures) sectioning techniques. The temperature evolution of Mn diffusion coefficients in bcc iron in theory
and experiment agree very well and consistently reveal a reduced acceleration of Mn solute diffusion around the
Curie point. By analyzing the temperature dependencies of the ratio of Mn diffusion coefficients to self-diffusion
coefficients we observe a dominance of magnetic disorder over chemical effects on high-temperature diffusion.
Therefore, the missing acceleration mainly reflects an anomalous behavior of the Mn solute in the magnetically
ordered low-temperature state of the Fe host, as compared to other transition metals.

DOI: 10.1103/PhysRevB.104.184107

I. INTRODUCTION

Atomic diffusion plays a central role dictating the kinetics
of numerous physical processes in solids, such as surface and
interfacial segregation, precipitation, and phase transitions.
Iron-based alloys, being the basis of steels, are certainly one
of the most studied systems from both theoretical and ex-
perimental points of view. Experimental data for solute and
solvent diffusion in iron alloys are usually known only at
relatively high temperatures (above 750 K) [1–13], due to
the general limitations of a standard radiotracer technique
[14]. On the other hand, a quantitative model of the diffusion
coefficients as functions of temperature in these systems is
not obvious, since the effects of thermal magnetic excitations
and magnetic order-disorder transition need to be properly
described.

Indeed, thermodynamic and kinetic properties of Fe-based
alloys may strongly be influenced by magnetism. Most
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prominently, the magnetic transition in Fe is correlated with
a relative (with respect to an Arrhenius-type temperature
dependence) acceleration of the self- and solute diffusion
coefficients when the Curie temperature TC is approached
and the ferromagnetic ordering is vanishing (or, equivalently,
a retardation of diffusion in magnetically ordered Fe with
respect to a low-temperature extrapolation of the data for
its paramagnetic state) [1–4,6–9,15,16]. It was also shown
that the concentration dependence of the magnetic transition
in Fe-Co alloys is related to the body-centered-cubic (bcc)
to face-centered-cubic (fcc) transition [17–19]. Further, pre-
vious studies have shown that magnetism in Fe-Cr alloys
has a crucial impact on the mixing enthalpy and induces
an asymmetry in the mutual solubility of Fe and Cr at low
temperature [20,21].

This paper is mainly focused on bcc Fe-Mn alloys, for
which such effects are much less understood. Already pure
bulk Mn shows a complex magneto-structural phase diagram
[22,23] and strong magneto-elastic coupling effects are also
present in Fe-Mn alloys [24]. According to phase diagrams
[25,26], the stability domain of bcc Fe-Mn alloys is limited
to dilute alloys (<5 at % Mn). The magnetism of Mn so-
lutes in bcc Fe is complex, which makes bcc Fe-Mn alloys
even in the Fe-rich part an interesting case to study [27,28].
Due to the presence of a high Mn majority-spin electronic
density around the Fermi level, its magnetic interaction is
highly sensitive to minor changes of the Mn local environ-
ment [28]. For example, an isolated Mn atom in bcc Fe has
its magnetic moment antiparallel to the Fe moments in the
ground state, but the parallel configuration is another energy
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minimum that becomes dominant at larger Mn concentrations
in Fe [27,28]. Here, we show that this particularity of Mn
in Fe has a qualitative impact on the diffusion properties
around TC.

Even the self-diffusion in iron via the vacancy
mechanism is still a topic of active research [16,28–32].
A number of approaches were proposed to describe the
temperature dependence of the self-diffusion coefficient in
the whole temperature range of bcc Fe by a single equation
[1,9,33]. Based on the theoretical model of Girifalco [34],
which analyzed the effects of ordering on diffusion in β brass,
Ruch et al. [33] have fitted the temperature dependence of the
self-diffusion coefficient in α-Fe as

D(T ) = DPM
0 exp

[
−Emag

a (T )

kBT

]
(1)

with Emag
a (T ) = EPM

a (1 + α(M(T )/M(0))2) (2)

where the pre-exponential factor DPM
0 and the activation en-

ergy of diffusion EPM
a belong to the paramagnetic state. M(T )

is the magnetization at a temperature T , yielding a maxi-
mum of the activation enthalpy in the ferromagnetic limit as
EFM

a = EPM
a (1 + α). Therefore, the dimensionless constant α

describes the effect of magnetic ordering on the activation
energy of diffusion.

The solute diffusion in Fe across the Curie point has so far
only been addressed in a few theoretical studies [16,28,29,31].
In experiment, however, a behavior similar to the representa-
tion in Eq. (2) was observed for a number of solutes, e.g., for
Co [5,35], Cr [36], and Ni [35] in bcc Fe, when diffusion has
been measured over sufficiently large temperature intervals.
Comparing the magnetic moment of a solute impurity in the
bcc Fe matrix and the value of α used to fit the experimental
data, empirically yields a linear correlation, i.e., higher mag-
netic moments seem to correspond to higher α values [9,37].

Diffusion of Mn solutes in Fe was previously measured
by several researchers, see Fig. 1. The results of Nohara and
Hirano [38] and Lübbehusen [15] measured in α-Fe agree
with the independent data of Kirkaldy et al. [39] reported
for δ-Fe. A formal fit of these data using the Ruch model
would predict αMn ≈ 0. However, since the measurements
in Refs. [15,38] were performed at relatively high tempera-
tures near the Curie temperature of α-Fe the understanding
of the influence of the magnetic transition on Mn diffusion is
currently limited. Furthermore, a large scatter of the data mea-
sured for bcc Fe in the paramagnetic state, Fig. 1, demands
further clarification.

While there are indications that Mn does not follow the
above mentioned trend for α values, a thorough study is miss-
ing so far. Studies based on density functional theory (DFT)
have been reported in the literature by Messina et al. [41]
and Versteylen et al. [42]. In these papers, detailed studies on
Mn-vacancy binding energies, migration barriers for the Le
Claire’s model and activation energies have been reported for
the ferromagnetic state. However, paramagnetic Mn-vacancy
binding energies and migration barriers were not evaluated
in these studies. Though vacancy activation energies in the
paramagnetic state were determined using ferromagnetic ac-
tivation energies and α (since EFM

a = EPM
a (1 + α)), Messina

et al. assumed the α value of Fe self-diffusion for Mn impurity

FIG. 1. Literature data on Mn diffusion in α-Fe. A formal fit of
the data of Lübbenhusen [15] and Nohara and Hirano [38] using the
Ruch model [33] (solid line) would predict α ≈ 0. For completeness,
the results of the measurements of Irmer and Feller-Kniepmeier
(squares) [40] and and Kirkaldy et al. (triangles) [39] are shown.
For reference, the experimental data for Fe self-diffusion in α-Fe
measured by Iijima et al. [4] are shown, too (stars). Irmer and Feller-
Kniepmeier measured Mn diffusion in different kinds of pure Fe and
Fe alloys, for further details please refer to the original paper [40].
The vertical lines indicate the phase transition temperatures.

diffusion in Fe, whereas Versteylen et al. did not explain how
they determined α value and cited their unpublished work. In
this paper, we therefore investigate to what extent the non-
Arrhenius acceleration of diffusion near Tc described above
[10–13] is also observed for Mn in Fe or if it is substantially
reduced as compared to Fe self-diffusion.

To this end, we perform radiotracer diffusion experiments
that give access to Mn diffusion coefficients at lower tem-
peratures than reported in the literature. This allows a more
accurate study of modifications of the solute diffusion coef-
ficients due the magnetic transition at the Curie temperature.
Along with the experiments, we deploy two complementary
theoretical approaches to compute vacancy formation and
migration energies in the presence of a Mn solute next to a
vacancy.

