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Abstract. We revisit the statistics of extremes and records of symmetric
random walks with stochastic resetting, extending earlier studies in several
directions. We put forward a diffusive scaling regime (symmetric step length
distribution with finite variance, weak resetting probability) where the maximum
of the walk and the number of its records up to discrete time n become
asymptotically proportional to each other for single typical trajectories. Their
distributions obey scaling laws ruled by a common two-parameter scaling function,
interpolating between a half-Gaussian and a Gumbel law. The exact solution of
the problem for the symmetric exponential step length distribution and for the
simple Polya lattice walk, as well as a heuristic analysis of other distributions,
allow a quantitative study of several facets of the statistics of extremes and records
beyond the diffusive scaling regime.
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1. Introduction

Recent years have seen a flowering of studies on stochastic processes with resetting.
In particular, in view of the paradigmatic role played by random walks or Brownian
motion in the field of stochastic processes and in statistical physics, special attention
has been paid to the study of these simple processes in the presence of stochastic
resetting. A comprehensive bibliography may be found in [1]. Virtually all the many
facets of the study of random walks and Brownian motion without resetting have an
interesting counterpart in the presence of resetting. One may think for instance of
first-passage problems, or of the statistics of extremes and records, to name but a few.

Very recently, the statistics of records for random walks with stochastic resetting
has been addressed in [2]. The central result of that work is an expression for the mean
number of records, which is universal, i.e., independent of the step length distribution,
provided the latter is symmetric and continuous.

The purpose of the present work is to revisit the problem and to extend the results
of [2] and those coming from earlier studies [3, 4] in several directions. Consider for
definiteness a random walk starting from the origin, defined by the recursion

xn+1 =

{
0 with prob. r,
xn + ηn+1 with prob. 1− r. (1.1)

At each time step, the walker is reset to the origin with probability r. The step
lengths ηn have a symmetric distribution with density ρ(η) and finite variance

〈η2
1〉 =

∫ ∞
−∞

η2ρ(η)dη = σ2 = 2D, (1.2)

where D is the diffusion coefficient. In most of this paper, the step length distribution
is assumed to be continuous. We shall address the case of discrete distributions in
Section 5.2, when considering the simple Polya walk.

Throughout this work, we consider the following two quantities in parallel. The
first one is the maximal height attained by the walk after n steps,

Mn = max(0, x1, . . . , xn). (1.3)

The second quantity of interest is the number Rn of records up to time n. We recall
that a record occurs at step m if xm is larger than all the previous positions of the
walk (0, x1, . . . , xm−1). We shall present two different kinds of results concerning the
statistics of Mn and Rn for symmetric random walks with resetting.

First, we put forward a diffusive scaling regime (symmetric step length distribu-
tions with finite variance, long walks and weak resetting probability), for which the
asymptotic equivalence

Mn ≈ E
√
DRn (1.4)

holds for single typical trajectories, implying in particular that the distributions of Mn

and Rn are simply related to each other all over this regime. The enhancement factor
E ≥ 1, given by (5.41), is unity for continuous distributions, and larger than unity for
discrete distributions, and more generally distributions having a discrete component.
The scaling forms of the distributions of Mn and Rn read

fn(M) ≈ 1√
Dn

Φ(X,u), pn(R) ≈ E√
n

Φ(X,u), (1.5)
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where the reduced distribution Φ(X,u), whose analytical expression is given in (3.59),
is a scaling function of the two variables

X =
M√
Dn

or X =
ER√
n
, u = nr, (1.6)

interpolating between a half-Gaussian law for u � 1 and a Gumbel law for u � 1.
Figure 3 confirms the predictions (1.4) and (1.5) by depicting the excellent asymptotic
agreement between the exact theoretical expression (3.59) of the reduced distribution
Φ(X,u) and the rescaled distribution of Rn obtained by simulations, on the example
of a walk with uniformly distributed step lengths.

In a second part of this work, we investigate several facets of the problem beyond
the above diffusive scaling regime, as detailed in the outline of the paper which follows.

Section 2 is devoted to some general formalism, where we derive a fundamental
integral equation for the distribution of Mn, we recall the Wiener-Hopf approach, and
relate the distribution of Mn with resetting to the same distribution without resetting.
The core of the analysis of the diffusive scaling regime is done in Section 3. We rely
on the renewal structure of the record process to establish the domain of validity of
the equivalence (1.4), first without resetting, then with resetting (Section 3.1). The
key scaling formula (3.25) for the distributions of Mn and Rn is derived in Section 3.2
and exploited in detail in Sections 3.3 (moments) and 3.4 (full distributions), where
the reduced distribution Φ(X,u) is investigated at depth.

Section 4 contains several results illustrating to what extent the statistics of Mn

and of Rn may differ for generic symmetric step length distributions. In Section 4.1
we analyze the leading corrections to the scaling behavior of the mean values 〈Mn〉
and 〈Rn〉 without resetting, whereas Section 4.2 is devoted to the regime of late times
at fixed non-zero resetting probability. For superexponential step length distributions,
both Mn and Rn grow logarithmically in time, and the corresponding amplitudes are
determined. This is illustrated in Figure 4 where the mean values 〈Mn〉 and 〈Rn〉
are plotted against lnn, for a uniform step length distribution and a finite resetting
probability r = 1/2, demonstrating clearly that the asymptotic equivalence (1.4)
does not hold beyond the diffusive scaling regime. For subexponential step length
distributions, there is a qualitative difference between the growth laws of Mn and Rn,
as corroborated by numerical simulations shown in Figure 5.

Finally, two examples of step length distributions for which the fundamental
integral equation can be solved exactly by elementary means are considered in
Section 5. For each of these examples, we first show how universal results are recovered
in the diffusive scaling regime, and then investigate some specific features beyond that
regime. For the symmetric exponential distribution (Section 5.1), we demonstrate the
existence of an infinity of linear identities between the moments of Mn and Rn in the
absence of resetting. In the case of the binary distribution yielding the simple Polya
walk (Section 5.2), we have Mn = Rn identically. We revisit the analysis of 〈Mn〉
in the absence of resetting, and make an excursion into the realm of generic discrete
distributions, and more generally distributions having a discrete component. We then
characterize the logarithmic growth of 〈Mn〉 in the presence of resetting, calculate
its amplitude, and show that it is modulated by periodic oscillations, that are also
determined. We come back to the most salient results of the present work in a brief
discussion (Section 6). Appendix C gives an alternative derivation of some of the
results of Section 5.1, based on the renewal structure of the record process, whereas
three other appendices contain more technical material.
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2. General formalism

Throughout this work we consider the random walk in discrete time with stochastic
resetting defined by the recursion (1.1). Except in Section 5.2, the step length
distribution is assumed to be continuous and symmetric.

Let us first introduce some notations. We denote the distribution function of the
continuous random variable Mn ≥ 0, the maximal height of the walk after n steps, by

Fn(M) = P(Mn ≤M), (2.1)

and by fn(M) = F ′n(M) the corresponding density, such that

fn(M)dM = P(M < Mn < M + dM). (2.2)

The number of records Rn up to time n is a discrete random variable, whose
distribution will be denoted as

pn(R) = P(Rn = R), (2.3)

where R ≥ 0 is an integer.
The main purpose of this section is to show how the distribution of the

maximum Mn can be determined in full generality. Consider a random walk of n
steps starting from an arbitrary initial position x0 = x. For any fixed height M ≥ 0,
we denote by

Qn(x,M) = P(Mn ≤M |x0 = x)

= P(x0 ≤M, . . . , xn ≤M |x0 = x) (2.4)

the probability that its maximum Mn up to time n is at most M . We have in particular

Fn(M) = Qn(0,M). (2.5)

The probability Qn(x,M) is non-zero only for x ≤ M . In this range, it obeys the
backward integral equation

Qn+1(x,M) = rQn(0,M) + (1− r)
∫ M−x

−∞
Qn(x+ η,M)ρ(η)dη, (2.6)

with initial condition Q0(x,M) = 1. This equation is obtained by conditioning on the
first step of the walk, which may be a resetting event or not. The generating series

Q̃(z, x,M) =
∑
n≥0

Qn(x,M)zn (2.7)

therefore obeys

Q̃(z, x,M) = 1 + rzQ̃(z, 0,M) + z̆

∫ M−x

−∞
Q̃(z, x+ η,M)ρ(η)dη. (2.8)

Here and throughout this paper, we use the shorter notation

z̆ = (1− r)z. (2.9)

We shall now see that the integral equation (2.8) can be solved by Wiener-Hopf
techniques for an arbitrary symmetric continuous step length distribution.
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In the absence of resetting. For r = 0, (2.8) becomes invariant under a simultaneous
translation of x and M . Its solution therefore reads

Q̃(z, x,M) = q̃(z,M − x), (2.10)

where q̃(z, y) is the generating series of the probability qn(y) that a walker starting
from position y ≥ 0 does not cross the origin up to time n,

qn(y) = P (x1 ≥ 0, . . . , xn ≥ 0|x0 = y) . (2.11)

This survival probability coincides with the distribution function of the maximum,

qn(y) = Fn(y) = P(Mn ≤ y). (2.12)

The generating series q̃(z, y) obeys the inhomogeneous Milne integral equation with a
constant source term,

q̃(z, y) = 1 + z

∫ ∞
0

q̃(z, y′)ρ(y − y′)dy′ (y ≥ 0), (2.13)

which can be solved by means of the Wiener-Hopf factorization [5, 6] (see [7] for a
historical account of this method). The solution reads in Laplace space∫ ∞

0

q̃(z, y) e−py dy =
1

p
√

1− z
exp

(
− p
π

∫ ∞
0

ln(1− zρ̂(k))

p2 + k2
dk

)
, (2.14)

where

ρ̂(k) =

∫ ∞
−∞

e−ikηρ(η)dη (2.15)

is the Fourier transform of the step length distribution. The result (2.14) is a variant
of the Pollaczek-Spitzer formula (see [8, 9, 10]). We have in particular

q̃(z, 0) =
1√

1− z
, lim

y→∞
q̃(z, y) =

1

1− z
. (2.16)

Using the shorter notations q̃(z) for q̃(z, 0) and qn for qn(0), we recover the well-known
result of Sparre Andersen theory [11, 12] (see [13, chap. XII] for a simple presentation)
for the probability qn that a walker starting from the origin does not cross the origin
up to time n,

q̃(z) =
∑
n≥0

qnz
n =

1√
1− z

, (2.17)

i.e.,

qn = bn, (2.18)

with

bn =
(2n)!

