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Introduction

In nuclear reactors, the fuel experiences high temperatures and large temperature gradients. During extreme power transients, partial fuel core melting might occur. Modeling the phase change is complex due to the Fission Products (FPs) generated in the fuel material that modifies the local equilibria. In case of defective fuels, transport mechanisms such as oxygen thermal diffusion in the solid phase might also be involved [START_REF] Lewis | 20-fission product chemistry in oxide fuels[END_REF]. Since the fuel phase change depends on the local oxygen-to-uranium ratio [START_REF] Guéneau | Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the u-pu-o-c systems[END_REF], a strong coupling between the heat flux, the oxygen redistribution process and the local chemical equilibria in the fuel must be considered. In the last decade, the thermochemical state of the FPs and their migration in the fuel have received greater attention in conditions far from fuel melting [START_REF] Piro | Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated uo2 nuclear fuel[END_REF][START_REF] Baurens | 3d thermo-chemical-mechanical simulation of power ramps with alcyone fuel code[END_REF][START_REF] Konarski | 3d simulation of a power ramp including fuel thermochemistry and oxygen thermodiffusion[END_REF]. Thermochemical solvers capable of handling large and complex chemical systems have been developed [START_REF] Piro | Numerical verification of equilibrium thermodynamic computations in nuclear fuel performance codes[END_REF][START_REF] Loukusa | Thermochemical modeling of nuclear fuel and the effects of oxygen potential buffers[END_REF][START_REF] Sundman | The implementation of an algorithm to calculate thermodynamic equilibria for multi-component systems with non-ideal phases in a free software[END_REF][START_REF] Sundman | Opencalphad-a free thermodynamic software[END_REF]. Thanks to modern interface softwares, they have been incorporated in fuel performance codes [START_REF] Baurens | 3d thermo-chemical-mechanical simulation of power ramps with alcyone fuel code[END_REF][START_REF] Konarski | 3d simulation of a power ramp including fuel thermochemistry and oxygen thermodiffusion[END_REF][START_REF] Simunovic | Coupling of thermochemistry solver thermochimica with moose/bison[END_REF][START_REF] Simunovic | Modeling and simulation of oxygen transport in high burnup lwr fuel[END_REF][START_REF] Samuelsson | An improved method to evaluate the "joint oxyde-gaine" formation in (u, pu) o2 irradiated fuels using the germinal v2 code coupled to calphad thermodynamic computations[END_REF][START_REF] Introïni | Development of a robust, accurate and efficient coupling between pleiades/alcyone 2.1 fuel performance code and the opencalphad thermo-chemical solver[END_REF]. To our knowledge, there is no fuel performance code that is nowadays capable of handling simultaneously fuel melting, oxygen thermal diffusion and local chemical equilibria in the fuel.

The coupling between thermal diffusion, oxygen thermal diffusion and local chemical equilibria is already available in the PLEIADES/ALCYONE 2.1 fuel performance code [START_REF] Baurens | 3d thermo-chemical-mechanical simulation of power ramps with alcyone fuel code[END_REF][START_REF] Konarski | 3d simulation of a power ramp including fuel thermochemistry and oxygen thermodiffusion[END_REF][START_REF] Introïni | Development of a robust, accurate and efficient coupling between pleiades/alcyone 2.1 fuel performance code and the opencalphad thermo-chemical solver[END_REF] but limited to temperatures below the liquidus and to the constant power plateau of power ramps. Indeed, it relies on the thermodynamic properties of the TBASE database [START_REF] Cordfunke | Thermochemical data for reactor materials and fission products: The ecn database[END_REF] that does not contain any description of the liquid phase diagram. The thermal diffusion problem is furthermore formulated as a function of the fuel stoichiometry deviation. Recently, Simunovic & al. [START_REF] Simunovic | Modeling and simulation of oxygen transport in high burnup lwr fuel[END_REF] have developed a model for oxygen transport in LWR fuel that has been performed in the BISON fuel performance code [START_REF] Hales | Verification of the bison fuel performance code[END_REF][START_REF] Laboratory | Bison: A finite element-based nuclear fuel performance code[END_REF]. The model is formulated such that it can be combined with CALPHAD databases [START_REF] Guéneau | Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the u-pu-o-c systems[END_REF][START_REF] Besmann | Application of thermochemical modeling to assessment/evaluation of nuclear fuel behavior[END_REF][START_REF] Bale | Reprint of: Factsage thermochemical software and databases[END_REF].

In this approach, the driving force for the oxygen thermal diffusion mechanism is the oxygen chemical potential gradient and not the stoichiometry deviation gradient in the fuel. This formulation facilitates the handling of multi-component systems such as those encountered in irradiated fuels. Moreover, the Soret effect is formally neglected assuming that the gradient of the oxygen chemical potential accounts for the effects of both composition and temperature gradients.