Based on the method suggested by Hegde et al. [32],
first-principles DFT calculations are combined with spin-
space averaged (SSA) forces [43], to account for the effect
of magnetic disorder on atomic relaxations and the subse-
quent impact on the vacancy activation energies. We analyze
whether the significant effect of relaxations on the vacancy
energetics observed in pure Fe also applies to the vacancy
formation and migration energies in Fe-Mn. While such SSA
relaxations allow for a direct and accurate computation of the
energies in the paramagnetic regime, an interpolation scheme
like the Ruch model (2) is used to extract the temperature
evolution of diffusion coefficients between the fully ferromag-
netic and the fully paramagnetic regimes.

The second approach has been proposed by Schneider
et al. [44] and enables a continuous prediction of dif-
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fusion properties versus temperature, including explicitly
spin and atomic variables. Adopting a DFT-based effective
interaction model (EIM) coupled with on-lattice Monte Carlo
(MC) simulations, the self- and Cu diffusion in bcc Fe was
considered to illustrate the ability of the methodology to pre-
dict diffusion properties. In the present paper, we apply the
same methodology to the diffusion of Mn solutes. While this
model does not require a scheme to interpolate temperature,
the accuracy of the results depends on the parametrization of
the EIM.

The comparison of these two complementary approaches
and the tracer diffusion experiments guarantees the robust-
ness of the result and will provide new insights concerning a
potential diffusion anomaly of Mn in bcc Fe. The first section
of the paper is dedicated to the methodology, including details
concerning experiments, DFT calculations, the EIM approach,
the study of diffusion, and Monte Carlo simulations. Then the
approach is applied in the following section to the study Mn
diffusion in bcc Fe. Finally, the agreement with experimental
results is discussed.

II. METHODOLOGY

A. Density functional theory calculations

In this work, DFT calculations are performed for (1) the
SSA based relaxations and (2) for parametrizing the EIM
model. The details are given in the following:

1. SSA relaxation method for magnetic disorder

To determine the vacancy formation energy, binding en-
ergy, and migration barriers of different exchanges in the
neighbourhood of the vacancy, DFT calculations have been
employed using a 3 × 3 × 3 supercell of α-Fe with a single
vacancy and a single Mn atom. The novelty of the present ap-
proach is to fully account for the structural relaxation effects
in the disordered magnetic state [32]. The scheme is based
on the SSA [45] technique, which assumes that the magnetic
degrees of freedom in the paramagnet vary much faster than
the atomic degrees of freedom, viz., the fast magnetic degrees
adiabatic approximation.

Therefore, the Hellmann-Feynman forces on the atoms for
each lattice position need to be averaged over a large num-
ber of disordered magnetic configurations. The subsequent
structural optimization is carried out using these averaged
forces and a new geometrical structure is obtained, which is
again experiencing the magnetic disorder. This procedure is
performed till the SSA forces converge to the required accu-
racy. To automatically combine the different simulation steps
and tools, we employ the integrated development environment
(IDE) pyiron [46].

The presence of Mn in the vicinity of the vacancy yields
the vacancy-Mn binding energy

Ebinding = (
E (N−1)

vac + E (N−1)
Mn

) − (
E (N−2)

vac,Mn + E (N )
)
. (3)

The energies on the right-hand side of the equation refer to
supercells with both vacancy and Mn, without defect, with
a single vacancy and a single Mn atom in the Fe bulk, re-
spectively. The number of Fe atoms in each case is given
by the superscript. According to this definition, a positive

binding energy would mean an attractive interaction between
the vacancy and Mn.

The migration barriers are computed by the activation-
relaxation technique (ART) [47]. The migration energy
corresponding to the transition (trans) state is defined as

Em = Etrans − Evac , (4)

where Etrans stands for total energy of the supercell in the
transition state.

A supercell of 54 atoms (3 × 3 × 3 cell) is used for fer-
romagnetic bulk calculations and the collinear magnetically
disordered state for this supercell is realized by a special
quasirandom structure (SQS) [48]. The experimental lattice
parameter [49] of 2.86 Å is used for the ferromagnetic struc-
tures of both Fe and FeMn supercells containing one Mn atom.
For the paramagnetic Fe and FeMn SQSs an experimental
lattice parameter [49] of 2.90 Å is used, therewith taking
thermal expansion into account. Structural optimization is
carried out with SxExtOpt [50] and a total of eight different
magnetic structures are used for spin-space averaging. SxEx-
tOpt is an efficient external optimizer that performs on-the-fly
parametrization of the Hessian.

These DFT calculations are carried out with the SPHInX
[51] package, within the Perdew-Burke-Ernzerhof (PBE)
generalized-gradient approximation (GGA) [52,53], using the
projector augmented wave (PAW) [54,55] formalism. An en-
ergy cutoff of 600 eV and a Monkhorst-Pack k-point mesh of
6 × 6 × 6 is used, after ensuring that the error due to conver-
gence is less than 1 meV/atom. All calculations are performed
with Fermi-Dirac smearing, with a width of 0.1 eV (elec-
tronic temperature close to TC = 1041 K). The convergence
criterion for total energy in electronic relaxation is 10−5 eV
and the convergence criterion for forces in ionic relaxation is
0.015 eV/Å.

Spins are not constrained for the ferromagnetic calcula-
tions, while spin constrained calculations are carried out for
the paramagnetic calculations. The magnitude of the spin con-
strained moments is carefully optimized with respect to the
total energy. In the ferromagnetic Fe matrix, the Mn atom in
the dilute limit couples antiferromagnetically to the neighbor-
ing Fe atoms and its magnetic moment is 2.05 μB, consistent
with previous results [28]. In the paramagnetic, i.e., mag-
netically disordered state, the magnitude of the moment of
Mn atom is 1.8 μB. Since the local moments are larger for the
atoms in the immediate vicinity of the vacancy, these changes
have been determined by a moment-energy optimization for
the first nearest neighbours atoms of the vacancy.

The magnetic entropy part of the vacancy formation and
migration free energy does not yield a contribution in the SSA
approach, since it vanishes in the limiting cases, i.e., in the
ferromagnetic and paramagnetic regime [44].

2. Parameterization of the effective interaction models

Although a full description of DFT calculations for para-
materizing EIM models is provided in Ref. [28], the main
computational details are repeated in this section. The calcu-
lations are also performed using the PAW method [54,55] and
the PBE exchange-correlation functional, but employing the
VASP (Vienna Ab initio Simulation Package) code [56–58].
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All the calculations are spin-polarized. 3d and 4s electrons are
considered as valence electrons. The plane-wave basis cutoff
is set to 400 eV. Atomic magnetic moments are obtained by
a charge and spin projection onto the PAW spheres [57,58] as
defined by the PAW potentials.

The k point grids are supercell-dependent chosen such that
they are equivalent to a bcc cubic unit cell with a 16 × 16 × 16
shifted grid, following the Monkhorst-Pack scheme [59]. The
Methfessel-Paxton [60] broadening scheme with 0.1 eV width
is used. The convergence threshold for the electronic self-
consistency loop is 10−6 eV and atomic relaxations at constant
volume are performed down to a maximum residual force
of 0.02 eV/Å. We have verified that the magnetic structures
and cluster formation energies are converged such that the
resulting error bars for energy differences and magnetic mo-
ments of Fe and Mn are respectively 0.02 eV, 0.01 μB and
0.1 μB. These are mainly associated to the convergence of the
plane-wave energy cutoff and the k-grid density.