(2nn!)2
=

(
2n
n

)
22n

. (2.19)

The expressions (2.17) and (2.18) are universal, i.e., independent of the step length
distribution, as long as it is symmetric and continuous, with finite or infinite variance.
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In the presence of resetting. The mere linearity of (2.8) implies that its solution
Q̃(z, x,M) in the presence of resetting can be expressed in terms of its solution q̃(z, y)
in the absence of resetting, i.e.,

Q̃(z, x,M) = (1 + rzQ̃(z, 0,M)) q̃(z̆,M − x). (2.20)

Determining self-consistently the quantity Q̃(z, 0,M) from this equation, we obtain

Q̃(z, x,M) =
q̃(z̆,M − x)

1− rzq̃(z̆,M)
. (2.21)

The connection with the distribution of the maximum Mn is given by (2.5), i.e.,

F̃ (z,M) = Q̃(z, 0,M) =
q̃(z̆,M)

1− rzq̃(z̆,M)
, (2.22)

which can be more easily remembered in the form

F̃ (z,M)|r =
F̃ (z̆,M)|0

1− rzF̃ (z̆,M)|0
, (2.23)

with the notation

F̃ (z,M)|0 = q̃(z,M), (2.24)

in agreement with (2.12).
Hereafter we shall only need the solution of the integral equation (2.8) in several

specific situations where it can be solved by elementary means, including the diffusive
scaling regime (see Section 3.2), the symmetric exponential step length distribution
(see Section 5.1) and the symmetric binary distribution, yielding the simple random
walk, or Polya walk, on the one-dimensional lattice (see Section 5.2).

3. Diffusive scaling regime

The purpose of this section is to describe in detail the universal scaling laws which
govern the statistics of the maximum Mn and of the number Rn of records throughout
the diffusive scaling regime of long walks (n� 1) in the presence of a weak resetting
(r � 1), for an arbitrary continuous symmetric step length distribution with finite
variance. The case of discrete distributions will be discussed in Section 5.2, devoted
to the simple Polya walk.

3.1. A remarkable asymptotic equivalence

We begin by putting forward the remarkable asymptotic equivalence

Mn ≈
√
DRn. (3.1)

As will be shown below, this equivalence holds for single typical trajectories, for all
continuous symmetric step length distributions with finite variance. It implies in
particular that the asymptotic distributions of Mn and Rn are simply related to each
other.
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In the absence of resetting. In the absence of resetting, the equivalence (3.1) is a
consequence of the renewal structure of the record process. Let nk be the time of
occurrence of the kth record and x(k) = xnk

the corresponding position of the walker.
This renewal structure implies that the increments

hk = x(k) − x(k−1) (3.2)

are independent and identically distributed (iid) random variables [13, 14]. Their
common distribution, denoted by fh1(h), is also the distribution of the first positive
position of the random walk starting at the origin,

h1 ≡ x(1), (3.3)

irrespective of the time n1 at which this position is reached. The left panel of Figure 1
gives an illustration of the process.

n

x
n

h
1

h
2

n

x
n

h
1

h
2

Figure 1. Schematic picture of a random walk, showing records and
increments between record positions. Left: in the absence of resetting,
the increments h1 and h2 are iid with common distribution fh1(h). Right:
in the presence of resetting, the increment h1 is distributed according to
fh1(h), whereas the inter-resetting increment h2 is not.

A remarkable result due to Spitzer [15, 16] (see also [13, ch. XVIII]) states that
the mean value of h1 only depends on the diffusion coefficient, as

〈h1〉 =
√
D, (3.4)

for all continuous symmetric step length distributions with finite variance.
The maximum Mn of the walk at time n is the position of the current record, i.e.,

Mn = x(Rn) = h1 + h2 + · · ·+ hRn
. (3.5)

In the regime of late times, the number of records Rn is typically large, scaling
as
√
n. The law of large numbers therefore tells us that it is legitimate to replace

each increment hk by its mean value, obtaining thus

Mn ≈ 〈h1〉Rn. (3.6)

For continuous step length distributions, the expression (3.4) of 〈h1〉 implies the
equivalence (3.1) for every single typical trajectory.
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For symmetric discrete distributions, and more generally symmetric distributions
having a discrete component, we mention in anticipation of the discussion given in
Section 5.2 that the Spitzer formula (3.4) generalizes to

〈h1〉 = E
√
D, (3.7)

where the enhancement factor E ≥ 1 depends on the step length distribution according
to (5.41). The asymptotic equivalence (3.1) therefore becomes

Mn ≈ E
√
DRn. (3.8)

The enhancement factor E is unity for all continuous symmetric distributions, so
that (3.4) and (3.1) are recovered.

Coming back to continuous symmetric step length distributions, the distribution
fh1(h) of the increments has been investigated in [13, 17, 18], where it is calculated
explicitly for a few specific cases. A general expression for this distribution can be
derived by means of Wiener-Hopf techniques [19]. We have shown in particular that
its second moment,

〈h2
1〉 = 2

√
D `, (3.9)

depends on details of the step length distribution, because it involves the extrapolation
length (or extrapolation distance) `. The latter quantity has a long history, going
back to the works by Milne in radiative transfer theory [20]. It may be defined by
considering the homogeneous Milne integral equation

H(y) =

∫ ∞
0

H(y′)ρ(y − y′)dy′, (3.10)

which has a solution growing as

H(y) ≈ y + ` (y →∞). (3.11)

The following expressions of the extrapolation length,

` =
1

π

∫ ∞
0

1

k2
ln

Dk2

1− ρ̂(k)
dk =

1

π

∫ ∞
0

1

k

(
ρ̂ ′(k)

1− ρ̂(k)
+

2

k

)
dk, (3.12)

are finite whenever 〈|η3
1 |〉 is convergent [9]. This condition is more stringent than the

finiteness of the variance. As in (2.15), ρ̂(k) denotes the Fourier transform of ρ(η).
As a further consequence of the renewal structure mentioned above, the waiting

times between two consecutive records, n1, n2 − n1, . . . are iid random variables with
common distribution

fn = P(x1 ≤ 0, · · · , xn−1 ≤ 0, xn > 0) = qn−1 − qn, (3.13)

which is the probability that the first entry of the walk on the positive side occurs at
the nth step. We have thus fn = P(n1 = n) and, accordingly, qn = P(n1 > n). The
corresponding generating series reads

f̃(z) =
∑
n≥1

fnz
n = 1− (1− z)q̃(z) = 1−

√
1− z (3.14)

(see (2.17)). We have therefore

fn =
bn

2n− 1
(n ≥ 1), (3.15)

where bn is defined in (2.19). This result is universal for walks with continuous
symmetric step length distributions, as is the expression (2.18) of qn.
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In the presence of a weak resetting. The asymptotic equivalence (3.1) still holds in
the presence of a weak stochastic resetting (r � 1). In this regime, the geometric
distribution of the lapse of time T between successive resetting events,

P(T = j) = r(1− r)j−1 (j ≥ 1), (3.16)

becomes very broad, as testified by its mean value

〈T 〉 =
1

r
. (3.17)

The derivation of the equivalence (3.1) given above has to be adapted in two ways.
First, for a long walk with weak resetting, the typical number Rn of records is still
large. It is indeed at least as large as the number of records before the first resetting
event, which scales as

√
〈T 〉, i.e., as 1/

√
r. Second, keeping the notation (3.2) for the

increments between successive records in the presence of resetting, most increments hk
correspond to both records x(k) and x(k−1) belonging to the same stretch of random
walk between two successive resettings, and are therefore distributed according to
fh1

(h). Inter-resetting increments hk, where the successive records x(k) and x(k−1)

are separated by at least one resetting, are in general neither independent of the rest
of the walk nor distributed according to fh1

(h). This is illustrated in the right panel
of Figure 1. The number of such inter-resetting increments is however small, as it is
at most equal to the number of resettings up to time n. This number has a binomial
distribution with mean value

u = nr. (3.18)

We have therefore shown that the asymptotic equivalence (3.1) holds for nr �
1/
√
r, i.e., r � n−2/3. In particular, it holds in the diffusive scaling regime at any

fixed value of the scaling variable u. However, it does not hold in general for arbitrary
values of the resetting probability r, since a finite fraction of the increments hk are
inter-resetting increments whose distribution is not under control.