The modeling actually provided by the BISON or PLEIADES/ALCYONE fuel performance codes is however limited to temperatures below the liquidus. To overcome this limit, phase-field modeling appears as an interesting method since it is an efficient numerical approach for mesoscopic modeling of complex micro-structures [START_REF] Moelans | An introduction to phase-field modeling of microstructure evolution[END_REF]. As shown in the open literature, phase-field methods are particularly suitable for physical systems with complex topology changes such as, multiphase multicomponent flows [START_REF] Jacqmin | Calculation of two-phase navier-stokes flows using phase-field modeling[END_REF][START_REF] Boyer | Study of a three component cahn-hilliard flow model[END_REF][START_REF] Boyer | Cahn-hilliard/navier-stokes model for the simulation of three-phase flows[END_REF][START_REF] Introïni | Interaction entre un fluide à haute température et un béton: contribution à la modélisation des échanges de masse et de chaleur[END_REF] and brittle fracture [START_REF] Lu | An efficient and robust staggered algorithm applied to the quasi-static description of brittle fracture by a phase-field approach[END_REF]. More interesting for nuclear fuel applications, solute diffusion in a binary alloy [START_REF] Tiaden | The multiphase-field model with an integrated concept for modelling solute diffusion[END_REF], liquid phase segregation in the U-O binary system [START_REF] Cardon | Modelling of liquid phase segregation in the uranium-oxygen binary system[END_REF], solidification in binary alloys [START_REF] Wheeler | Phase-field model for isothermal phase transitions in binary alloys[END_REF][START_REF] Kim | Phase-field model for binary alloys[END_REF], sub-oxidized corium plane front solidification [START_REF] Tiwari | A consistent approach for coupling lumped-parameter and phase-field models for in-vessel corium to thermodynamic databases[END_REF], constituent redistribution in U-Zr fuels [START_REF] Hirschhorn | A study of constituent redistribution in u-zr fuels using quantitative phase-field modeling and sensitivity analysis[END_REF][START_REF] Hirschhorn | Reexamination of a u-zr diffusion couple experiment using quantitative phase-field modeling and sensitivity analysis[END_REF] and incipient melting in defective fuel [START_REF] Welland | Simulation of melting uranium dioxide nuclear fuel simulation de fusion de combustible nucléaire fait de bioxyde d'uranium[END_REF][START_REF] Welland | Computer simulations of non-congruent melting of hyperstoichiometric uranium dioxide[END_REF][START_REF] Welland | Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel[END_REF] have all been successfully treated with a phase-field modeling approach. Contrary to sharp interfaces models in which the interfaces are viewed as discontinuous surfaces with excess physical properties, phase-field modeling considers the interfaces as thin regions of finite thickness across which variables vary continuously and smoothly. This is why phase-field methods belong to the family of diffuse interface methods. With such a diffuse description of the interfaces, phase-field modeling enables an implicit tracking of the interfaces thanks to intensive phase-field variables, also called order parameters, that are constant in each bulk phase and vary smoothly across the interfaces.

Another great interest of phase-field modeling is the possible and natural coupling with a thermodynamic CALPHAD database from which thermodynamic fluxes involved in the governing equations and diffusion kinetics parameters such as mobilities or self-diffusion coefficients can be directly calculated [START_REF] Moore | Diffusion model of the non-stoichiometric uranium dioxide[END_REF][START_REF] Moore | Oxygen diffusion model of the mixed (u, pu) o2±x: Assessment and application[END_REF]. As previously mentioned, most of the studies conducted in the PLEIADES platform about nuclear fuel thermochemistry rely on a TBASE database. Recently, the Thermodynamics for Advanced Fuels-International Database (TAF-ID) [START_REF] Guéneau | Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the u-pu-o-c systems[END_REF][START_REF]TAF-ID[END_REF][START_REF] Geiger | Modelling nuclear fuel behaviour with taf-id: Calculations on the verdon-1 experiment, representative of a nuclear severe accident[END_REF][START_REF] Guéneau | Taf-id: An international thermodynamic database for nuclear fuels applications[END_REF] has been incorporated in the PLEIADES platform [START_REF] Samuelsson | An improved method to evaluate the "joint oxyde-gaine" formation in (u, pu) o2 irradiated fuels using the germinal v2 code coupled to calphad thermodynamic computations[END_REF][START_REF] Introïni | Pleiades alcyone 3.5d simulation of a power ramp including opencalphad fuel thermochemistry with taf[END_REF]. Based on the CALPHAD method and the Compound Energy Formalism (CEF) [START_REF] Lukas | Computational thermodynamics: the Calphad method[END_REF], the TAF-ID thermodynamic models take crystal and defect structure of the phases into account, such as, for example, sub-lattices, interstitials or vacancies. Moreover, compared to the TBASE, the TAF-ID provides a more complex description of irradiated fuel and enables to describe the liquid solution phase using an ionic model [START_REF] Hillert | A two-sublattice model for molten solutions with different tendency for ionization[END_REF].

In the open literature, different approaches are used to couple a phase-field model with a CALPHAD database. When the variables of the CALPHAD phase Gibbs energy function are the same than those of the phase-field model, a straightforward approach is to use directly an analytical expression of the Gibbs energy function (see [START_REF] Hirschhorn | A study of constituent redistribution in u-zr fuels using quantitative phase-field modeling and sensitivity analysis[END_REF][START_REF] Hirschhorn | Reexamination of a u-zr diffusion couple experiment using quantitative phase-field modeling and sensitivity analysis[END_REF][START_REF] Welland | Simulation of melting uranium dioxide nuclear fuel simulation de fusion de combustible nucléaire fait de bioxyde d'uranium[END_REF][START_REF] Welland | Computer simulations of non-congruent melting of hyperstoichiometric uranium dioxide[END_REF][START_REF] Welland | Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel[END_REF]). However, in complex thermodynamic systems with advanced thermodynamic representations, this is no longer possible as the homogeneous energy function of the phase-field model cannot be directly identified with a CALPHAD phase Gibbs energy function. Additional modeling hypotheses are needed. In most cases, a 〈〈 local 〉〉 energy minimization is involved (e.g. local equilibrium of redox mechanisms in [START_REF] Cardon | Modelling of liquid phase segregation in the uranium-oxygen binary system[END_REF]) and the interfacing of a CALPHAD thermodynamic description with a phase-field becomes a computational issue to be handled with care [START_REF] Coutinho | Combining thermodynamics with tensor completion techniques to enable multicomponent microstructure prediction[END_REF]. The use of a thermodynamic solver (Gibbs energy minimizer) provides in fact an exact and continuous representation of the composition dependence of the CALPHAD Gibbs energies. The difficulties that can be encountered are an extra computational cost and the management of non convergence problems when coupled to the phase-field model. In the present work, the experience acquired from the implementation of a thermochemical solver in the fuel performance code ALCYONE led to choose this type of direct coupling with a thermodynamic solver.