In addition to the details given in Ref. [61], these cal-
culations were performed at constant volume on 128-sites
supercells (4 × 4 × 4 unit cells) with a lattice constant of
2.83 Å for pure FM bcc Fe optimized using the present com-
putational details.

Though the computational details such as smearing
schemes, energy cutoff are slightly different for SSA and
EIM, careful convergence tests are performed for both the
methods. In the ferromagnetic state, the resulting Mn-vacancy
binding energies, vacancy formation energies and migration
energies deviate by less than 0.05 eV between the methods.
Also, the literature values [41,42] for these energies in the
ferromagnetic state are within an interval of 0.05 eV compared
to the two methods (for example, see Table III). Therefore, the
deviations of the computed energies due to different compu-
tational details, including smearing schemes, can be regarded
as sufficiently small.

B. Effective interaction model (EIM)

The EIM used in this study consists of a magnetic part
with a Landau-Heisenberg form as in Refs. [44,62–65], which
allows to account for both longitudinal and transversal exci-
tations of spins. The Hamiltonian has the following formal
expression:

H =
N∑
i

A(S)
i M2

i + B(S)
i M4

i +
N∑
i

P∑
n

Zn∑
j

J (n)
i j Mi · M j

+
N∑
i

P∑
n

Zn∑
j

V (n)
i j σi · σ j (5)

where N is the total number of atoms, P is the maximum
range of interactions in terms of neighbor shells, Zn is the
coordination number of each neighboring shell, Mi is a vector
representing the magnetic moment of the ith atom, Mi is its
magnitude. V (n)

i j and J (n)
i j represent respectively the chemical

pair-interaction and the magnetic exchange-coupling param-
eters between atoms i and j, at a range n. As shown in the
Appendix, these interaction parameters V (n)

i j and J (n)
i j depend

on the chemical species of the ith and the jth atoms (for
instance, the magnetic exchange-coupling parameter used to

calculate the interaction between a Fe and a Mn atom at 2nn
distance is J (2)

Fe−Mn). σi is the occupation of the ith site, which
value is 1 if there is an atom on the site, and 0 if there is
a vacancy. Note that since every pair interaction is counted
twice, the 1/2 factor is included in the pairwise interaction
parameters (V (n)

i j and J (n)
i j ) listed in Appendix. A(S)

i and B(S)
i

are the magnetic on-site parameters of the ith atom. The S
exponent designates the proximity of a vacancy. Its value is
1 if the ith atom is nearest neighbor to a vacancy, 2 if it is
next-nearest neighbor to a vacancy, and 0 otherwise. Their
role is to prevent the divergence of the magnetic moment
magnitudes caused by the spin longitudinal variations due to
the Heisenberg-like terms. Please note that the Appendix also
lists parameters with star exponents. These parameters are
used instead of their counterparts without stars if the ith atom
is located in a saddle-point position.

This model was obtained in several steps: First, an EIM
for pure iron in a bcc lattice was parameterized on DFT
data (see Ref. [44] for details). We checked that the Curie
temperature is correctly reproduced (TC = 1050 K, compared
to the experimental [66] value of 1044 K). Then, to include
the presence of a vacancy (EIMV ), the on-site Ai, Bi, and
Ji j parameters are modified for atoms located at the first and
second nearest-neighbor (1nn and 2nn) sites of the vacancy, as
explained in Ref. [61]. Vacancy formation energies for distinct
magnetic spin configurations around the vacancy predicted by
DFT are successfully captured by this simple model [44]. In
order to simulate the atomic migration, a second pure-iron
derived EIMSP is constructed to describe the energetics of an
Fe atom at a saddle-point position. In this case, the on-site and
Ji j parameters of the saddle point atom and their 1nn and 2nn
atoms are modified based on DFT data. The atom-vacancy ex-
change barriers are then determined by the energy calculated
using the EIMV and the EIMSP. Note that this approach to
determine barrier was successfully applied in previous studies
using nonmagnetic interaction models [21,67,68].

For Mn-diffusion in bcc Fe, a Mn atom and a vacancy have
been included in the iron system. Similarly, an EIM with all
the atoms at lattice positions and another one with an atom (Fe
or Mn) at a saddle-point site are parameterized on DFT data
on Mn-vacancy binding energies and atom-vacancy exchange
barriers with various spin configurations. The numerical pa-
rameters of the various EIMs are given in Ref. [44] and in the
Appendix (Sec. A).

Please note that the lattice vibrational entropies are not
intrinsically accounted in the present EIM-Monte Carlo setup.
The attempt frequencies are calculated separately by DFT,
using the frozen phonons methodology [69,70]. For this pur-
pose, we used VASP along with the Phonopy software [71].
The magnon-phonon effects [43] are therefore not considered.
For the rest of the paper, results attributed to EIM refer to the
above discussed method, unless otherwise specified.

C. Diffusion coefficients

The tracer diffusion coefficients can be expressed with
Einstein’s formula [72–74]

D∗ = 〈r2〉
6t

, (6)
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where 〈r2〉 and t are the mean square displacement of the trac-
ers and the corresponding physical time. For the self-diffusion
case, it can also be written in terms of the equilibrium vacancy
concentration Cvac, determined by its formation magnetic free
energy and the magnetic free energy barrier for the vacancy-
Fe exchange Emag

m (vacancy migration) at a given T as [14,75]

DFe
Fe∗ = a2 f0Cvacν exp

[
−Emag

m (T )

kBT

]
. (7)

Here, a is the lattice constant, f0 is the self-diffusion correla-
tion factor, ν is the attempt frequency, and kB is the Boltzmann
factor. Both magnetic and vibrational entropies are consid-
ered in the EIM-MC study, and the latter is calculated via
DFT in the ferromagnetic state. Since the magnetic entropy
is calculated in EIM-MC, we use the term “magnetic free
energy” for vacancy formation, migration, and activation (also
referred as vacancy formation energy, migration energy and
activation energy, respectively). As mentioned in Sec II A1,
though magnetic entropy is not explicitly calculated within
the SSA approach, using the “magnetic free energy” term is
also justified for the SSA results, since the SSA interpolates
between the total energies in the limiting cases of ferromag-
netic and paramagnetic states, where the magnetic entropy is
known to be zero [44].

Similarly, the solute (Mn) tracer diffusion coefficient in Fe
in the dilute limit can be written [14,75] as

DFe
Mn∗ = a2 f2C

1nn
vac ν2 exp

[
−Emag

m,Mn(T )

kBT

]
, (8)

where C1nn
vac is the equilibrium vacancy concentration at a 1nn

site of the solute, ν2 is the vacancy-Mn exchange attempt
frequency, f2 is the solute diffusion correlation factor and
Emag

m,Mn is the magnetic free energy barrier for the vacancy-
solute exchange. In the present paper, the attempt frequencies
ν are assumed to be equal, since Fe and Mn have very similar
atomic mass. The superscript “mag” in the Emag

m is dropped in
the following sections, since it is now obvious that we refer to
magnetic free energy barriers.

1. Ratio of diffusion coefficients

To quantify the diffusion of the solute atom relative to the
diffusion of the host atom, the ratio of diffusion coefficients
as a function of temperature is required. For the DFT based
relaxation method, considering the vacancy-solute interaction
up to 1nn distance, the ratio is computed according to Le
Claire’s formulation [76]:

DMn

DFe
= f2

f0

ω2ω4

ω0ω3
with ωi = νe− E (i)

m
kBT , (9)

where DMn and DFe are the Mn and self-diffusion coeffi-
cients respectively, and ωi are the jump frequencies (shown
in Fig. 2).