3.2. A key scaling result

The main purpose of this section is the derivation of the scaling formula (3.25) which
encodes the asymptotic distribution of the maximum Mn throughout the diffusive
scaling regime of long walks (n � 1) in the presence of a weak resetting (r � 1), for
an arbitrary continuous symmetric step length distribution with finite variance. The
asymptotic equivalence (3.1) ensures that the same result also describes the statistics
of the number Rn of records in the same regime. The scaling formula (3.25) was
mentioned in [3, 4], where it has however not been exploited in detail. Our present
goal is to recover this result from the general formalism of Section 2, and to analyze it
at full length. For this purpose, rather than using the general solution (2.21), we find
it more instructive to solve directly (2.8) within the diffusion approximation. This
amounts to approximating the integral involved in (2.8) as

I =

∫ M−x

−∞
Q̃(z, x+ η,M)ρ(η)dη

=

∫ M−x

−∞

[
Q̃(z, x,M) + ηq̃′(z, x,M) +

η2

2
Q̃′′(z, x,M) + · · ·

]
ρ(η)dη

= Q̃(z, x,M) +DQ̃′′(z, x,M) + · · · , (3.19)
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where accents denote derivatives with respect to x. Furthermore, setting

z = e−s, (3.20)

the diffusive scaling regime corresponds to s and r being simultaneously small. In this
regime, the integral equation (2.8) comes down to

−DQ̃′′(z, x,M) + (r + s)Q̃(z, x,M) ≈ 1 + rQ̃(z, 0,M), (3.21)

with boundary condition Q̃(z,M,M) = 0. The solution which remains bounded as
x→ −∞ reads

Q̃(z, x,M) ≈ 1− eµ(x−M)

s+ r e−µM
, (3.22)

with

µ =

√
s+ r

D
. (3.23)

The expression (3.22) has the structure of (2.21), as could be expected, with

q̃(z, y) ≈ 1− e−y
√
s/D

s
. (3.24)

In the diffusive scaling regime, generating series become Laplace transforms with
respect to n, with conjugate variable s. The expressions (2.22) and (3.22) translate to

L
n
Fn(M) ≈ 1− e−µM

s+ r e−µM
. (3.25)

In the remainder of Section 3 we analyze the consequences of (3.25) throughout
the diffusive scaling regime, in the presence of a weak resetting. For now, prior to
this, let us discuss the situation without resetting. For r = 0, (3.25) reads

L
n
Fn(M) ≈ 1− e−M

√
s/D

s
(3.26)

(see (2.24), (3.24)). Performing the inverse Laplace transform, we obtain

Fn(M) ≈ erf
M

2
√
Dn

, (3.27)

where erf is the error function, thus

fn(M) ≈ e−M
2/(4Dn)

√
πDn

. (3.28)

Using the asymptotic equivalence (3.1), this translates to

pn(R) ≈ e−R
2/(4n)

√
πn

. (3.29)

The corresponding mean values scale as

〈Mn〉 ≈ 2

√
Dn

π
, 〈Rn〉 ≈ 2

√
n

π
. (3.30)

We have thus recovered the well-known facts that the asymptotic distributions
of Mn and Rn are half-Gaussians for all continuous step length distributions with
finite variance. In the case of the maximum, this asymptotic law is related to a known
property of Brownian motion, namely that the maximum and the absolute value of
the current position have the same distribution. This comes as a consequence of
the reflection principle [21, 22, 23]. In the case of the number of records, the half-
Gaussian asymptotic law, and in fact the full statistics of Rn for finite n, are universal
among random walks with a continuous symmetric step length distribution and finite
or infinite variance [13, 17, 24] (see Section 4.1 for details).
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3.3. Moments of maximum and number of records

We now analyze the consequences of (3.25) for the behaviour of the moments of the
maximum Mn and of the number Rn of records in the diffusive scaling regime, in the
presence of a weak resetting. For all integers k ≥ 1, we have

〈Mk
n〉 =

∫ ∞
0

Mk fn(M)dM = k

∫ ∞
0

Mk−1(1− Fn(M))dM. (3.31)

In Laplace space, this reads

L
n
〈Mk

n〉 = k

∫ ∞
0

Mk−1

(
1

s
− L

n
Fn(M)

)
dM

≈ k(s+ r)

s

∫ ∞
0

Mk−1

r + s eµM
dM

≈ kDk/2

s(s+ r)k/2−1

∫ ∞
0

pk−1

r + s ep
dp. (3.32)

The second line ensues from (3.25), and the third one from setting p = µM (see (3.23)).
The latter expression is a homogeneous function of the variables s and r with degree
d = −k/2− 1. This implies the scaling behavior

〈Mk
n〉 ≈ (Dn)k/2 φk(u), 〈Rkn〉 ≈ nk/2 φk(u), (3.33)

where the scaling variable u = nr is the mean number of resettings (see (3.18)).
The scaling functions φk(u) can be derived by performing the inverse Laplace

transform of (3.32). Introducing the ratio

λ =
s

r
, (3.34)

so that ns = λu, we obtain

φk(u) = ku−k/2
∫

dλ

2πi

eλu

λ(λ+ 1)k/2−1
Lk(λ), (3.35)

with

Lk(λ) =

∫ ∞
0

pk−1

1 + λ ep
dp

= − (k − 1)!
∑
m≥1

1

mk

(
− 1

λ

)m
= − (k − 1)! Lik

(
− 1

λ

)
, (3.36)

where Lik are the polylogarithms.
The only case where the function Lk(λ) is elementary is k = 1, where we have

L1(λ) = ln
λ+ 1

λ
, (3.37)

hence

φ1(u) =
1√
u

∫
dλ

2πi
eλu
√
λ+ 1

λ
ln
λ+ 1

λ
. (3.38)

The expression (3.35) also somehow simplifies for k = 2, as it does not involve any
power of (λ+1). Using the power-series expansion (3.36) of the dilogarithm, we obtain

φ2(u) = 2
∑
m≥1

(−u)m−1

m2m!
=

2

u

∫ u

0

1− e−v

v
ln
u

v
dv. (3.39)
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The scaling functions φ1(u) and φ2(u), corresponding to the first two moments, have
been studied in [2, 3, 4]. All the scaling functions φk(u) are decreasing functions of
u = nr. In other words, at least in the scaling regime, all integer moments of Mn

and Rn are maximal in the absence of resetting. These scaling functions can be
investigated analytically for small and large values of u.

Behavior for u� 1. The behavior of φk(u) for small u can be derived by expanding
the integrand of (3.35) as an inverse power series for large λ. For generic values of the
integer order k, keeping only the two leading terms, we obtain

φk(u) = k!u−k/2
∫

dλ

2πi

eλu

λk/2+1

[
1 +

(
1− k

2
− 1

2k

)
1

λ
+ · · ·

]
=

2k√
π

Γ

(
k + 1

2

)(
1− k − 2 + 21−k

k + 2
u+ · · ·

)
. (3.40)

The values of φk(0) are the rescaled moments of the half-Gaussian laws (3.28), (3.29),
which hold in the absence of resetting. The first correction term, proportional to u,
vanishes for k = 1, whereas it is negative for all higher values of k.

For k = 1, we can obtain a few more terms by expanding the integrand of (3.38)
for large λ:

φ1(u) =
2√
π

(
1− u2

90
+

u3

315
+ · · ·

)
. (3.41)

Behavior for u� 1. The behavior of φk(u) for large u can be derived by estimating
the expression (3.35) for small λ as follows:

φk(u) ≈ ku−k/2
∫

dλ

2πi

eλu

λ

∫ ∞
0

pk−1 dp

1 + λ ep

≈ ku−k/2
∫ ∞

0

pk−1 dp

∫
dλ

2πi

eλu

λ(1 + λ ep)

≈ ku−k/2
∫ ∞

0

pk−1(1− exp(−u e−p))dp

≈ u1−k/2
∫ ∞

0

pk exp(−u e−p)dp. (3.42)

The third line is obtained by integrating over λ, and the fourth one by an integration
by parts. Setting

p = lnu+ ξ, (3.43)

the expression (3.42) becomes

φk(u) ≈ u−k/2
∫ ∞
−∞

(lnu+ ξ)k exp(−ξ − e−ξ)dξ︸ ︷︷ ︸
Gumbel

. (3.44)

We recognize the density of the canonical Gumbel random variable G, such that

P(ξ < G < ξ + dξ) = exp(−ξ − e−ξ)dξ. (3.45)

The expression (3.44) therefore implies that, for large u, Mn and Rn behave as

Mn ≈
√
D

r
(lnu+G), Rn ≈

lnu+G√
r

. (3.46)
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These estimates involve the sum of a large deterministic term lnu and a fluctuating
term G of order unity, either positive or negative, distributed according to the Gumbel
law (3.45). We have in particular 〈G〉 = γ, where γ is Euler’s constant, and so

φ1(u) ≈ lnu+ γ√
u

, (3.47)

so that the mean values of Mn and Rn read

〈Mn〉 ≈
√
D

r
(lnnr + γ), 〈Rn〉 ≈

lnnr + γ√
r

. (3.48)

In order to characterize the fluctuations of Mn and Rn around the above mean
value, it is convenient to estimate their cumulants. Equation (3.46) yields

〈〈Mk
n〉〉 ≈

(
D

r

)k/2
ck, 〈〈Rkn〉〉 ≈

ck
rk/2

(k ≥ 2), (3.49)

where the cumulants ck = 〈〈Gk〉〉 are pure numbers, which can be evaluated by means
of their generating series∑

k≥1

cky
k

k!
= ln〈eyG〉 = ln Γ(1− y), (3.50)

hence

ck = (k − 1)!ζ(k). (3.51)

Here, ζ(k) denotes the value of Riemann’s zeta function at the integer k ≥ 2. We have
in particular c2 = π2/6, hence the variances approach the finite limits

VarMn ≈
π2D

6r
, VarRn ≈

π2

6r
. (3.52)

The first scaling functions read

φ1(u) ≈ L√
u
,

φ2(u) ≈ 1

u
(L2 + c2),

φ3(u) ≈ 1

u3/2
(L3 + 3c2L+ c3),

φ4(u) ≈ 1

u2
(L4 + 6c2L

2 + 4c3L+ c4 + 3c22), (3.53)

and so on, with the shorthand notation

L = lnu+ γ. (3.54)

The corrections to the above estimates are of relative order 1/u, up to logarithms
(see (3.68)), i.e., exponentially small in L.