In this work, the coupling between thermal diffusion, oxygen thermal diffusion and local chemical equilibria available in the PLEIADES platform is expanded to temperatures above the liquidus. A new phase-field model for a two-phase compositional (multicomponent) system is proposed. The general formulation of the governing equations is first derived in the frame of the Thermodynamics of Irreversible Processes (TIP) [START_REF] De Groot | Non-equilibrium thermodynamics[END_REF] by using suitable thermodynamic closures. More particularly, the description of the liquid-solid interface is based on the Kim-Kim-Suzuki model [START_REF] Kim | Phase-field model for binary alloys[END_REF]. A reduction of this general model to a uranium-oxygen binary system in a solid/liquid mixture is then detailed. Its implementation is explained with a focus on the numerical scheme that efficiently couples the phase-field model with the OpenCalphad thermo-chemical solver [START_REF] Sundman | Opencalphad-a free thermodynamic software[END_REF] [START_REF] Introïni | Development of a robust, accurate and efficient coupling between pleiades/alcyone 2.1 fuel performance code and the opencalphad thermo-chemical solver[END_REF]. Finally, to assess the efficiency of the coupling, two demonstration problems dealing with oxygen thermal diffusion and incipient fuel melting are presented. For this purpose, the OpenCalphad calculations are performed with the thermodynamic data coming from the TAF-ID [START_REF] Guéneau | Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the u-pu-o-c systems[END_REF].

Thermodynamically consistent derivation of a phase-field model for a two-phase compositional system

This section is devoted to the derivation of a phase-field model for a two-phase compositional system. We start with the thermodynamic description of the targeted physical system and, more particularly, with the definition of the thermodynamic closures. Then, we derive the governing equations in the frame of the TIP [START_REF] De Groot | Non-equilibrium thermodynamics[END_REF].

Before describing the thermodynamic system, it is noteworthy mentioning that the hydrodynamics and structural mechanics effects such as, respectively, convection and fuel cracking, are fully neglected in this work.

Statement of the problem and thermodynamic closures

We begin by introducing a non-conserved phase-field variable ϕ to simulate the two-phase transformation [START_REF] Moelans | An introduction to phase-field modeling of microstructure evolution[END_REF]. In this context, ϕ is often called order parameter as in [START_REF]A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[END_REF], to cite among others. But here, the phase-field variable rather plays the role of an indicator function. That is why, in the following, ϕ is referred to as phaseindicator. It is equal to one in the solid phase, zero in the liquid phase and varies continuously and smoothly between zero and one across the liquid-solid interface:

ϕ = 1 (solid phase) (1a) ϕ = 0 (liquid phase) (1b) ϕ ∈ ]0, 1[ (liquid-solid interface) (1c) 
Then, to describe the compositional system, we define a set of conserved variables which must fulfill the following constraint:

n i =1 x i = 1 ( 2 
)
where n is an arbitrary finite number of components. Here-above, the x i variable refers to the molar fraction of the ith component1 . As the gaseous phase is not described, we assume that each component is incompressible.

The thermal expansion and the volume change upon phase transition are also neglected. In these conditions, the molar density (mol.m -3 ) of the liquid-solid mixture ρ or, equivalently, the molar volume V m = 1/ρ only depends on the composition of the system but, here, it is assumed to be constant for simplicity.

At this stage, for the sake of clarity, let us define some notations that will be used in this section: the subscript • i denotes a quantity related to the i th component; the superscripts • l and • s refer to the liquid and solid phases, respectively; and the curly bracket {•} defines a set of variables indexed by the number of components.

In this work, we consider that a thermodynamic description of the two-phase compositional system by the molar Gibbs energy g (J.mol -1 ) is valid. In the case of a diffuse interface modeling, g depends not only on the pressure p, the temperature T , the phase-field variable ϕ and the molar fractions {x i } but also on the gradients ∇ϕ and {∇x i }. Under these circumstances, the proposed closure for the Gibbs energy density function reads:

ρg (p, T, {x i } , ϕ, {∇x i } , ∇ϕ) = ρg 0 (p, T, {x i } , ϕ) + W (ϕ) + n i =1 λ i 2 |∇x i | 2 + κ 2 |∇ϕ| 2 (3) 
where λ i and κ are gradient energy coefficients (J.m -1 ), here assumed to be constant. In Eq.( 3), g 0 (p, T, {x i } , ϕ) is a molar homogeneous free energy (J.mol -1 ) and W (ϕ) corresponds to the well-known double-well potential. The latter is given by:

W (ϕ) = ωϕ 2 1 -ϕ 2 ( 4 
)
where ω is the height of the double-well (J.m -3 ). This parameter will be defined later. A schematic representation of W (ϕ) is given in Fig. 1 where the link to the smooth variation of the phase-field variable ϕ across the interface is shown. These graphs show that the double-well potential has two local minima in ϕ = 0 and ϕ = 1 that correspond to the pure phases. It acts to separate the two phases contrary to gradient energy terms that can be viewed as a regularization of the interfaces. It is the competition between these two terms that contributes to have a diffuse interface. At this stage, it remains to express g 0 in Eq.( 3). Here, we assume that the molar homogeneous free energy is defined by the weighting of pure molar Gibbs energies g s and g l associated to the solid and liquid phases, respectively. This reads:

g 0 (p, T, {x i }, ϕ) = h(ϕ)g s (p, T, x s i ) + 1 -h(ϕ) g l (p, T, x l i ) (5) 
where h(ϕ) is an interpolation function. Here, according to [START_REF] Moelans | An introduction to phase-field modeling of microstructure evolution[END_REF], we consider the following expression:

whose first derivative with respect to ϕ is proportional to the double-well potential. We will see later that h (ϕ) appears in the phase-field model. The function h(ϕ) and its derivative h (ϕ) are schematically presented in Fig. 1.