First, we calculate migration barriers for different jumps
of the vacancy. Since the 2nn binding energies Ebinding are
weak for both ferromagnetic and paramagnetic states, one can
assume that the vacancy exchanges are not affected by the
presence of the Mn atom beyond the 1nn shell. Moreover,
since the paramagnetic calculations in the DFT-SSA approach

FIG. 2. Distinct migration barriers for different exchanges of
the vacancy (dashed circle) in the presence of a Mn atom (orange
circle) considering up to 2nn interactions according to Le Claire’s
9-frequency model [76]. E (0)

m is the migration barrier for any jump
that is not affected by the presence of the Mn atom and is equal to
the self-diffusion migration barrier of Fe.

are computationally costly, only the migration barriers for the
1nn jumps of the vacancy are considered and are shown in
Fig. 2.

In a pure metal, the (solvent) self-diffusion correlation
factor f0 is a constant for the given crystal structure, being
about 0.727 for the bcc crystal symmetry [14]. f2 is the solute
diffusion correlation factor and is in turn a function of the
above mentioned migration frequencies [76]:

f2 = μ

2(ω2/ω3) + μ
, (10)

μ = 7 −
(

1 + 0.512
(ω0

ω4

))−1

− 2
(

1 + 1.536
(ω0

ω4

))−1
−

(
1 + 3.584

(ω0

ω4

))−1
.

(11)

In the EIM-MC approach, a more extended form of the Le
Claire model (nine frequencies) was used. Hence, the expres-
sion of the solute diffusion correlation factor f2 is

f2 = 1 + t1
1 − t1

, (12)

where t1 is expressed as a function of jump frequencies as
follows:

t1 = − ω2

ω2 + �3 − ω3ω4
ω4+Fω5

− 2ω3′ω4′
ω4′+3Fω0

− ω3′′ω4′′
ω4′′+7Fω0

. (13)

Here �3 = 3ω3 + 3ω3′ + ω3′′ , ωi are the distinct above
mentioned jump frequencies (the corresponding barriers are
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specified in Fig. 2), and F is a structure-dependent parameter,
its value is 0.512 in the bcc structure [76].

2. Mixing scheme for the ratio of diffusion coefficients

The migration barriers in the ferromagnetic state and para-
magnetic state yield their respective diffusion ratios, which
in turn have a Boltzmann dependence on temperature. A
calculation of diffusion ratios at each temperature from first
principles is computationally costly, since it involves ex-
plicit calculations of migration barriers at these temperatures.
Therefore, we use a mixing scheme [77] based on the Ruch
model in Eq. (2) to interpolate the migration barriers EFM

m ,
EPM

m of different jumps obtained in the fully ferromagnetic
and fully paramagnetic states with

αm = (
EFM

m − EPM
m

)
/EPM

m . (14)

Here, each vacancy jump has a specific αm. The resulting
migration barriers are used to calculate the ratio of diffusion
coefficients and kinetic correlation factors. For the DFT based
SSA relaxation scheme, the absolute diffusion coefficients of
Mn are calculated from the ratio, whereas the self-diffusion
coefficients are obtained by the Ruch model [33]. The mag-
netization values are taken from the experiments of Takeuchi
et al. [78]. While the Ruch model is used to interpolate acti-
vation energies and migration barriers, the difference between
them at an intermediate temperature is calculated as the va-
cancy formation energy at that temperature.

3. Explicit temperature dependence of diffusion coefficients

In order to obtain the explicit temperature dependence
of the vacancy formation magnetic free energy, we use our
Monte Carlo (MC) approach published previously [61]. At
low temperatures, a quantum treatment of spins is necessary
for a correct prediction of the magnetic entropy [31,79,80].
We therefore adopted the Bose-Einstein statistics in our spin-
MC simulations [44] up to the Curie point, following the
quasi-harmonic approach of Ref. [79].

During these MC simulations, at each T , we start per-
forming 5 × 108 spin Metropolis MC steps to reach the
equilibrium magnetic state, then 600 spin steps are performed
after each atomic MC step, consisting in a 1nn atom-vacancy
exchange based on a time residence algorithm. For simplic-
ity, we assume the typical time spent for one atom-vacancy
exchange is sufficiently short, so that all the atomic spins are
kept frozen while going from the initial to the saddle-point
state. However, similar simulations were performed assuming
that the spin-variation time is much shorter than the lifetime
of both the initial and the saddle-point states, and very close
migration barriers were obtained [44].

In Fig. 3 the vacancy formation magnetic free energy in
pure Fe and nearby (1nn) a Mn solute is shown as a function
of temperature. While both DFT-SSA and EIM-MC methods
are largely in agreement, a systematic difference in the para-
magnetic trends can be observed. The factors that could be
responsible for this are discussed in Sec. IV. In EIM-MC,
in practice, we determine these energies by evaluating the
ratio of equilibrium vacancy concentrations of the studied
system at a given temperature and at a reference state with
a known vacancy formation energy (in our case the perfectly

FIG. 3. The vacancy formation energy in pure Fe and at 1nn dis-
tance from a Mn solute in Fe, obtained with DFT-SSA and EIM-MC.
DFT-SSA values at intermediate temperatures are obtained by sub-
tracting corresponding migration barriers from activation energies,
both being extracted from the Ruch model.

FM bcc Fe) via MC simulations, using the same approach as
in Ref. [44].

Using the same MC simulations, we also obtained the mag-
netic free energy of vacancy migration in the self-diffusion
case, and the magnetic free energy barrier for Mn-vacancy and
the distinct Fe-vacancy exchanges in the Mn diffusion case.
The Fe and Mn diffusion coefficients are obtained by directly
simulating the tracer diffusion experiments [81,82]. We com-
pute the mean square displacement of the tracers 〈r2〉 and the
physical time at each temperature [cf. Eq. (6)]. The physical
time t is rescaled in order to consider the equilibrium vacancy
concentration instead of the actual vacancy concentration of
the simulation (the diffusion coefficient is multiplied by the
factor Cvac/CMC) [67,68].

D. Experimental procedure

Polycrystalline iron rods of 99.98 wt % purity purchased
from HMW-Hauner GmbH & Co. (Germany) were used. The
nominal amounts of selected impurities as indicated by the
supplier are reported in Table I.

The cylindrical rods of about 8 mm diameter were cut
by spark erosion into discs of 1.5 mm in height. The
material was annealed at 1143 K for 10 days below the α − γ

phase transition temperature in order to reduce the disloca-
tion density. The discs were then mechanically polished to
a mirror-like finish. The samples were carefully etched and
subjected to a second annealing treatment at 1143 K for 3 days
to remove the mechanical stresses induced by the polishing
procedure. The final grain size was measured to be about
500 μm. All annealing treatments were performed in sealed

TABLE I. Impurity content of the 99.98 wt % pure Fe samples.

Element Cu Zn N Si S C P O

wt. ppm 900 170 96 <50 <50 20 <20 4
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FIG. 4. Penetration profiles for diffusion of 54Mn in bcc Fe obtained by (a) microtome sectioning and (b) ion-beam sputtering. The solid
lines represent the fits according to the Gaussian-type solution of the diffusion problem. At larger depths, the measured activities are affected
by grain boundary diffusion.

quartz tubes filled with a high-purity argon. The tempera-
ture was controlled within ±1 K with a calibrated NiCr/Ni
thermocouple. For the annealing treatments the samples were
wrapped in carefully cleaned Ta foil to prevent undesirable
contamination.