The logarithmic behavior (3.48) has been interpreted in [2, 3, 4] in terms of
extreme-value statistics. The expression (3.46) corroborates this interpretation. When
the scaling variable u—the mean number of resetting events—is large, the actual
number of resettings up to time n is close to u. The maximum Mn is therefore
approximately equal to the maximum of u iid random variables mi, each of them
being the maximum of the walker’s position in a stretch of random walk between two
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successive resetting events. For r � 1, the distribution of each local maximum mi

reads approximately

p(m) ≈ µ0 e−µ0m, (3.55)

with µ0 =
√
r/D. The distribution (3.55) can be obtained by averaging the half-

Gaussian distribution (3.28) of Mn over the broad geometric distribution (3.16) of the
lapses of time between successive resetting events. The maximum of a large number u
of iid random variables distributed according to the distribution (3.55) is precisely
given by (3.46).

3.4. Distributions of the maximum and of the number of records

Let us now investigate the scaling form of the distribution of the maximum Mn, or
equivalently, of the number Rn of records in the diffusive scaling regime.

The scaling behavior (3.33) of the moments translates to the following scaling
laws for the distributions defined in (2.2), (2.3):

fn(M) ≈ 1√
Dn

Φ(X,u), pn(R) ≈ 1√
n

Φ(X,u), (3.56)

where the reduced distribution Φ(X,u) is a scaling function of the variables

X =
M√
Dn

or X =
R√
n
, u = nr. (3.57)

An explicit expression of Φ(X,u) can be derived from (3.25). Differentiating the
latter equation with respect to M yields

fn(M) ≈
∫

ds

2πi
(s+ r)3/2 ens−M

√
s+r

(s+ r e−M
√
s+r)2

. (3.58)

Introducing the variables X and u, as well as the ratio λ (see (3.34)), we obtain

Φ(X,u) =
√
u

∫
dλ

2πi
(λ+ 1)3/2 eλu−wX

(λ+ e−wX)2
, (3.59)

with the shorthand notation

w =
√
u(λ+ 1). (3.60)

It can be checked that the reduced distribution Φ(X,u) obeys the sum rules∫ ∞
0

Φ(X,u)dX = 1,∫ ∞
0

Xk Φ(X,u)dX = φk(u) (k ≥ 1), (3.61)

as should be, where the functions φk(u) are given by (3.35).
As the mean number u = nr of resettings increases, the reduced distribution

Φ(X,u) interpolates between a half-Gaussian law at u = 0 (see (3.28), (3.29), (3.64))
and a Gumbel law at u� 1 (see (3.46), (3.68)). This is illustrated in Figure 2, showing
Φ(X,u) against X for several values of u. The data have been obtained by means of
a numerical evaluation of the contour integral in (3.59).

At any fixed value of u, there is a most probable value X0(u), where the reduced
distribution Φ(X,u) is maximal. For u� 1, we have

X0(u) ≈ 4
√
π u, (3.62)
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Figure 2. Reduced distribution Φ(X,u) against X for several values of u
(see legend).

as a consequence of the expansion (3.69). For u� 1, we have

X0(u) ≈ lnu√
u
, (3.63)

since the most probable value of the Gumbel variable G is zero (see (3.66), (3.67)).
The most probable value X0(u) thus tends to zero both at small u and at large u.
It is maximal at an intermediate value of u, namely u ≈ 3.4111, where it equals
X0 ≈ 0.795837.

A comparison between the actual distribution of the number Rn of records of
walks with a uniform step length distribution on the interval [−1,+1], measured by
means of numerical simulations for 108 walks of 50, 100, and 200 steps, and the
theoretical prediction (3.59) is shown in Figure 3. The mean number of resettings
is fixed to u = nr = 1, i.e., somewhat half way between the Gaussian and Gumbel
limits. The data points converge smoothly to the theoretical prediction (3.59) (black
curve), already shown in green in Figure 2. The square symbols show extrapolated
values based on data for 50 and 200 steps, assuming that corrections to scaling are of
relative order 1/

√
n (see e.g. (4.7), (5.18)). The combination

√
50 (4p200(2R)− p50(R))

is plotted against X = R/
√

50 for R = 0, 1, . . . , 21. These extrapolated data points
are hardly distinguishable from the theoretical prediction, thus providing a strong
corroboration of the whole analysis.

To close this section, we show how the behavior of the reduced distribution
Φ(X,u) at small and large values of each of its arguments can be studied analytically.

Behavior for u � 1. The behavior of Φ(X,u) for small u can be derived by setting
λ = p2/u in (3.59) and expanding the integrand as a power series in u at fixed p. We
thus obtain

Φ(X,u) =

∫
dp

2πi
ep

2−pX
[
2 +

(
3

p2
− X

p
− 4e−pX

p2

)
u+ · · ·

]
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Figure 3. Full curves and symbols: distribution of the number of
records Rn of walks with uniformly distributed step lengths, for u = nr = 1
and several n (see legend), rescaled according to (3.56), (3.57). Black
curve (theory): theoretical prediction (3.59). Square symbols (50/200):
extrapolated values based on data with n = 50 and n = 200 (see text).

=
e−X

2/4

√
π

(3.64)

+

(
3e−X

2/4 − 4e−X
2

√
π

+ 4X erfcX − 2X erfc
X

2

)
u+ · · · ,

where erfc is the complementary error function. The first term reproduces the
asymptotic half-Gaussian distributions (3.28), (3.29) in the absence of resetting.

Behavior for u� 1. The leading-order behavior of Φ(X,u) for large u can be derived
by estimating the expression (3.59) for small λ as follows:

Φ(X,u) ≈
√
u

∫
dλ

2πi

eλu−X
√
u

(λ+ e−X
√
u)2

≈ u3/2 exp
(
−X
√
u− ue−X

√
u
)
. (3.65)

Setting, in agreement with (3.46),

X =
lnu+ ξ√

u
, (3.66)

the estimate (3.65) translates to

Φ(X,u)dX ≈ exp
(
−ξ − e−ξ

)
dξ. (3.67)

The emergence of the Gumbel distribution for the fluctuating part G introduced
in (3.46) is thus confirmed by the analysis of the distribution of Mn. Its interpretation
in terms of extreme-value statistics was given at the end of Section 3.3.
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The corrections to the above leading-order behavior can be derived by taking
higher powers of λ into account. Skipping details, we only give the outcome in the
bulk of the distribution, i.e., for large u at fixed ξ:

Φ(X,u) ≈
√
u exp

(
−ξ − e−ξ

)
(3.68)

×
[
1 +

lnu+ ξ

2u
(3e−ξ − e−2ξ − 1) +

3(1− e−ξ)

2u
+ · · ·

]
.

Behavior for X � 1. The behavior of Φ(X,u) for small X can be derived by setting
λ = p − 1 and expanding the integrand of (3.59) as a power series in X. We thus
obtain

Φ(X,u) = e−u
[

1√
π

+ 2uX +

(
6u2 − 3u− 1

4

)
X2

√
π

+ · · ·
]
. (3.69)

We have in particular

Φ(0, u) =
e−u√
π
. (3.70)

Behavior for X � 1. The behavior of Φ(X,u) for large X can be derived by
approximating (3.59) as

Φ(X,u) ≈
√
u

∫
dλ

2πi

eλu−X
√
u(λ+1)

√
λ

, (3.71)

and evaluating the integral by the saddle-point method. The saddle point sits at

λc =
X2

4u
− 1. (3.72)

We thus obtain

Φ(X,u) ≈ e−u−X
2/4

√
π

. (3.73)

For large X, the tail of the half-Gaussian law which prevails in the absence of resetting
therefore survives for all values of u. Furthermore, (3.70) and (3.73) have the same
exponential dependence in u.

If u also becomes large, the asymptotic law (3.73) still holds, albeit with an X-
dependent prefactor, as long as λc is positive, i.e., for X > 2

√
u. For X ≈ 2

√
u,

Φ(X,u) exhibits a sharp crossover, over a finite range of values of X, between the
exponential tail of the Gumbel law (3.65) and the Gaussian one (3.73).

4. Beyond the diffusive scaling regime

We hereafter illustrate on a few specific situations to what extent the statistics of Mn

and of Rn may differ from each other whenever the asymptotic equivalence (3.1)
does not hold, i.e., outside the diffusive scaling regime analysed in Section 3. This
section is devoted to generic continuous and symmetric step length distributions,
whereas Section 5 is devoted to two examples of distributions for which the integral
equation (2.8) can be solved by elementary means.
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4.1. Corrections to asymptotic behavior without resetting

We start with the situation in the absence of resetting. In this case, the asymptotic
results (3.28), (3.29) and (3.30) can be compared to more detailed results.

We start by recalling that the renewal structure of the record process allows a
simple derivation of the expression of the distribution of the number Rn of records.
The corresponding generating function reads [17, 24] (see [25, Sec. 3] for a short proof
valid for any renewal process)∑

n≥0

pn(R)zn = q̃(z) f̃(z)R, (4.1)

where q̃(z) and f̃(z) are respectively given in (2.17) and (3.14). Introducing the
notation

ν0 =
√

1− z, (4.2)

we have q̃(z) = 1/ν0 and f̃(z) = 1− ν0, and so∑
n≥0

pn(R)zn =
(1− ν0)R

ν0
. (4.3)

As a consequence, we have

pn(R) =
(2n−R)!