Another important thermodynamic closure is the description of the interfacial region. Following [START_REF] Tiwari | A consistent approach for coupling lumped-parameter and phase-field models for in-vessel corium to thermodynamic databases[END_REF][START_REF] Hirschhorn | A study of constituent redistribution in u-zr fuels using quantitative phase-field modeling and sensitivity analysis[END_REF][START_REF] Welland | Simulation of melting uranium dioxide nuclear fuel simulation de fusion de combustible nucléaire fait de bioxyde d'uranium[END_REF], we consider the well-known Kim-Kim-Suzuki model [START_REF] Kim | Phase-field model for binary alloys[END_REF] to describe the interface as a mixture of solid and liquid phases, with different composition but with the same chemical potentials.

x i = h(ϕ)x s i + 1 -h(ϕ) x l i (7a) ∂g s ∂x s i (x s i ) = ∂g l ∂x l i (x l i ) (7b)
Note that ∂g /∂x i differs from the standard definition of the chemical potential but is used here since the change in the total density ρ induced by the components' diffusion is neglected. For more details about the strength of such a model compared to other approaches [START_REF] Wheeler | Phase-field model for isothermal phase transitions in binary alloys[END_REF], we refer the interested reader to [START_REF] Moelans | An introduction to phase-field modeling of microstructure evolution[END_REF][START_REF] Kim | Phase-field model for binary alloys[END_REF][START_REF] Welland | Multicomponent phase-field model for extremely large partition coefficients[END_REF] and the references therein. The thermodynamic closures given by Eq.(3) to Eqs. [START_REF] Loukusa | Thermochemical modeling of nuclear fuel and the effects of oxygen potential buffers[END_REF] are similar to those proposed in [START_REF] Welland | Multicomponent phase-field model for extremely large partition coefficients[END_REF]. They will be used in the next section to derive the governing equations.

Governing equations

In this section, we derive the governing equations used to describe a two-phase compositional system. This is done from the thermodynamic closures proposed in §2.1 in the frame of the TIP [START_REF] De Groot | Non-equilibrium thermodynamics[END_REF].

To begin, let us consider the following set of governing equations:

∂ϕ ∂t = -J ϕ (8a) ∂ρx i ∂t = -∇ • j i i = 1, . . . , n (8b) 
∂ρe t ∂t = -∇ • q e t ( 8c 
)
∂ρs ∂t = -∇ • q s + S ( 8d 
)
where s is the molar entropy , S the entropy source, q s the entropy flux, e t the molar total energy , q e t the total energy flux, j i the compositional flux associated to the i th component and J ϕ a flow related to the phase change.

In this work, as done in [START_REF] Welland | Computer simulations of non-congruent melting of hyperstoichiometric uranium dioxide[END_REF], the momentum balance equation is ignored since neither structural mechanics nor hydrodynamics effects are considered. Therefore, the molar total energy e t corresponds to the molar internal energy of the system e.

In Eqs.(8), J ϕ , j i , q e t and q s are thermodynamics flow and fluxes that must be specified such that the second law of the thermodynamic holds, namely:

S ≥ 0 (9) 
For this purpose, the governing equations Eqs.( 8) must be combined under the constraint Eq.( 2) to express the entropy source S as a linear combination of thermodynamics forces and fluxes.

As already mentioned, the molar Gibbs energy depends on the pressure p, the temperature T , the phase-field variable ϕ, the molar fractions {x i } but also on the gradients ∇ϕ and {∇x i }. Therefore, its differential reads:

d g = -sd T + V m d p + n i =1 µ i d x i + n i =1 ψ i • d ∇x i + θd ϕ + ζ • d ∇ϕ (10) 
where the molar volume V m , the molar entropy s and the potentials µ i , ψ i , θ, ζ are defined by:

V m = ∂g ∂p T,ϕ,∇ϕ,{x i },{∇x i } (11a) s = - ∂g ∂T p,ϕ,∇ϕ,{x i },{∇x i } ( 11b 
)
µ i = ∂g ∂x i p,T,ϕ,∇ϕ,{x j } j =i ,{∇x i } ( 11c 
)
ψ i = ∂g ∂∇x i p,T,ϕ,{x i },{∇x j } j =i (11d) θ = ∂g ∂ϕ p,T,∇ϕ,{x i },{∇x i } (11e) ζ = ∂g ∂∇ϕ p,T,ϕ,{x i },{∇x i } (11f)
Now, we define the molar internal energy e as a function of the molar Gibbs energy g by applying the Legendre transformation. This yields to:

e = g -T ∂g ∂T p,ϕ,∇ϕ,{x i },{∇x i } -p ∂g ∂p T,ϕ,∇ϕ,{x i },{∇x i } ( 12 
)
In the following, the subscripts referring to the constant quantities in the partial derivatives will be omitted in order to simplify the notations. The use of Eqs. [START_REF] Simunovic | Modeling and simulation of oxygen transport in high burnup lwr fuel[END_REF] together with Eq.( 12) leads to:

e = g + T s -pV m (13) 
Now, as the evolution of the two phase compositional system is driven by the minimization of the molar Gibbs energy g , the Lagrange multiplier β is introduced to ensure the constraint Eq.( 2), yielding:

e = g + T s -pV m + β n i =1 (x i -1) (14) 
or, equivalently, the following differential form (where the constant molar volume assumption is applied):

d e = d g + T d s + sd T -V m d p + β n i =1 d x i (15) 
Then, substituting Eq. [START_REF] Simunovic | Coupling of thermochemistry solver thermochimica with moose/bison[END_REF] in Eq.( 15) and after performing some straightforward calculations under local thermodynamic equilibrium conditions [START_REF] De Groot | Non-equilibrium thermodynamics[END_REF], it yields to:

∂e ∂t = T ∂s ∂t + n i =1 μi + β ∂x i ∂t + n i =1 ∇ • ψ i ∂x i ∂t + η ∂ϕ ∂t + ∇ • ζ ∂ϕ ∂t ( 16 
)
where μi and η are two generalized potentials defined by:

μi = µ i -∇ • ψ i i = 1, . . . , n (17a) η = θ -∇ • ζ (17b)
By using Eq.(3) and Eqs. [START_REF] Simunovic | Modeling and simulation of oxygen transport in high burnup lwr fuel[END_REF], they can be written as:

μi = µ i - λ i ρ ∇ 2 x i i = 1, . . . , n (18a) η = ∂g ∂ϕ - κ ρ ∇ 2 ϕ (18b)
Finally, the governing equations Eqs.( 8) are used to simplify Eq.( 16), yielding:

∂ρs ∂t = -∇ • 1 T q - 1 T 2 q • ∇T - 1 T n i =1 ∇ μi + β • j i + 1 T ρηJ ϕ ( 19 
)
where q is a heat flux given by:

q = ρζ ∂ϕ ∂t - n i =1 μi + β j i + ψ i ∂ ρx i ∂t + q e t ( 20 
)
From the comparison of Eq.( 19) to the entropy balance Eq.(8d ), one can write:

q = T q s (21) S = - 1 
T n i =1 ∇ μi + β • j i + 1 T ρηJ ϕ - 1 
T 2 q • ∇T (22) 
As expected, the entropy source given by Eq.( 22) is now expressed as a linear combination of the thermodynamic forces ∇ μi + β /T, ∇T /T 2 , ρη/T and of the thermodynamic fluxes -j i , -q , J ϕ responsible for the irreversible processes [START_REF] De Groot | Non-equilibrium thermodynamics[END_REF].

In the frame of the TIP, the thermodynamic fluxes may be linked to thermodynamic forces thanks to linear phenomenological relationships [START_REF] De Groot | Non-equilibrium thermodynamics[END_REF][START_REF] Onsager | Reciprocal relations in irreversible processes. i[END_REF]. Before expressing these relationships, let us discuss about the formulation of the entropy source term. Indeed, it is noteworthy to mention that the conjugate pairs (-j i , ∇ μi + β /T ) and (-q ,∇T /T 2 ) depend directly on how the heat flux is defined in Eq. [START_REF] Jacqmin | Calculation of two-phase navier-stokes flows using phase-field modeling[END_REF]. Another definition of the heat flux will result in a different formulation of the entropy source term with different conjugate pairs. For example, following [START_REF] Simunovic | Modeling and simulation of oxygen transport in high burnup lwr fuel[END_REF][START_REF] De Groot | Non-equilibrium thermodynamics[END_REF][START_REF] Welland | 2.08 -matter transport in fast reactor fuels[END_REF][START_REF] Howard | Matter transport in solids[END_REF] to cite among others, S can be formulated as:

S = - n i =1 ∇ μi + β T • j i + 1 T ρηJ ϕ - 1 
T 2 q • ∇T (23) 
where q is another heat flux related to q s (cf. Eq.( 21)) according to:

q = T q s + n i =1 μi + β j i ( 24 
)
Compared to Eq.( 22), the diffusion flux -j i in Eq.( 23) is conjugate to ∇ μi + β /T instead of ∇ μi + β /T .

From Eq.( 24), another heat flux q can be defined. It reads:

q = q - n i =1 ∂h ∂x i -ψ i j i ( 25 
)
where h = g -T s is the molar enthalpy (J.mol -1 ). In Eq.( 25), q can be viewed as a 〈〈 reduced 〉〉 heat flux that includes the pure heat conduction but excludes the heat transfer by diffusion [START_REF] Welland | 2.08 -matter transport in fast reactor fuels[END_REF]. Such a definition of the heat flux leads to the following entropy source term:

S = - 1 
T n i =1 ∇ T μi + β • j i + 1 T ρηJ ϕ - 1 
T 2 q • ∇T (26) 
In Eq.( 26), the conjugate pairs are different from those obtained in Eq. [START_REF] Boyer | Cahn-hilliard/navier-stokes model for the simulation of three-phase flows[END_REF] or in Eq. [START_REF] Introïni | Interaction entre un fluide à haute température et un béton: contribution à la modélisation des échanges de masse et de chaleur[END_REF]. Here, the diffusion flux -j i is conjugate to ∇ T μi + β /T where ∇ T is the gradient taken at constant temperature. It means that the thermodynamic force ∇ T μi + β /T does not contain any temperature gradient contribution, contrary to the thermodynamic force ∇ μi + β /T that results from the heat flux q defined by Eq. [START_REF] Jacqmin | Calculation of two-phase navier-stokes flows using phase-field modeling[END_REF]. Such conjugate pairs are similar to those considered in [START_REF] Welland | Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel[END_REF].