The radiotracer 54Mn (half-time t1/2 = 312.3 d) was pur-
chased as HCl solution and dissolved in double-distilled
water. For diffusion measurements, about 5 − 7 kBq of
the radioactive solution was applied to the sample. Subse-
quently, the samples were wrapped with a Ta foil, sealed in
quartz tubes and subjected to the given diffusion annealing
treatments.

The penetration profiles were determined using two sec-
tioning techniques, precision parallel grinding and ion-beam
sputtering after higher and lower temperatures of the diffusion
annealing treatments (larger and smaller penetration depths),
respectively. At 974 and 1033 K, the measurements were
performed by both techniques to compare directly the results
obtained by different methods and prove the reliability of the
data.

In the case of mechanical grinding, the samples were
reduced in diameter after annealing (by at least 1 mm) to
eliminate the lateral and surface diffusion effects. Parallel
layers of 3 to 6 μm in thickness were successively ground. The
thickness was accurately determined by weighing the sample
before and after each grinding step on a microbalance with an
accuracy ±0.1 μg.

In the case of ion-beam sputtering, a custom-built device
was used [83]. A hole aperture of 3.5 mm in diameter was
used to sputter-off exclusively a central part of the sample.
The section thickness was determined assuming a constant
sputtering rate (the beam current was controlled to be constant
within ±5%), weighing the specimen before and after sputter-
ing, and determining the diameter of the sputtering area by
optical microscopy.

The section activity of the 54Mn radiotracer was measured
using a well-type intrinsic Ge γ detector equipped with a 16K

multichannel energy analyzer; the intensity of the γ peak at
834.8 keV was followed.

III. RESULTS

A. Experimental diffusion parameters

Selected penetration profiles measured by the two section-
ing techniques are shown in Figs. 4(a) and 4(b). Here, the
tracer concentration (which is proportional to the measured—
background subtracted—relative specific activity divided by
the section mass) is plotted against the penetration depth
squared x2.

The penetration profiles were found to follow either Gauss
or complimentary error function solutions depending on the
particular initial conditions. At temperatures lower than about
1030 K, an additional short-circuit-type contribution has been
observed, Fig. 4, and it was identified as grain boundary diffu-
sion. Since the conditions corresponded to the formal B-type
kinetic regime of grain boundary diffusion after Harrison clas-
sification [84], the short-circuit contribution was fitted using
the Le Clair type of solution [85] as exp(−q · x1.2) [86]. Here
q is the numerical factor, which determines the corresponding
grain boundary diffusivity (the so-called triple product for
the given kinetic conditions [86]). This procedure allowed a
reliable subtraction of the short-circuit diffusion contribution.
In that follows, we will concentrate on the contribution of
volume diffusion, is indicated by the solid lines in Figs. 4(a)
and 4(b).

In Fig. 5, the measured tracer diffusion coefficients are
compared with the existing literature data on Mn diffusion
in α-Fe. In the paramagnetic state, the present results agree
nicely with the data of Nohara et al. [38] and Lübbehusen
[15], while larger deviations are obvious in the ferromag-
netic state. In the present paper, Mn diffusion is for the first
time measured down to low temperatures using the ion-beam
sputtering technique (circles), providing reliable estimates of
the diffusion retardation induced by the magnetic transition.
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FIG. 5. Diffusion coefficients of Mn in bcc Fe as function of
the inverse temperature, obtained from DFT-SSA, EIM-MC and
experimental measurements (circles). At higher temperatures, the
determined experimental uncertainties are typically less than the
symbol size. The published results of Nohara et al. [38] (stars),
Lübbehusen [15] (diamonds), and Irmer et al. [40] (triangles) are
shown for comparison.

The results of Irmer et al. [40] measured in paramagnetic
Fe deviate strongly from all existing datasets that might be
explained by a relatively low purity of the iron samples used in
Ref. [40]. (The different triangle types refer to different sorts
of pure iron, for further details see the corresponding paper.)

The present data measured for the first time in an extended
temperature interval substantiate unambiguously a certain im-
pact of the magnetic transition on Mn diffusion in pure α-Fe,
Fig. 5, filled symbols. In fact, diffusion rates of Mn are slower
in the ferromagnetic region comparing to a simple Arrhenius-
type extrapolation from the paramagnetic area.

The actual values are listed together with the time of the
diffusion annealing treatments in Table II. The experimental
uncertainties of the measured tracer diffusion coefficients are
indicated as upper and lower bounds of the values, which
could still be determined using different reasonable fitting
procedures. The standard uncertainties of the diffusion coeffi-
cients can be estimated to be smaller than ±20%.

A moderate impact of the magnetic transition at the Curie
temperature TC on the rate of Mn diffusion in bcc-Fe is seen.
For a more precise evaluation, the parameter α is determined
after Ruch, Eq. (2), in an Arrhenius plot of the diffusion
constant ln(D(T )/DPM

0 ) as a function of the reduced magneti-
zation squared, provided the parameters of Mn diffusion in the
paramagnetic state are known. The latter are determined as:
DPM

0 = 1.35+4.8
−1.1 · 10−1 m2/s, EPM

a = 297 ± 14 kJ/mol, the
resulting value of α = 0.056 ± 0.024.

TABLE II. Temperature T , time t , and the determined diffusion
coefficients D for Mn volume diffusion in bcc-Fe. The sectioning
method (M = mechanical grinding; S = ion-beam sputtering) and
the type of solution used (G = Gauss; E = complementary error
function) are indicated.

T t D Method Solution
(K) (103 s) (m2/s)

1178 14.4 1.14+0.08
−0.42 · 10−14 M G

1174 16.2 6.89+0.24
−0.79 · 10−15 M G

1160 28.8 5.08+0.55
−0.34 · 10−15 M G

1148 23.4 4.53+0.05
−0.05 · 10−15 M G

1133 86.4 3.29+0.27
−0.53 · 10−15 M G

1120 55.8 1.62+0.12
−0.10 · 10−15 M G

1104 167.4 1.29+0.02
−0.12 · 10−15 M E

1088 171 1.02+0.08
−0.15 · 10−15 M G

1071 244.8 6.95+1.75
−0.19 · 10−16 M G

1053 252 2.70+0.05
−0.01 · 10−16 M G

1048 259.2 2.51+0.37
−0.20 · 10−16 M G

1038 432 1.93+0.06
−0.06 · 10−16 M G

1033 3.6 6.69+0.38
−0.16 · 10−17 S G

1032 518.4 1.34+0.01
−0.11 · 10−16 M G

1028 691.2 1.10+0.47
−0.39 · 10−16 M G

1023 3.6 5.04+1.70
−0.07 · 10−17 S E

1022 1188 5.54+0.03
−0.31 · 10−17 M E

1004 14.4 2.84+3.09
−0.59 · 10−17 S G

983 16.2 1.68+0.17
−0.64 · 10−17 S G

973 5097.6 8.87+1.17
−2.00 · 10−18 M G

973 3.6 9.95+1.13
−4.28 · 10−18 S G

940 3.6 1.87+0.63
−1.00 · 10−18 S G

838 3024 1.26+1.95
−0.43 · 10−20 S G

B. Computed diffusion parameters

DFT calculations for bcc Fe yield in the ferromagnetic
limit a vacancy formation energy of 2.22 eV. Employing the
SSA relaxation technique, one observes that the energy is
reduced to 1.96 eV in the paramagnetic limit [32]. Important
for the present evaluation is the first nearest-neighbor binding
energy determined according to Eq. (3), which reveals an
attractive interaction between the Mn and the vacancy. Its
value is slightly larger in the ferromagnetic state (0.15 eV)
as compared to the paramagnetic state (0.10 eV). Combining
both results, the difference between the vacancy formation
energies of 2.07 eV and 1.86 eV, respectively in the ferromag-
netic and paramagnetic states, is therefore slightly reduced in
the presence of Mn. The second nearest-neighbor Mn-vacancy
interaction is weak for both ferromagnetic and paramagnetic
states, as the corresponding binding energies are 0.06 eV
and 0.03 eV.