22n−Rn!(n−R)!
=

(
2n−R
n

)
22n−R (R = 0, . . . , n). (4.4)

This distribution is universal, i.e., independent of the step length distribution,
whenever it is continuous and symmetric, either with a finite variance or not.

The generating series of the mean number of records evaluates to∑
n≥0

〈Rn〉zn =
1− ν0

ν3
0

=
1

(1− z)3/2
− 1

1− z
, (4.5)

hence

〈Rn〉 = (2n+ 1)bn − 1 = 2

√
n

π

(
1 +

3

8n
− 7

128n2
+ · · ·

)
− 1, (4.6)

where bn is defined in (2.19).
The mean value 〈Mn〉 of the maximum of diffusive random walks has been

investigated in [26, 27]. The quantity γ introduced in [26] reads γ = −`/
√

2D, thereby

〈Mn〉 = 2

√
Dn

π
− `+ · · · , (4.7)

where ` is the extrapolation length (see (3.12)).
The leading terms of the expansions (4.6) and (4.7) agree with (3.30) and

correspond to the asymptotic half-Gaussian distributions (3.28), (3.29) of Mn and Rn.
Their first correction terms however differ. The whole series of corrections in (4.6) is
universal, i.e., independent of the step length distribution, provided it is symmetric and
continuous, whereas the first correction in (4.7), involving the extrapolation length `,
depends on the underlying distribution. As a consequence, the first correction to the
equivalence (3.1) for generic diffusive walks appears as a finite limit for the difference

lim
n→∞

(
〈Mn〉 −

√
D〈Rn〉

)
=
√
D − `. (4.8)

This quantity vanishes for the symmetric exponential distribution considered in
Section 5.1. In general it may be either positive or negative.
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4.2. Asymptotic behavior at finite resetting probability

We now consider long random walks with an arbitrary resetting probability r, whereas
the diffusive scaling regime studied in Section 3 corresponds to r � 1.

The expression of the mean value 〈Rn〉 of the record number has been derived
in [2] in full generality. In the regime of current interest (n → ∞, r finite), it obeys
the logarithmic law

〈Rn〉 ≈
ln(nr(1−

√
r)) + γ√

r
. (4.9)

This expression only differs from its counterpart (3.48) in the scaling regime (r � 1)
by the r-dependence of the finite part of the logarithm.

As far as the maximum Mn is concerned, no analytical prediction is available
in general beyond the diffusive scaling regime (see however Sections 5.1 and 5.2
for particular examples). Let us propose the following heuristic line of thought.
For any value of the resetting probability r, the distribution of the lapses of time
between successive resetting events is given by the geometric law (3.16). As a
consequence, the positions of the walker have exponentially decaying connected
correlations, thereby the successive positions form a sequence of nearly iid random
variables. The maximum Mn is therefore expected to be approximately distributed as
the maximum of an extensive number neff ≈ c n of iid variables distributed according
to the steady-state distribution f(x) described in Appendix A. The factor c somehow
takes the above mentioned correlations into account in an effective way. Its dependence
on model parameters is not predicted by the present reasoning. The dichotomy put
forward in Appendix A has the following consequences.

For exponential and superexponential step length distributions, the exponential
tail (A.8) of the steady-state distribution f(x) translates to

〈Mn〉 ≈
lnn

Kst
. (4.10)

This estimate is robust, in the sense that it holds irrespective of the constant c. In
the diffusive scaling regime (r � 1), the decay rate Kst is given by (A.10), with the
consequence that the logarithmic growth laws (4.9) and (4.10) are related to each other
according to the identity (3.1), as should be. For an arbitrary resetting probability r,
the decay rateKst depends on r and on details of the step length distribution. Consider
for definiteness a uniform distribution on the interval [−w,w], so that σ2 = w2/3,
D = w2/6 and ρ̂(k) = (sin kw)/kw. The decay rate Kst is therefore given by the
implicit equation (see (A.9))

(1− r) sinhKstw

Kstw
= 1. (4.11)

Figure 4 shows the mean values 〈Mn〉 and 〈Rn〉 against lnn, as measured by means of
a numerical simulation up to n = 105 for the uniform step length distribution and a
resetting probability r = 1/2. We have chosen w =

√
6, hence D = 1, allowing a fair

comparison between the two quantities. Both datasets exhibit a logarithmic growth
with the theoretically predicted amplitudes (dashed lines), namely 1/Kst ≈ 1.125002
for 〈Mn〉 and 1/

√
r =
√

2 for 〈Rn〉.
For subexponential step length distributions, the estimate (A.15) of the tails of

the steady-state distribution implies that 〈Mn〉 grows faster than a logarithm. In
other words, there is now a qualitative difference between the asymptotic behavior of
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Figure 4. Full curves: mean values 〈Mn〉 (red) and 〈Rn〉 (blue) against
lnn, for a uniform step length distribution on [−w,w] with w =

√
6 and a

resetting probability r = 1/2. Dashed lines have slopes 1/Kst ≈ 1.125002
for 〈Mn〉 and

√
2 for 〈Rn〉.

〈Mn〉 and of 〈Rn〉. In the case where the step length distribution decays as a power
law of the form

ρ(η) ≈ A

|η|1+θ
(η → ±∞), (4.12)

with an arbitrary tail exponent θ > 1, the above heuristic reasoning implies

〈Mn〉 ≈ B n1/θ. (4.13)

The mean maximum now grows as a power of the number of steps n, in strong
contrast with the universal logarithmic growth (4.9) of the mean record number. The
prefactor B is not predicted here, as it depends on the unknown constant c. For
diffusive walks (θ > 2), 〈Mn〉 grows with the exponent 1/θ < 1/2 for r > 0 and with
the exponent 1/2 for r = 0. The presence of resetting events therefore diminishes
qualitatively the growth of 〈Mn〉. For Lévy walks with 1 < θ < 2, 〈Mn〉 grows with
the exponent 1/θ, irrespective of the presence of resetting. For Lévy walks with θ < 1,
the mean absolute step length 〈|η|〉 diverges, and so does the mean maximum. In spite
of this, the growth law (4.13) still holds for the typical value of Mn, again irrespective
of the presence of resetting. Finally, a crossover to the logarithmic prediction (3.48)
is expected at small r in all cases.

In order to check the validity of the scaling law (4.13), we have measured by
means of a numerical simulation the mean record number 〈Mn〉 up to n = 105 for

step lengths of the form ηn = εn(u
−1/θ
n − 1), where εn = ±1 with equal probabilities

and un are uniform random variables over [0, 1], resulting in

ρ(η) =
θ

2(|η|+ 1)1+θ
. (4.14)

Figure 5 shows a log-log plot of 〈Mn〉 against n, for the step length distribution (4.14)
with θ = 2, 3 and 4, and a resetting probability r = 1/2. All datasets are in good
agreement with the prediction (4.13) (dashed lines).
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Figure 5. Full curves: log-log plot of 〈Mn〉 against n for the step length
distribution (4.14) with θ = 2, 3 and 4 (see legend) and a resetting
probability r = 1/2. Dashed lines have slopes 1/2, 1/3 and 1/4.

5. Two particular examples

The two particular examples discussed in this section have the virtue of lending
themselves to exact calculations at finite times. The integral equation (2.8) can indeed
be solved by elementary means.

5.1. Symmetric exponential step length distribution

We first address the case of the symmetric exponential distribution (also known as the
Laplace distribution)

ρ(η) =
e−|η|

2
, (5.1)

with variance σ2 = 2 and diffusion coefficient D = 1.
Let us first determine the steady-state distribution f(x) of the walker’s position.

We have

ρ̂(k) =
1

1 + k2
, (5.2)

thus, using (A.2),

f̂(k) =
r(1 + k2)

r + k2
, (5.3)

and

f(x) = rδ(x) + (1− r)
√
r

2
e−
√
r|x|. (5.4)

The decay rate of the continuous component therefore reads Kst =
√
r for all values

of the resetting probability r.
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The present situation is one of the rare examples where the integral equation (2.8)
can be solved by elementary means. This equation has indeed an exact solution of the
form Q̃(z, x,M) = A+Beνx, that is,

Q̃(z, x,M) =
1− (1− ν)eν(x−M)

1− z + rz(1− ν)e−νM
(x ≤M), (5.5)

with

ν =
√

1− z̆ (5.6)

(see (2.9)). The expression (5.5) again has the structure of (2.21), as expected, with

q̃(z, y) =
1− (1− ν0)e−ν0y

ν2
0

, (5.7)

and

ν0 =
√

1− z. (5.8)

The result (5.7) can be alternatively derived by means of the Pollaczek-Spitzer
formula (2.14). We thus obtain the general formula (see (2.22) or (2.23))

F̃ (z,M) =
1− (1− ν)e−νM

1− z + rz(1− ν)e−νM
, (5.9)

encoding the exact distribution of the maximum Mn, for all values of n and r.
In the scaling regime where n is large and r is small, setting z = e−s where s

is also small, ν becomes µ (see (3.23)), and so (5.9) becomes (3.25). This provides a
strong confirmation of the validity of the diffusion approximation in the scaling regime.

At variance with the prediction (3.22) of the diffusion approximation, which
vanishes at x = M by construction, the extrapolated exact solution (5.5) vanishes
at the point

x = M − ln(1− ν)

ν
= M + 1 +

ν

2
+ · · · , (5.10)

slightly outside the domain x ≤ M . The first correction term, which is the only one
surviving in the scaling regime (ν → 0), yields the extrapolation length ` = 1. This
result can be recovered in two alternative ways, either by a direct evaluation of the
integrals entering (3.12), or by noting that the solution of the homogeneous Milne
equation (3.10) is H(y) = y + 1.

In order to pursue, let us first consider the mean value 〈Mn〉 of the maximum in
the presence of resetting. The corresponding generating series reads∑

n≥0

〈Mn〉zn =

∫ ∞
0

(
1

1− z
− F̃ (z,M)

)
dM

=
ν(1− ν)

1− z

∫ ∞
0

1

rz(1− ν) + (1− z)ep
dp

=
ν

rz(1− z)
ln
ν(ν − rz)

1− z
. (5.11)

The first line is obtained by using the identity (3.31) for k = 1, and the second one
by using (5.9) and setting p = νM . The resulting expression (5.11) coincides with
the formula for the generating series of the mean number of records 〈Rn〉 given in [2].
This coincidence implies

〈Mn〉 = 〈Rn〉 (5.12)
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identically for all n and r. In particular, the expression (4.8) vanishes, since ` = D = 1.
The noteworthy identity (5.12) contrasts with the generic case illustrated in Figure 4.
This identity cannot extend to the full distributions, for the mere reason that Mn is
a real variable, while Rn is an integer one.

The distributions of Mn and Rn can be compared to one another in more detail in
the absence of resetting, by considering their moments. For r = 0, the expression (5.9)
for F̃ (z,M) identifies to (5.7) (see (2.24)). We have therefore

M̃ (k)(z) =
∑
n≥0

〈Mk
n〉zn

= k

∫ ∞
0

Mk−1

(
1

ν2
0

− F̃ (z,M)

)
dM

=
k(1− ν0)

ν2
0

∫ ∞
0

Mk−1 e−ν0M dM

=
(1− ν0)k!

νk+2
0

. (5.13)

On the other hand, using (4.3), we have

R̃(k)(z) =
∑
n≥0

〈Rkn〉zn =
1

ν0

∑
R≥0

Rk(1− ν0)R. (5.14)

These series are studied in Appendix B. In particular, it is shown that the moments
〈Mk

n〉 and 〈Rkn〉 obey the following linear identities

〈Mk
n〉 =

k∑
j=1

[
k

j

]
〈Rjn〉, 〈Rkn〉 =

k∑
j=1

(−1)k−j
{
k

j

}
〈M j

n〉, (5.15)

where
[
k
j

]
and

{
k
j

}
are respectively the Stirling numbers of the first and of the second

kind. Besides (5.12), the first few of these identities read

〈M2
n〉 = 〈R2

n〉+ 〈Rn〉,
〈M3

n〉 = 〈R3
n〉+ 3〈R2

n〉+ 2〈Rn〉,
〈R2

n〉 = 〈M2
n〉 − 〈Mn〉,

〈R3
n〉 = 〈M3

n〉 − 3〈M2
n〉+ 〈Mn〉. (5.16)

To leading order for large n, the two sequences of moments coincide, in agreement
with the analysis of the diffusive scaling regime. The half-Gaussian laws (3.28), (3.29)
imply (see (3.40))

〈Mk
n〉 ≈ 〈Rkn〉 ≈

2k√
π

Γ

(
k + 1

2

)
nk/2. (5.17)

The identities (5.15), (5.16) show that, except for the first one, all moments of Mn

are larger than those of Rn. The relative difference between 〈Mk
n〉 and 〈Rkn〉 is however

expected to become smaller and smaller for large n, in order to conform with the
analysis of the diffusive scaling regime. This difference can be estimated from (5.15),

where the leading correction corresponds to j = k − 1. Using
[

k
k−1

]
= k(k − 1)/2, as

well as the leading-order result (5.17), we obtain

〈Mk
n〉 = 〈Rkn〉

(
1 +

ak√
n

+ · · ·
)
, (5.18)
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with

ak =
k(k − 1)Γ

(
k
2

)
4Γ
(
k+1

2

) . (5.19)

We have a1 = 0, in agreement with (5.12), whereas a2 = 1/
√
π, a3 = 3

√
π/4,

a4 = 4/
√
π, a5 = 15

√
π/8, and so on, are all positive.

In the case of the second moments, (5.13) and (5.16) yield the exact expressions

〈M2
n〉 = 2n− 2〈Rn〉, 〈R2

n〉 = 2n− 3〈Rn〉, (5.20)

with 〈Rn〉 being given by (4.6).
An alternative presentation of some of the above results is given in Appendix C.

5.2. Simple Polya walk

To close, we consider the case of the simple Polya walk on the one-dimensional lattice
with unit spacing, with step length distribution

ρ(η) =
1

2
(δ(η − 1) + δ(η + 1)). (5.21)

Its variance reads σ2 = 1, thus D = 1/2. The distribution ρ(η) is not continuous, so
that some of the results derived so far must be revisited.

A peculiarity of the Polya walk is that the maximum and the number of records
coincide at all times n for any given realization of the walk [17, 28],

Mn = Rn, (5.22)

even in the presence of resetting [2], since any record breaking event corresponds to
an increase of Mn by one unit.

Let us first determine the steady-state distribution of the walker’s position, that
we still denote as f(x), even though x is now an integer random variable. The Fourier
transform ρ̂(k) = cos k is an even and 2π-periodic function of k. Equation (A.2) yields

f̂(k) =
r

1− (1− r) cos k
. (5.23)

We thus obtain

f(x) =

√
r

2− r
λ
−|x|
st , (5.24)

with

λst =
1 +

√
r(2− r)

1− r
. (5.25)

The distribution (5.24) falls off exponentially, in agreement with (A.8). The corres-
ponding decay rate,

Kst = lnλst, (5.26)

is an increasing function of r, behaving as Kst ≈
√

2r for r → 0, in accordance
with (A.10), and diverging as Kst ≈ ln(2/(1− r)) as r → 1.

The maximum Mn of the walk after n steps takes integer values M ≥ 0. Keeping
in line with the definitions (2.1) and (2.4), the generating series

Q̃(z, x,M) =
∑
n≥0

Qn(x,M)zn, (5.27)
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where both x and M are integers, is non-zero only for x ≤M , where it obeys

Q̃(z, x,M) = 1 + rzQ̃(z, 0,M) +
z̆

2
(Q̃(z, x− 1,M) + Q̃(z, x+ 1,M)) (5.28)

(see (2.9)). This equation has an exact solution of the form Q̃(z, x,M) = A + Bλx,
which reads

Q̃(z, x,M) =
1− λx−M−1

1− z + rzλ−M−1
(x ≤M), (5.29)

with

λ =
1 +
√

1− z̆2

z̆
(5.30)

The static λst of (5.25) is recovered for z = 1. Even though the step length distribution
is not continuous, the expression (5.29) still has the structure of (2.21), with

q̃(z, y) =
∑
n≥0

qn(y)zn =
1− λ−y−1

0

1− z
(5.31)

and

λ0 =
1 +
√

1− z2

z
. (5.32)

We have in particular (see (2.22))

F̃ (z,M) =
1− λ−M−1

1− z + rzλ−M−1
. (5.33)

This expression encodes the exact distribution

fn(M) = P(Mn = M) = Fn(M)− Fn(M − 1) (M ≥ 0) (5.34)

of the maximum Mn of the simple walk and of its number Rn of records, for all values
of n and r. For M = 0, the above equation is completed by the convention that
Fn(−1) = 0.

In the scaling regime where n is large and r is small, setting z = e−s where s is
also small, we have lnλ ≈

√
2(s+ r), thus (5.33) becomes (3.25). As a consequence,

all the results concerning the statistics of the maximum Mn in the diffusive scaling
regime derived in Section 3 apply to the present situation of the simple Polya walk.

In order to go beyond the diffusive scaling regime, we focus our attention on the
mean values

〈Mn〉 = 〈Rn〉 =
∑
M≥0

M fn(M) =
∑
M≥0

(1− Fn(M)). (5.35)

The corresponding generating series reads∑
n≥0

〈Mn〉zn =
∑
M≥0

(
1

1− z
− F̃ (z,M)

)
=

1− z̆
1− z

∑
M≥0

1

rz + (1− z)λM+1
. (5.36)

We shall now successively discuss this result for r = 0 and r > 0.
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In the absence of resetting. There, (5.36) becomes a geometric series. We obtain∑
n≥0

〈Mn〉zn =
∑
n≥0

〈Rn〉zn =
1

2

(
(1 + z)1/2

(1− z)3/2
− 1

1− z

)
, (5.37)

in agreement with earlier studies [17, 24, 29], possibly up to a change of convention,
as the origin is not counted as a record in the present work. The resulting expression
of 〈Mn〉 or 〈Rn〉 given in those references is however rather complicated, involving the
hypergeometric function 2F1. We give here a simple explicit—and seemingly novel—
expression of this mean value, which depends on the parity of n according to

〈M2k〉 =

(
2k +

1

2

)
bk −

1

2
, 〈M2k+1〉 = (2k + 1) bk −

1

2
, (5.38)

where bn is defined in (2.19). The asymptotic expansion of the above expression reads

〈Mn〉 = 〈Rn〉 =

√
2n

π

(
1 +

1

4n
− 1 + 2(−1)n

32n2
+ · · ·

)
− 1

2
. (5.39)

The second-order correction term keeps a trace of the parity effect evidenced in (5.38).
As already noticed in [24], the leading behavior of 〈Rn〉 is