The DFT results for the migration energies for the nearest-
neighbor jumps in the two magnetic states are reported in
Table III. It is to be noted that the migration barriers in the
paramagnetic state are considerably lower as compared to
their ferromagnetic counterparts. This is to a large extent due
to the local relaxation effects in the paramagnetic state, which
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TABLE III. The migration energies for the nearest-neighbor
jumps of the vacancy in both ferromagnetic and paramagnetic states
obtained with DFT-SSA and EIM-MC. In the DFT case, the barriers
for 2nn exchanges are assumed to be equal to E (0)

m . Values from
previous DFT papers (available only for the ferromagnetic case) are
shown for comparison.

Migration energies (eV)

Ferromagnetic Paramagnetic

DFT-FM EIM-MC other DFT DFT-SSA EIM-MC

E (0)
m 0.73 0.71 0.70 [41], 0.70 [42] 0.43 0.41

E (2)
m 0.46 0.41 0.42 [41], 0.41 [42] 0.41 0.31

E (3)
m 0.64 0.69 0.66 [41], 0.64 [42] 0.42 0.39

E (4)
m 0.58 0.63 0.61 [41], 0.60 [42] 0.36 0.37

E (3′ )
m 0.70 0.70 [41], 0.68 [42] 0.37

E (4′ )
m 0.59 0.55 [41], 0.58 [42] 0.37

E (3′′ )
m 0.71 0.66 [41], 0.66 [42] 0.42

E (4′′ )
m 0.60 0.55 [41], 0.56 [42] 0.39

E (5)
m 0.72 0.76 [41] 0.41

are included within the SSA approach along with the effects
due to disorder in magnetic configuration. Furthermore, the
migration barrier for the jump that associates the Mn atom and
the vacancy (E (4)

m ) is lower than the migration barrier for the
jump that dissociates (E (3)

m ) them, for both the magnetic states.
This observation can be related to the attractive interaction
between the Mn atom and the vacancy. It is also remarkable
that the Mn diffusion barrier is similar to the self-diffusion mi-
gration barrier in the paramagnetic state (0.1 eV higher), while
it is substantially smaller (0.28 eV) than the self-diffusion
value in the ferromagnetic state.

The resulting activation energies, defined as the sum of va-
cancy formation energy and migration energy in pure bcc-Fe,
are 2.95 eV and 2.39 eV in the ferromagnetic and paramag-
netic states. In the vicinity of single Mn atoms in bcc Fe, the
values are 2.53 eV and 2.27 eV, respectively. Therefore, the
difference in activation energies of the two magnetic states
decrease considerably on the introduction of Mn solute atom.
This reduces the kink in the diffusion-coefficients vs temper-
ature curve.

For EIM-MC results, in order to obtain the temperature
dependence of the migration barriers and in particular, of
the barrier for the Mn jump into the vacancy E (2)

m , migration
simulations for the exchange frequencies ωi are employed.
Using the residence time algorithm, the simulation contains
109 atomic-MC steps. Between these atomic jumps, 100 spin-
MC steps are performed among the whole system, and 500
more are performed among the five nearest-neighbor shells
of the vacancy. The average E (2)

m barrier obtained is shown in
Fig. 6 (symbols) and in Table III. These results are compared
with the DFT for the paramagnetic state (dashed lines), which
is based on the SSA relaxation technique.

The migration barriers obtained with the two methods
overall show the same trends and are in good agreement for
both the magnetic states. The ferromagnetic migration bar-
riers obtained by previous DFT papers [41,42] are in good
agreement with our study as shown in Table III. The different
migration barriers in the paramagnetic state are not reported in

FIG. 6. The vacancy migration energies obtained by considering
up to 2nn interactions from EIM and 1nn interactions from interpo-
lated DFT results according to the Ruch model.

the literature before. We also note here that the ferromagnetic
Mn-vacancy binding energy obtained in our study (0.15 eV
for both the methods) is in good agreement with the literature
values (0.15 eV [42], 0.17 eV [41]). Among different barriers
in the paramagnetic state, we note that the Mn barrier has
the largest deviation between these two methods (of about
0.1 eV). The EIM-MC trends for the Mn-diffusion barrier
in comparison to the self-diffusion barrier are similar as in
the DFT-SSA calculations, with the only difference that it
is now lower by 0.1 eV in the paramagnetic state for the
EIM-MC case. On the other hand, the difference is only
0.02 eV in the case of DFT-SSA. In the paramagnetic limit,
another interesting observation is that E (4)

m is the lowest barrier
for the DFT-SSA results, whereas E (2)

m (or the Mn barrier) is
the lowest for EIM-MC. Nonetheless, for both the methods,
different migration barriers show a much smaller scatter (or
exhibit similar values) in the paramagnetic case as compared
to the ferromagnetic limit.

We compare the temperature dependence of the Mn dif-
fusion coefficient obtained by the experiment, with those
obtained by DFT-SSA and EIM-MC in Fig. 5. It can be
noticed that in the case of Mn diffusion, the deviation from
Arrhenius law near TC is small and similar for experiments,
EIM-MC model and DFT-SSA. More precisely, the difference
between the paramagnetic and the ferromagnetic activation
magnetic free energy of Mn diffusion is reduced in compar-
ison to the self-diffusion counterpart.

IV. DISCUSSION

A. Difference between Mn diffusion and Fe self-diffusion

The main observation of Fig. 5 is that the Mn diffusion
curve is much more linear (on a logarithmic scale) than the
self-diffusion curve, which exhibits a significant change of

184107-9



OMKAR HEGDE et al. PHYSICAL REVIEW B 104, 184107 (2021)

FIG. 7. Ratio between the Mn diffusion coefficient and the Fe
self-diffusion coefficient.

slope between the ferromagnetic and paramagnetic regimes.
The nature of a potential “kink” at the Curie temperature
can probably be considered to be most systematically ex-
plored within the EIM-MC approach, since it has direct access
to a large temperature range including TC . However, as the
EIM-MC is not free of approximations, the comparison with
the DFT-SSA method is essential.

In fact, the two approaches differ in some essential aspects,
representing different limits:

(1) In the DFT-SSA case, it is assumed that the time-scale
of fluctuations in the magnetic degrees of freedom is much
shorter than the migration time of the vacancy, while all the
atomic spins are kept frozen in the MC simulations when
going from the initial to the saddle-point state.

(2) The DFT based SSA relaxations are different from the
EIM, where the paramagnetic state is modelled based on DFT
calculations with the geometry of the ferromagnetic state.

(3) The DFT based SSA relaxations neglict Mn-vacancy
interactions beyond 1nn distance because of the high com-
putational cost. Up to 2nn interactions are considered for
the parametrization of the EIM, while only 1nn jumps are
considered for the MC simulations.

(4) The SSA relaxations are performed with a larger lattice
constant to include the effect of thermal expansion.

(5) The EIM-MC explicitly determines diffusion coeffi-
cients at intermediate temperatures while the SSA relaxations
assume a fully paramagnetic state and an interpolation scheme
is used for intermediate temperatures.