√
2 times smaller than

the universal formula (3.30) which holds for continuous symmetric distributions. The
occurrence of such a multiplicative factor is actually quite general among discrete
distributions, and more generally distributions having a discrete component. For an
arbitrary symmetric step length distribution, the Spitzer formula (3.4) for the mean
increment generalizes to [15, 16] (see also [13, ch. XVIII])

〈h1〉 = E
√
D, (5.40)

where the enhancement factor E reads

E = exp

∑
n≥1

P(xn = 0)

2n

 ≥ 1. (5.41)

If the step length distribution is continuous, the probability of having exactly xn = 0
is zero, and so the enhancement factor E is unity, so that (3.4) and (3.1) are recovered.
If the density ρ(η) of the step length distribution contains delta functions, either at the
origin (η = 0) or at one or more pairs of symmetric positions (η = ±a), the probability
P(xn = 0) might be non-zero, at least for some n, so that one has generically E > 1.
An interesting example is provided by the arithmetic distributions of the form

ρ(η) =

J∑
j=−J

fjδ(η − j), (5.42)

with fj = f−j up to some finite range J . Such distributions give rise to walks on
the lattice of integers. For this class of distributions, considered recently in [29], the
Fourier transform ρ̂(k) is an even and 2π-periodic function of k. We have

P(xn = 0) =
1

π

∫ π

0

ρ̂(k)n dk, (5.43)

and so

E = exp

(
− 1

2π

∫ π

0

ln(1− ρ̂(k)) dk

)
. (5.44)
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For arbitrary non-continuous symmetric step length distributions with finite
variance, inserting (5.40) into (3.6), we obtain a generalization of the asymptotic
equivalence (3.1) in the form

Mn ≈ E
√
DRn. (5.45)

As a consequence, all the universal results for Mn derived in Section 3 for continuous
distributions are unchanged, including in the presence of a weak resetting, whereas
those concerning Rn have to be modified by taking the enhancement factor E into
account. In particular, in the absence of resetting, Mn and Rn are still asymptotically
distributed according to half-Gaussian laws, with

〈Mn〉 ≈ 2

√
Dn

π
, 〈Rn〉 ≈

2

E

√
n

π
. (5.46)

More importantly, throughout the diffusive scaling regime, the analysis made in
Sections 3.3 and 3.4 holds unchanged, with now

X =
M√
Dn

or X =
ER√
n
. (5.47)

For the simple Polya walk with weights f±1 = 1/2, we have D = 1/2 and E =
√

2,
so that (5.46) gives back (5.39). We have furthermore 〈h1〉 = 1, as should be, since all
increments are equal to unity, so that the asymptotic equivalence Mn ≈ Rn is actually
an identity (see (5.22)). In this sense the Polya walk is not generic.

In contrast, consider the symmetric walk of range 2 with weights f±1 = f±2 = 1/4,
hence D = 5/2, E =

√
5− 1, and 〈h1〉 = (5−

√
5)/2. This example is now generic, in

the sense that the equivalence (5.45) only holds asymptotically for late times.

In the presence of resetting. The asymptotic behavior of the mean maximum 〈Mn〉 of
the simple Polya walk for a fixed resetting probability can be studied as follows. Setting
z = e−s where s is small, while r is kept fixed, λ becomes λst = eKst (see (5.26)),
thereby (5.36) simplifies to∑

n≥0

〈Mn〉zn ≈
r

s

∑
M≥0

1

r + s eKst(M+1)
. (5.48)

A first estimate of the above series can be obtained by discarding its discrete
nature and replacing it by an integral over M . We thus obtain∑

n≥0

〈Mn〉zn ≈
ln(r/s)

Ksts
, (5.49)

hence

〈Mn〉 = 〈Rn〉 ≈
lnnr

Kst
. (5.50)

This logarithmic growth agrees with (4.10). Let us recall that Kst depends on r
through (5.25), (5.26). The peculiarity of the Polya walk is that (5.50) applies both
to 〈Mn〉 and to 〈Rn〉. The logarithmic growth law of 〈Rn〉 therefore involves the non-
universal factor Kst, rather than the universal factor

√
r entering (4.9) for continuous

step length distributions.
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Furthermore, the logarithmic growth law (5.50) is modulated by periodic
oscillations. The more complete analysis of (5.48) given in Appendix D indeed yields
the full asymptotic behavior (see (D.8), (D.9))

〈Mn〉 = 〈Rn〉 ≈
lnnr + γ

Kst
− 1

2
+ P (lnnr), (5.51)

where γ is Euler’s constant, whereas

P (v) = − 2

Kst
Re
∑
m≥1

Γ

(
−2πim

Kst

)
e2πimv/Kst (5.52)

is an oscillating periodic function with zero average and period Kst.
Periodic or log-periodic oscillations are usually met in systems having a discrete

symmetry, such as a discrete scale invariance (see [30] for a review). Here, they are a
manifestation of the fact that Mn = Rn is an integer random variable. The amplitude
of the periodic function P can be operationally defined as that of its first harmonic
(m = 1), namely

A1 =
2

Kst

∣∣∣∣Γ(± 2πi

Kst

)∣∣∣∣ =

√
2

Kst sinh(2π2/Kst)
∼ e−π

2/Kst . (5.53)

The periodic oscillations are therefore tiny, except in the regime of a large resetting
probability (r → 1), where Kst diverges logarithmically, so that the slope of the growth
law (5.50) becomes small. For r = 0.5, we have Kst ≈ 1.31695 and A1 ≈ 9.6947 10−4.
For r = 0.9, we have Kst ≈ 2.99322 and A1 ≈ 4.2751 10−2.

The asymptotic expression (5.51) is compared with numerical data in Figure 6,
showing 〈Mn〉 against lnn, as measured for simple Polya walks up to n = 106, with a
resetting probability r = 0.9. The data (red) are observed to converge rapidly to the
prediction (5.51) (blue), including its oscillations. The blue curve is slightly translated
vertically for a better readability. The black line has the theoretical slope 1/Kst.
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Figure 6. Red curve: mean value 〈Mn〉 against lnn, for Polya walks with
a resetting probability r = 0.9. Blue curve (translated): full asymptotic
expression (5.51). The black line has the theoretical slope 1/Kst ≈ 0.33408.
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6. Discussion

In this work we have revisited the statistics of extremes and records of symmetric
random walks with stochastic resetting, thus completing and extending earlier studies
on these topics. The most salient of our findings are summarized below.

We have highlighted a diffusive scaling regime for walks defined by symmetric
step length distributions with finite variance and a weak resetting probability. For
continuous step length distributions, the maximum Mn and the number Rn of
records obey the remarkable equivalence (3.1), implying that these quantities become
asymptotically proportional to each other, even for single typical trajectories. For
step length distributions having a discrete component, a result due to Spitzer allows to
generalize the above equivalence to (5.45), where the dependence on the distribution is
encoded in two parameters, the diffusion coefficient D and the enhancement factor E.
Within this framework, the distributions of Mn and Rn obey scaling laws involving,
besides D and E, a universal two-parameter scaling function Φ(X,u), as seen in
Section 3.4. As the mean number of resettings u = nr is varied, the reduced
distribution Φ(X,u) interpolates between a half-Gaussian law for u� 1 and a Gumbel
law for u� 1.

We have also obtained various specific results illustrating both quantitative
and qualitative differences between the statistics of Mn and of Rn beyond the
diffusive scaling regime. Exact results on the distribution of Mn at finite times,
obtained for two particular step length distributions, corresponding respectively to
the symmetric exponential walk and the Polya lattice walk, as well as a heuristic
analysis of other distributions, illustrate several facets of the statistics of extremes
and records for random walks. To take one noticeable example, for symmetric walks
with a fixed non-zero resetting probability r, 〈Rn〉 grows logarithmically, according
to the universal law derived in [2], whereas 〈Mn〉 exhibits a variety of asymptotic
behaviors. For exponential and superexponential step length distributions, 〈Mn〉 also
grows logarithmically, according to (4.10), involving a non-universal amplitude 1/Kst

depending on r and on the step length distribution. For distributions falling off as a
power law, as ρ(η) ∼ |η|−(1+θ), the typical value of Mn grows as a power of time, as
Mn ∼ nαr , with αr = 1/θ, irrespective of the exponent θ > 0. For usual random walks
in the absence of resetting, we have α0 = αr = 1/θ for θ < 2, whereas α0 = 1/2 > αr
in the diffusive case (θ > 2).

Yet many other features of the statistics of extremes and records for random walks
with stochastic resetting raise interesting open questions. We hope to return to some
of these in a near future.

Appendix A. Steady-state distribution of the walker’s position

This Appendix is devoted to the distribution f(x) of the walker’s position in the
nonequilibrium steady state reached by the random walk with resetting defined
in (1.1). Part of this material can be found in [1]. It is included here for completeness.
Notations are consistent with the body of the article, as far as possible.

The steady-state distribution f(x) obeys the integral equation

f(x) = rδ(x) + (1− r)
∫ ∞
−∞

f(x− η)ρ(η)dη. (A.1)

This equation has been obtained by conditioning on the last step of the walk, which
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may consist of a resetting event. It can be solved in Fourier space for any step length
distribution. With the notation (2.15) of Fourier transforms, we have

f̂(k) =
r

1− (1− r)ρ̂(k)
. (A.2)

This expression can be expanded as

f̂(k) =
∑
m≥0

pm ρ̂(k)m, (A.3)

where

pm = r(1− r)m (m ≥ 0) (A.4)

is the distribution of the age m of the process, i.e., the difference between the time at
which the position x is monitored and the last resetting event. More explicitly, (A.3)
yields

f(x) = rδ(x) + fcont(x), (A.5)

where the delta function at the origin corresponds to m = 0, whereas the continuous
component

fcont(x) =
∑
m≥1

pm ρ(x) ∗ · · · ∗ ρ(x)︸ ︷︷ ︸
m times

(A.6)

receives contributions from all positive ages.
For diffusive walks, we have ρ̂(k) ≈ 1 − Dk2. Expanding (A.2), we obtain the

expression of the variance of the position∫ ∞
−∞

x2f(x) dx =
2(1− r)D

r
. (A.7)

The tails of the stationary distribution f(x) are given by the following dichotomy.
For exponential and superexponential step length distributions, i.e., distributions

whose tails are bounded by a decaying exponential of the form e−a|η|, the Fourier
transform ρ̂(k) is analytic in the strip | Im k| < a. The steady-state distribution f(x)
decays exponentially as

f(x) ∼ e−Kst|x| (x→ ±∞), (A.8)

where the decay rate Kst = −ik0 is the nearest pole of the analytic continuation
of (A.2), obeying

(1− r)ρ̂(iKst) = 1. (A.9)

In the weak-resetting regime, where r is small, the decay rate Kst itself becomes small
and assumes the universal form

Kst ≈
√

r

D
. (A.10)

In this regime, (A.2) boils down to

f̂(k) ≈ r

r +Dk2
, (A.11)

so that the bulk of the distribution f(x) becomes the symmetric exponential

f(x) ≈ Kst

2
e−Kst|x|. (A.12)
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The variance of the position therefore scales as∫ ∞
−∞

x2f(x) dx ≈ 2

K2
st

≈ 2D

r
, (A.13)

in quantitative agreement with (A.7).
For subexponential step length distributions, whose tails fall off more slowly than

any exponential, there is no open strip where the Fourier transform ρ̂(k) is analytic. In
usual circumstances, ρ̂(k) has an isolated singularity at the origin. Denoting ρ̂sing(k)
its singular part as k → 0, (A.2) yields

f̂sing(k) ≈ 1− r
r

ρ̂sing(k), (A.14)

and so the stationary distribution f(x) usually inherits the subexponential tails of the
step length distribution:

f(x) ≈ 1− r
r

ρ(x) (x→ ±∞). (A.15)

Appendix B. Some identities involving Stirling numbers

Stirling numbers [31] play a central role in the combinatorics of set partitions and of
permutations (see [32, 33, 34] for comprehensive expositions).

Keeping notations consistent with the body of the paper, the Stirling numbers of

the first kind
[
k
j

]
are defined by

Γ(z + k)

Γ(z)
= z(z + 1) · · · (z + k − 1) =

k∑
j=1

[
k

j

]
zj , (B.1)

and the Stirling numbers of the second kind
{
k
j

}
are defined by

zk =

k∑
j=1

(−1)k−j
{
k

j

}
z(z + 1) · · · (z + j − 1), (B.2)

so that we have the inversion formula

Ak =

k∑
j=1

[
k

j

]
Bj ⇐⇒ Bk =

k∑
j=1

(−1)k−j
{
k

j

}
Aj . (B.3)

Let us begin by considering the series

Sk(y) =
∑
n≥0

nkyn. (B.4)

We have S0(y) = 1/(1− y), as well as the differential recursion

Sk(y) = yS′k−1(y), (B.5)

where the accent denotes a derivative. Therefore,

Sk(y) =
Pk(y)

(1− y)k+1
, (B.6)

where Pk(y) is a polynomial of degree k, obeying the differential recursion

Pk(y) = y
[
kPk−1(y) + (1− y)P ′k−1(y)

]
. (B.7)
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We have P0(y) = 1, P1(y) = y, P2(y) = y(y + 1), and so on.
Let us now form the combinations

Tk(y) =

k∑
j=1

[
k

j

]
Sj(y) (B.8)

=
∑
n≥0

k∑
j=1

[
k

j

]
njyn

=
∑
n≥0

n(n+ 1) · · · (n+ k − 1)yn. (B.9)

The last expression was obtained by using (B.1). The factor (n + k − 1) is present
in Tk(y), but absent in Tk−1(y). This implies the differential recursion

Tk(y) = (k − 1)Tk−1(y) + yT ′k−1(y), (B.10)

with T1(y) = S1(y) = y/(1− y)2. The solution of this recursion takes the simple form

Tk(y) =
k!y

(1− y)k+1
. (B.11)

Using the inversion formula (B.3), we obtain

Sk(y) =

k∑
j=1

(−1)k−j
{
k

j

}
Tj(y) (B.12)

and

Pk(y) = y

k∑
j=1

{
k

j

}
j!(y − 1)k−j (k ≥ 1). (B.13)

Some of the above identities can be applied to the setting of Section 5.1.
Comparing (5.14) to (B.4) and (5.13) to (B.11), we obtain

R̃(k)(z) =
Sk(1− ν0)

ν0
, M̃ (k)(z) =

Tk(1− ν0)

ν0
. (B.14)

Equation (B.8) then yields

M̃ (k)(z) =

k∑
j=1

[
k

j

]
R̃(j)(z), (B.15)

and finally

〈Mk
n〉 =

k∑
j=1

[
k

j

]
〈Rjn〉. (B.16)

This is the first identity in (5.15). The second one is a consequence of the inversion
formula (B.3).
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Appendix C. Alternative derivation of some of the results of Section 5.1

The starting point is the observation that for a Laplace step length distribution (5.1)
there is decoupling between the distribution of the increments fh1

(h) and that of the
record number pn(R) [17],

d

dh
P(h1 < h,Rn = R) = e−hpn(R),

where pn(R) is given by (4.4). This property allows to recover in a straightforward
way the expression of the density of the maximum Mn, already known thanks to (5.7)
to be given by ∑

n≥0

fn(M) zn = q̃(z)δ(M) +
1−
√

1− z√
1− z

e−M
√

1−z, (C.1)

where the first term in the r.h.s. corresponds to Rn = 0. Since Mn is given by the
sum (see (3.5))

Mn = h1 + h2 + · · ·+ hRn
, (C.2)

we have

fn(M) = qn δ(M)︸ ︷︷ ︸
R=0

+

n∑
R=1

pn(R)(fh1
∗)R(M), (C.3)

with, for the convolution of R times the density fh1
(h) = e−h,

(fh1
∗)R(M) = e−M

MR−1

(R− 1)!
, R ≥ 1. (C.4)

The generating function of the two sides of (C.3) yields (C.1) back.
We are now in position to compute the moments of Mn. Indeed, for k ≥ 1,

〈Mk
n〉 =

∫ ∞
0

fn(M)Mk dM =

n∑
R=1

pn(R)

∫ ∞
0

(fh1
∗)R(M)Mk dM

=

n∑
R=1

pn(R)
Γ(k +R)

Γ(R)
. (C.5)

Using (B.1) we conclude that

〈Mk
n〉 =

n∑
R=1

pn(R)

k∑
j=1

[
k

j

]
Rj =

k∑
j=1

[
k

j

]
〈Rjn〉, (C.6)

which is the first equality in (5.15).
Likewise,∑

n≥0

zn〈Mk
n〉 =

1−
√

1− z√
1− z

∫ ∞
0

e−M
√

1−zMk dM =
(1−

√
1− z) k!

(
√

1− z)k+2
, (C.7)

which can also be obtained using (C.5) and (4.3),∑
n≥0

zn〈Mk
n〉 =

n∑
R=1

(1− ν0)R

ν0

Γ(k +R)

Γ(R)
=

(1−
√

1− z) k!

(
√

1− z)k+2
. (C.8)

Equation (5.13) is thus recovered.
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Appendix D. Asymptotic behavior of the series involved in (5.48)

This appendix is devoted to the asymptotic behavior as ε→ 0 of the series

S(ε) =
∑
M≥0

1

1 + ε eKst(M+1)
. (D.1)

This series is involved in (5.48), which reads∑
n≥0

〈Mn〉zn ≈
S(s/r)

s
. (D.2)

Following the line of thought of [35], let us introduce the Mellin transform

T (p) =

∫ ∞
0

εp−1 S(ε)dε

=
∑
M≥0

∫ ∞
0

εp−1

1 + ε eKst(M+1)
dε

=
∑
M≥0

e−pKst(M+1)

∫ ∞
0

up−1

1 + u
du

=
1

epKst − 1

π

sin pπ
(0 < Re p < 1). (D.3)

The third line is obtained by setting ε = e−Kst(M+1)u, and the fourth one by
performing separately the geometric sum over M and the integral over u.

The inverse Mellin formula reads

S(ε) =

∫
dp

2πi
ε−p T (p). (D.4)

The leading behavior of S(ε) as ε → 0 is dictated by the rightmost poles of T (p) to
the left of the integration contour. There are an infinity of poles such that Re p = 0.
The double pole at p = 0 yields

S1(ε) = − ln ε

Kst
− 1

2
, (D.5)

whereas the simple poles at p = 2πim/Kst for m = ±1,±2, . . . yield

S2(ε) = − iπ

Kst

∑
m6=0

e−2πim ln ε/Kst

sinh(2π2m/Kst)
. (D.6)

We have therefore

S(ε) ≈ S1(ε) + S2(ε), (D.7)

up to terms of order ε. Inserting this into (D.2) and performing the inverse Laplace
transform from s to n, we obtain

〈Mn〉 ≈
lnnr + γ

Kst
− 1

2
+ P (lnnr), (D.8)

where γ is Euler’s constant, whereas

P (v) = − 2

Kst
Re
∑
m≥1

Γ

(
−2πim

Kst

)
e2πimv/Kst (D.9)

is an oscillating periodic function with zero average and period Kst.
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