As a consequence, the two theoretical methods show no-
ticeable quantitative differences for some parameters (for
example, a systematic difference in predicting vacancy for-
mation energies). Nevertheless, for the essential results of this
study, namely the diffusion coefficients as shown in Fig. 5
they are largely in good agreement with each other and the
experiments, supporting their predictive power.

This further strengthens the reliability of the ratio between
the Mn diffusion coefficient and the Fe self-diffusion coeffi-
cient as analyzed in Fig. 7 for both the theoretical methods and
the experiments. The lowest temperature for which results are
available from the experimental side is 830 K, at which the
ratio is about 5. The ratio decreases with temperature up to TC

FIG. 8. Kinetic correlation factors of Fe self-diffusion ( f0) and
Mn diffusion ( f2). The blue dashed line and blue dots represent f2

obtained by DFT-SSA and EIM-MC, respectively. The f2 kinetic
correlation factor for the pure FM state is displayed to highlight the
impact of magnetic disorder and is represented by an orange dashed
line for DFT-SSA and orange dots for EIM-MC.

FIG. 9. (a) Solute-vacancy binding energy and (b) exchange bar-
rier in FM bcc Fe from DFT. We show the values with fully relaxed
magnetic moments (magnetic ground state) and with the solute mo-
ment constrained to zero. Data for the latter case are fitted and
represented by black solid lines.
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FIG. 10. (a) Energy difference between the cases with the solute-
moment relaxed (magnetic ground state) and constrained to zero.
(b) Relaxed magnetic moment magnitude of the solute (in μB). Data
are shown for the solute in the bcc Fe bulk, next to a vacancy, or in
the saddle-point position.

where its value is between 2 and 3. Beyond TC , this ratio has at
about 1178 K (which is the highest available data) a value be-
tween 2 and 4. The decrease is much more pronounced in the
theoretical investigations. In fact, the calculated ratio for both
DFT-SSA and EIM-MC is about 20 at 800 K. It decreases and
reaches about 2 for DFT-SSA and about 7 for the EIM-MC
at TC , getting again close to the experimental results. Hence,
the theoretical investigations consistently indicate that the
ferromagnetic regime explains the less pronounced kink for
the Mn diffusion coefficient as compared to the self-diffusion
behavior.

To analyze this effect further, we show the kinetic corre-
lation factors for Mn diffusion in Fig. 8. It increases with
temperature up to an asymptotic limit of 0.73, which is the
f0 value in pure bcc iron. Again, both EIM and DFT are in
good agreement. To clarify the role of magnetic disorder on
the f2, we have performed similar MC simulations for Mn
diffusion, but imposing a perfect FM order for all atomic-MC
temperatures. The results show that the kinetic correlation fac-
tor of Mn diffusion increases more slowly when the magnetic
disorder is absent. The same is true for DFT results where
only ferromagnetic migration barriers are used to determine
the kinetic correlation factor.

FIG. 11. A comparison of α values in the Ruch model, Eq. (2),
determined using the published experimental diffusion coefficients
(red filled circles, Table IV), or DFT-based calculations. The exper-
imental trend (red dashed line) is determined by averaging the data
published for the same solute. The thick line indicates a hypothetical
trend for α as the function of element number for the 3d transition
metal elements.

The more linear trend of diffusion coefficients (in logarith-
mic scale) can be understood from the analysis of binding
energies and migration barriers in the ferromagnetic and
paramagnetic states. In the ferromagnetic state, both DFT
and EIM-MC show a stronger Mn-vacancy binding energy
(DFT ∼ 0.15 eV, EIM-MC ∼ 0.15 eV), compared to the
weaker binding energy in the paramagnetic state (DFT-SSA
∼ 0.10 eV, EIM-MC ∼ 0.02 eV). In addition, the migration
barrier of Mn solute diffusing in the paramagnetic state of
Fe differs only slightly from the migration barrier of Fe in
pure Fe, while the difference is larger in the ferromagnetic
state. Also, the migration energies for different exchanges of
a vacancy at 1nn distance of a Mn atom in Fe host are closer
to the Fe migration energy in pure Fe in the paramagnetic
regime, compared to the ferromagnetic regime (Table III,
Fig. 6). Together with the effect of magnetic disorder on the
kinetic correlation factor f2 (Fig. 8), this observation confirms
the dominance of magnetic disorder over chemical interaction
effects in this very dilute Fe-Mn system at high temperatures.

B. Anomalous behavior of Mn

As can be confirmed by further simulations for Cu solutes
[44], it seems to be a general phenomenon of solutes in bcc
iron that they experience a similar activation magnetic free
energy (Ea) in the paramagnetic regime, while their Ea in
the ferromagnetic state can be significantly different. There-
fore, the size of the “kink” and the 
Ea of different solutes
are mainly dictated by the Ea in the ferromagnetic state. To
better understand this, we have further extended the study
of solute-vacancy binding energy and the solute-vacancy ex-
change barrier in FM α-Fe performed for Mn above to all the
3d elements.
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TABLE IV. Best fits according to the Ruch model [33] of published experimental data using the magnetization data from Ref. [89].

Ref. DPM
0 EPM

a α

(m2/s) (eV/at)

Ti [90] 1.35+5.4
−1.1 3.22 ± 0.15 0.053 ± 0.027

Cr [91] 3.74+11
−2.8 × 10−3 2.83 ± 0.13 0.070 ± 0.03

[36] 1.48+2.0
−0.8 × 10−2 2.91 ± 0.08 0.125 ± 0.015

Mn present paper 1.35+4.8
−1.1 × 10−1 3.08 ± 0.14 0.056 ± 0.024

Fe [4] 8.85+146
−8.3 × 10−4 2.70 ± 0.27 0.145 ± 0.058

[4] 6.44+36
−5.5 × 10−5 2.47 ± 0.17 0.179 ± 0.043

Co [92] 2.76+56
−2.8 × 10−4 2.60 ± 0.29 0.23 ± 0.04

[93] 1.48+36
−1.42 × 10−1 3.26 ± 0.3 0.084 ± 0.05

Ni [35] 8.28+13
−5.4 × 10−3 2.90 ± 0.08 0.090 ± 0.02

Cu [13] 4.94+7.8
−3.0 × 10−3 2.77 ± 0.09 0.13 ± 0.03

It is well known that, divers properties of the 3d magnetic
elements (Cr, Mn, Fe, Co, Ni) show a deviation from the
expected parabolic behavior as a function of the d band filling
[87,88]. We have therefore computed the binding energy in
Fig. 9(a) and the exchange energy barrier in Fig. 9(b) under
two different conditions: either, imposing the solute moment
to zero while relaxing the moment of all other Fe atoms, or
relaxing the magnetic moment of all the atoms. In the for-
mer case, we observe the expected nearly-parabolic behavior,
while we note deviation from the overall trend for some of
the magnetic elements, especially in the case of Mn. For Mn,
the very strong deviation leads to an increase of vacancy-
Mn binding energy and a decrease of vacancy-Mn exchange
barrier, both of around 0.2 eV. Such a decrease of the acti-
vation energy of around 0.4 eV in the ferromagnetic regime,
makes it approaching the value of Ea in the paramagnetic
state. Therefore, the “kink” is significantly reduced for Mn
diffusion in α-iron, as shown both experimentally and by
DFT-based simulations.

These deviations can be rationalized by comparing the
energy differences between the system with and without
imposing the solute moment to zero, with the three local
environments for the solute. We see from Fig. 10(a) that,
at the saddle point position, they follow the solute moment
magnitude [Fig. 10(b)]. Please note that Fig. 10(b) only shows
the spin magnitudes. For more details and in agreement with
previous calculations [88], the solutes with a smaller (respec-

tively larger) number of 3d electrons than that of Fe show
an antiparallel (respectively parallel) spin to the Fe moments,
in the magnetic ground state. In the bulk and next to the
vacancy, however, Mn (and Co to a less extend) deviate from
the trend that the energy difference follows the solute moment
magnitude.

For Mn, the deviations are due to the strong local-
environment dependence of these energy differences shown in
Fig. 10(b), with the smallest 
E for a Mn solute in the bulk,
and then next to the vacancy. As a specificity of Mn, DFT
calculations predicted the presence of two energy minima for
a Mn solute in bcc iron [27,28]. The antiferromagnetic-Mn
(with a large Mn moment antiparallel to Fe moments) being
the ground state, and the ferromagnetic-Mn state, showing a
small Mn moment, parallel to the Fe moments. The Mn 
Es
in Fig. 10(a), follow the same trend of the energy difference
between the antiferromagnetic-Mn and the ferromagnetic-Mn
states. In bulk, they have only 0.07 eV of energy dif-
ference. This ferromagnetic-Mn state is energetically less
favorable next to a vacancy [with a 
E (ferromagnetic-Mn -
antiferromagnetic-Mn) = 0.28 eV], and this 
E is even larger
for a Mn at the saddle-point position (0.53 eV).

We believe that this anomaly of Mn is also reflected in the
α values according to the Ruch model in Eq. (2). We already
identified a different behavior of the “kink” reflected by the α

value for Mn solute diffusion and Fe self diffusion. The sit-
uation is now more systematically analyzed in Fig. 11. Here,

TABLE V. EIM parameters: Magnetic and chemical interaction parameters between two atoms, depending on their relative distance,
respective species, and the eventual proximity of a vacancy (in meV).

Distance 1nn 2nn 3nn 4nn 5nn

JFe−Fe –3.39 –2.26 –0.83 0.42 0.44
JMn−Mn 1.51 1.30 0.26 –0.98 0.53
J0 0.057 0.066 0.042 0.089 0.026
VFe−Fe –10.85 8.18 0 0 0
VMn−Mn 4.63 –1.93 –1.06 –0.19 0.25
VFe−Mn –6.09 3.75 0 0 0
J0(1nnvac) 0.232 0.261 0.187 0.327 0.138
VFe−Mn(1nnvac) 30.2 –17.3 0 0 0
J0(2nnvac) 0.189 0.212 0.151 0.267 0.110
VFe−Mn(2nnvac) –30.2 17.3 0 0 0
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TABLE VI. EIM parameters: Magnetic on-site terms of Fe and Mn atoms, depending on the presence or not of a vacancy (in meV). Star
superscript means saddle-point. The superscripts 0, 1, and 2 in this table refer respectively to the absence of vacancy in the two nearest-neighbor
shells of the concerned atom (0), the presence of a vacancy in its first neighbor shell (1) and the presence of a vacancy in its second neighbor
shell (2).

Interactions A(0) B(0) A(1) B(1) A(2) B(2) A∗ B∗

Fe –259.0 27.6 –250.2 24.7 –285.7 35.2 –170.1 15.56
Mn –37.70 6.93 –116.2 8.54 –37.70 6.93 –116.2 8.54

the experimental data are based on Table IV, while the DFT
data are obtained by calculating the element specific activation
energy (Ea) only in the ferromagnetic state and assuming, as a
first approximation, that the paramagnetic Ea value is identical
to that of Fe. We can observe a systematic trend of the α value
with the filling of the 3d shell both in experiment as well
as in DFT calculations. Mn clearly deviates from this trend
in the sense that it does not follow the linear increase with
3d filling from Ti up to Fe. Instead, Mn shows an α value
that is comparable to that of Ti and Cu, which are largely
unaffected by the magnetic environment.

V. CONCLUSIONS

In summary, we successfully employed tracer diffusion ex-
periments, DFT based SSA relaxations, and on-lattice Monte
Carlo simulations using effective interaction models param-
eterized on DFT data to efficiently predict atomic diffusion
properties of Mn in pure α-Fe accross the magnetic transi-
tion temperature. The two theoretical approaches compliment
each other and arrive at similar physical conclusions, thereby
strengthening the reliability of the results. For the first time,
the temperature dependence of Mn tracer diffusion in α-Fe
is measured down to relatively low temperatures allowing a
reliable determination of the impact of the magnetic transition
on the diffusion behavior.

We predict a reduced “kink” in the diffusion-coefficient
temperature evolution for Mn, compared to the case of Fe and
other 3d solutes. This result is in excellent agreement with the
experimental data, and can be explained by the smaller differ-
ence between the ferromagnetic and paramagnetic activation
enthalpies in the Mn case compared to self-diffusion of Fe. As
the paramagnetic activation enthalpies are rather similar for
all the elements, i.e., Ti [90], Cu [10–13], Mn (present paper),
Fe [2,3,5,8], Co [35,92,93], this atypical behavior of Mn is
dictated by the atypical value of the activation enthalpy in the
low-temperature ferromagnetic regime. Indeed, as predicted
by previous DFT studies [87], this value for Mn presents the
strongest deviation from the standard parabolic trend, due to
the half-filled 3d band of Mn, inducing the presence of two
magnetic minima for a Mn atom in bcc-iron.

TABLE VII. EIM parameters. Parameters of the polynomial
function ensuring the local Mn concentration dependence of Fe-Mn
magnetic interaction parameters (in meV)

Interaction a b c d e

Value (meV) 6.50E-8 –8.40E-6 3.83E-4 –7.16E-3 3.04E-2

We find that chemical-interaction effects due to the pres-
ence of the solute are significantly erased by the magnetic
disorder, in the very dilute systems. This phenomenon is
attested by the following features: a strong decrease of
the solute-vacancy binding energy, and a smaller difference
of the free energy barrier between the solute-vacancy and
Fe-vacancy exchanges in the paramagnetic state. A significant
increase of the correlation factor for the solute diffusion is also
evidenced.

Further, the experimental and theoretical ratios of Mn dif-
fusion coefficients to self-diffusion coefficients are presented
and are in excellent agreement. The results show that relative
to Fe, Mn diffuses significantly faster in the ferromagnetic
state as compared to the paramagnetic state.
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APPENDIX

Parameters for EIM

The parameters of the EIM are given in the following
tables V–VIII, except for the Fe-Mn exchange-coupling pa-
rameter, which is not a constant (see Ref. [61] for details). Its
expression is the following:

Jn
Fe−Mn =

[
Jn

0 · θ − 90◦

90◦

]
+ a · [Mn]4

loc

+ b · [Mn]3
loc + c · [Mn]2

loc + d · [Mn]loc + e,

(A1)

TABLE VIII. EIM parameters: Magnetic and chemical inter-
action parameters between a saddle point and a stable position
(in meV).

Distance 1nn 2nn

J∗
Fe−Fe –10.3 4.70

J∗
Mn−Mn 1.51 –1.30

J∗
Fe−Mn 10.28 –4.66

J∗
Mn−Fe 5.60 3.99

V ∗
Fe−Fe –10.85 8.18

V ∗
Mn−Mn –4.63 –1.93

V ∗
Fe−Mn –10.85 8.18

V ∗
Mn−Fe 2.97 0.01
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where [Mn]loc is the local Mn concentration in the five
nearest-neighbor shells around the concerned atom and θ is
the angle between the Mn magnetic moment and the average

magnetic moment of the Fe atoms in the two nearest-neighbor
shells of the concerned Mn atom (see Ref. [61]). The con-
stant parameters of this expression are also presented in this
Appendix.
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