The definition of the heat flux could appear to be somewhat arbitrary since it does not change the physical results [START_REF] De Groot | Non-equilibrium thermodynamics[END_REF]. However, as it leads to different conjugate pairs, this choice determines in some extent the meaning of the physical effects that are described by the linear phenomenological relationships. Keeping that in mind, we assume in this work that the heat flux defined by Eq.( 20) and its associated entropy source term given by Eq.( 22) are suitable (or at least as suitable as any other) for describing the system of interest. Now, assuming that the physical system is isotropic, the Curie principle applies [START_REF] De Groot | Non-equilibrium thermodynamics[END_REF] and we can propose the following relations:

J ϕ = L ϕϕ ρη T (27a) -q = L q ,q ∇T T 2 + n i =1 L q ,i ∇ μi + β T (27b) -j i = L i ,i ∇ μi + β T + L i ,q ∇T T 2 i = 1, . . . , n (27c) 
The coefficient L q ,q is related to the thermal conductivity k so that with no mass flow, the heat flux q is given by the well-known Fourier law. This leads to:

L q ,q = kT 2 (28) 
The coefficients L ϕ,ϕ and L i ,i correspond to mobility terms M ϕ T and ρM i T associated with the phase-field variable ϕ and the ith component, respectively. Onsager's theory [START_REF] Onsager | Reciprocal relations in irreversible processes. i[END_REF] states that the cross coefficients L q ,i and L i ,q are equal. The former is related to the Dufour effect i.e. the presence of a heat flux caused by composition gradients. The latter is associated to the Soret effect i.e. the components diffusion under the temperature gradient. They can be expressed as follows:

L i ,q = L i ,i Q i ( 29 
)
where Q i is the heat of transport coefficient associated with the ith component. Using the 〈〈 reduced 〉〉 heat flux given by Eq.( 25), Eq.( 29) may be written as:

L i ,q = L i ,i Q i ( 30 
)
Here-above, Q i is the 〈〈 reduced 〉〉 heat of transport [START_REF] Welland | 2.08 -matter transport in fast reactor fuels[END_REF] that includes a kinetic contribution and a thermodynamic 140 contribution [START_REF] Howard | Matter transport in solids[END_REF][START_REF] De Groot | Sur la thermodynamique de quelques processus irréversibles[END_REF][START_REF] Dougherty | A theory of thermal diffusion in liquids[END_REF]. Similarly to Eq.( 25), it can be expressed as:

Q i = Q i - ∂h ∂x i -ψ i ( 31 
)
From Eq.( 31), it appears that the heat of transport Q i used in Eq.( 29) corresponds to the kinetic contribution of Q i whereas its thermodynamic contribution is rather contained in the thermodynamic force ∇ μi + β /T that is used in Eqs.(27b) and (27c). As done by Welland & al. [34] in similar conditions, we assume that temperature gradients are sufficiently large compared to composition gradients so that the Dufour effect may be neglected. The Soret effect is taken into account in our model. In these conditions, the phenomenological relations Eqs.( 27) read:

-q = k∇T (32a)

-j i = ρM i ∇ μi + β + ρM i Q i ∇T T i = 1, . . . , n (32b) 
J ϕ = M ϕ ρη (32c)
Now, we shall define the Lagrange multiplier β to express the fluxes j i . To this end, we use the mass balance constraint Eq.( 2) together with Eq.(8b), yielding:

n i =1 ∇ • j i = 0 (33) 
Then, to satisfy Eq.( 33), we propose the following sufficient condition:

n i =1 j i = 0 (34) 
which, combined with Eq.(32b), gives:

∇β = - 1 n j =1 M j n i =1 M i ∇ μi + M i Q i ∇T T ( 35 
)
Now, after some calculations, one can write j i in the following form:

-j i = ρ n i = j M j n k=1,k =i M i M k ∇ μi -μk + (Q i -Q k ) ∇T T i = 1, . . . , n (36) 
Finally, by substituting the phenomenological relations Eq.(32a), Eq.(32c) and Eq.( 36) in Eqs. [START_REF] Sundman | The implementation of an algorithm to calculate thermodynamic equilibria for multi-component systems with non-ideal phases in a free software[END_REF] and by using Eqs. [START_REF] Bale | Reprint of: Factsage thermochemical software and databases[END_REF], we are able to write the governing equations in the following form:

∂ϕ ∂t = -M ϕ ρη (37a) ρη = ρ ∂g ∂ϕ -κ∇ 2 ϕ (37b) ∂x i ∂t = ∇ •            1 n j =1 M j n k=1,k =i M i M k ∇ μi -μk + (Q i -Q k ) ∇T T            i = 1, . . . , n (37c) μi = ∂g ∂x i - λ i ρ ∇ 2 x i i = 1, . . . , n (37d) 
T ∂ρs ∂t = ∇ • (k∇T ) - n i =1 ∇ μi + β • j i -ρη ∂ϕ ∂t (37e)
Here-above, Eq.(37a) and Eq.(37b) correspond to the Allen-Cahn equation whereas Eq.(37c) and Eq.(37d ) can be viewed as Cahn-Hilliard equations where the diffusive driving force is extended to account for the Soret effect. Following [START_REF] Kim | Phase-field model for binary alloys[END_REF] and by using the thermodynamic closures given in §2.1, one can explicitly express the potentials η (multiplied by the molar density ρ) and μi as:

μi = ∂g s ∂x s i - λ i ρ ∇ 2 x i (38a) ρη = -ρh (ϕ) g l -g s - n i =1 ∂g s ∂x s i x i l -x i s + W (ϕ) -κ∇ 2 ϕ (38b)
We refer the interested reader to Appendix A for more details about the derivation of Eqs. [START_REF] Geiger | Modelling nuclear fuel behaviour with taf-id: Calculations on the verdon-1 experiment, representative of a nuclear severe accident[END_REF]. More particularly, we show in Appendix A that the potentials η (multiplied by the molar density ρ) and μi can be written in the following equivalent form:

μi = ∂g l ∂x l i - λ i ρ ∇ 2 x i (39a) ρη = -ρh (ϕ) g l -g s - n i =1 ∂g l ∂x l i x i l -x i s + W (ϕ) -κ∇ 2 ϕ (39b)
Regarding Eq.(37e), in practice, it is more appropriate to perform numerical simulations as a function of temperature instead of entropy. The entropy balance is therefore re-written as:

150 ρC p ∂T ∂t = ∇ • (k∇T ) - n i =1 ∂h ∂x i - λ i ρ ∇ 2 x i ∂ρx i ∂t -ρ ∂h ∂ϕ - κ ρ ∇ 2 ϕ ∂ϕ ∂t ( 40 
)
and we refer the reader to Appendix B for more details about the derivation of this heat equation. Finally, from Eqs.(37) together with Eqs. [START_REF] Geiger | Modelling nuclear fuel behaviour with taf-id: Calculations on the verdon-1 experiment, representative of a nuclear severe accident[END_REF] and Eq.( 40), one can write:

∂ϕ ∂t = -M ϕ ρη (41a) ρη = -ρh (ϕ) g l -g s - n i =1 ∂g s ∂x s i x i l -x i s + W (ϕ) -κ∇ 2 ϕ (41b) ∂x i ∂t = ∇ •            1 n j =1 M j n k=1,k =i M i M k ∇ μi -μk + (Q i -Q k ) ∇T T            i = 1, . . . , n (41c) μi = ∂g s ∂x s i - λ i ρ ∇ 2 x i i = 1, . . . , n ( 41d 
)
ρC p ∂T ∂t = ∇ • (k∇T ) - n i =1 ∂h ∂x i - λ i ρ ∇ 2 x i ∂ρx i ∂t -ρ ∂h ∂ϕ - κ ρ ∇ 2 ϕ ∂ϕ ∂t (41e)
These equations stand for the general expression of our two-phase compositional phase-field model.

Reduction to the uranium-oxygen binary system in a solid/liquid mixture

Here, the phase-field model derived in §2 is applied to a system of interest for nuclear reactors. So, rather than considering a general multi-component system to describe, for instance, a set of volatile fission products, we focus on the uranium-oxygen binary system. In addition, to simplify the problem, we assume that there is no miscibility gap in the solid and liquid phases and consider that the gradient energy coefficients λ o and λ u are null. Such an assumption is commonly used in solidification applications [START_REF] Moelans | An introduction to phase-field modeling of microstructure evolution[END_REF].

However, as shown by the U-O phase diagram of Fig. 2, the binary system can exhibit miscibility gaps (see 〈〈 LIQUID-1+LIQUID-2 〉〉 in the hypostoichiometric region in Fig. 2). Simulation of the associated phase segregation effects would require to keep these gradient coefficient terms in the system, as shown by Cardon & al. [26] in his treatment of liquid phase segregation in the U-O binary system.

For a uranium-oxygen binary system in a solid/liquid mixture, the phase-field model given by Eqs.( 41) boils down into the following form:

∂ϕ ∂t = -M ϕ -ρh (ϕ) g l -g s -x l o -x s o μo -μu + W (ϕ) -κ∇ 2 ϕ (42a) ∂x o ∂t = ∇ • M u M o M u + M o ∇ μo -μu + (Q o -Q u ) ∇T T (42b) μo -μu = ∂g s ∂x s o - ∂g s ∂x s u , with x u + x o = 1 (42c) ρC p ∂T ∂t = ∇ • (k∇T ) - ∂h ∂x o - ∂h ∂x u ∂ρx o ∂t -ρ ∂h ∂ϕ - κ ρ ∇ 2 ϕ ∂ϕ ∂t (42d)
without forgetting the interfacial region defined by:

x o = h(ϕ)x s o + 1 -h(ϕ) x l o (43a) ∂g s ∂x s o (x s o ) - ∂g s ∂x s u (x s u ) = ∂g l ∂x l o (x l o ) - ∂g l ∂x l u (x l u ) (43b)
where the subscripts • u and • o refer to uranium and oxygen, respectively. Here-above, it is noteworthy to mention that the relationship Eq.(43b) ensures that the chemical potentials are the same in the interfacial region because we focus on a binary system and x o + x u = 1. At this stage, let us take a look at the mobility coefficients whose expressions have not been discussed yet. Following [START_REF] Boyer | Study of a three component cahn-hilliard flow model[END_REF] and [START_REF] Introïni | Cahn-hilliard modelling for a two-phase compositional system[END_REF], we express these coefficients in such a way that the two-phase compositional model remains valid in some limiting cases, namely when one of the two phases or one of the two components vanishes. For example, when the solid phase has fully melted (i.e. ϕ = 0), the phase-field model degenerates in the following form:

O C UO 2±x LIQUID LIQUID-1 + LIQUID-2 LIQUID+UO 2-x γ-U+UO 2-x β-U+UO 2-x α-U+UO 2-x LIQUID+UO 2+x LIQUID+γ-U 4 O 9 UO 2+x + δ-U 3 O 8 γ-U 4 O 9 + δ-U 3 O 8 T [K] x o
∂x o ∂t = ∇ • M l c (x o , x u )∇ μo -μu + M l T (x o , x u ) ∇T T (44a) μo -μu = ∂g l ∂x l o - ∂g l ∂x l u (44b) ρC p ∂T ∂t = ∇ • (k∇T ) - ∂h ∂x o - ∂h ∂x u ∂ρx o ∂t (44c)
where we have related the mobility coefficients M u,u and M o,o to a mobility coefficient M l c (x o , x u ) of the uraniumoxygen binary system in the liquid phase. We have also denoted by M l T (x o , x u ) the product of M l c (x o , x u ) with the difference of the heat of transport coefficients Q l o -Q l u evaluated in the liquid phase. Here-above, Eqs.( 44) correspond to the oxygen thermal diffusion problem in the pure liquid phase. This limiting case is obtained whether M ϕ is constant or depends on ϕ. So, as an initial approach, we assume M ϕ is constant for numerical reasons, i.e. to ensure the convergence of the numerical method used to solve the discrete form of the Allen-Cahn equation and to guaranty that the movement of the liquid-solid interface is controlled by the compositional diffusion gradient. A similar approach has been followed by Welland [START_REF] Welland | Simulation of melting uranium dioxide nuclear fuel simulation de fusion de combustible nucléaire fait de bioxyde d'uranium[END_REF]. However, in theory, this kinetic parameter should be estimated on the basis of a rigorous dimensional analysis, as proposed by Tiwari [START_REF] Tiwari | A consistent approach for coupling lumped-parameter and phase-field models for in-vessel corium to thermodynamic databases[END_REF]. Similarly, when ϕ = 1, we can link the mobility coefficients to the compositional M s c (x o , x u ) and thermal M s T (x o , x u ) mobility coefficients for the uranium-oxygen binary system in the solid phase. In these conditions, we postulate the following general relationships:

M c (ϕ, x o , x u ) := h(ϕ) × M s c (x o , x u ) + 1 -h(ϕ) × M l c (x o , x u ) (45a) M T (ϕ, x o , x u ) := h(ϕ) × M s T (x o , x u ) + 1 -h(ϕ) × M l T (x o , x u ) (45b)
where h(ϕ) is the interpolation function given by Eq.( 6). In the following, we assume that the generic mobility coefficients in the oxygen thermal diffusion Eqs.(42b) are equal to M c (ϕ, x o , x u ) and M T (ϕ, x o , x u ). In Eqs. [START_REF]A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[END_REF], the coefficients

M s c (x o , x u ), M l c (x o , x u ), M s T (x o , x u ) and M l T (x o , x u
) must be defined to prevent unphysical apparition of a component not initially present, such that:

x o (t = t 0 ) = 0 ⇒ ∀t > t 0 , x o (t ) = 0 (46a) x o (t = t 0 ) = 1 ⇒ ∀t > t 0 , x o (t ) = 1 (46b)
To fulfill these constraints, we follow [START_REF] Moelans | An introduction to phase-field modeling of microstructure evolution[END_REF] and assume that M s c (x o , x u ) and M l c (x o , x u ) are given in the following form:

M s c (x o , x u ) = M s u x o + M s o x u × x o × x u (47a) M l c (x o , x u ) = M l u x o + M l o x u × x o × x u (47b)
where M l u , M l o , M s u and M s o are the uranium and oxygen mobilities, respectively associated with the liquid and solid phases. They will be detailed in §5. At this stage, it is interesting to remark that the governing Eqs.( 44) applied to the solid phase can be viewed as an extension of the thermal diffusion equations proposed by Simunovic & al. [START_REF] Simunovic | Modeling and simulation of oxygen transport in high burnup lwr fuel[END_REF] where the diffusive driving force only depends on the oxygen chemical potential. Indeed, the diffusive driving force in Eq.(44a) shows that, in our model, the oxygen transport is by oxygen-uranium inter-diffusion and by Soret effect. Now, we focus on Eq.(42a) where we must first define the height of the double-well ω on which W (ϕ) depends and then the gradient energy term κ. To do so, a standard way consists in conducting an one-dimensional analysis of the phase-field model at the equilibrium state (see for instance [START_REF] Cardon | Modelling of liquid phase segregation in the uranium-oxygen binary system[END_REF][START_REF] Kim | Phase-field model for binary alloys[END_REF][START_REF] Tiwari | A consistent approach for coupling lumped-parameter and phase-field models for in-vessel corium to thermodynamic databases[END_REF][START_REF] Welland | Simulation of melting uranium dioxide nuclear fuel simulation de fusion de combustible nucléaire fait de bioxyde d'uranium[END_REF]). Here, it is noteworthy to mention that such an analysis is only valid because the gradient energy coefficients λ o and λ u are null. Otherwise, the analysis is broken by the inclusion of gradient energy terms (i.e. ∇x o and ∇x u ) which produce implicit energy contributions in interfacial energies. As shown in Appendix C, this analysis yields:

κ = 3 2 σ (48a) ω = 12 σ (48b)
where and σ denote the liquid-solid interface thickness (m) and the surface tension (J.m -2 ) acting between these two phases, respectively. They will be defined later for the demonstration problems presented in §5.

In the heat equation Eq.(44c), the thermal conductivity k and the heat capacity C p depend on temperature but also on the phase composition and the oxygen content. In fuel performance codes, the heat capacity is often calculated according to empirical correlations or given by laws resulting from atomic-scale simulations [START_REF] Takoukam-Takoundjou | Optimization of a new interatomic potential to investigate the thermodynamic properties of hypo-stoichiometric mixed oxide fuel u1-ypuyo2-x[END_REF][START_REF] Takoukam-Takoundjou | Study of thermodynamic properties of u1-ypuyo2 mox fuel using classical molecular monte carlo simulations[END_REF][START_REF] Bathellier | A new heat capacity law for uo2, puo2 and (u,pu)o2 derived from molecular dynamics simulations and useable in fuel performance codes[END_REF]. It is interesting to keep in mind that C p could be calculated at run-time with a thermochemical solver coupled with a CALPHAD database such as, for instance, OpenCalphad with the TAF-ID.

Finally, one can write the phase-field model in the following form:

∂ϕ ∂t = -M ϕ -ρh (ϕ) g l -g s -x l o -x s o μo -μu + 24 σ ϕ 1 -ϕ 1 -2ϕ - 3 2 σ ∇ 2 ϕ (49a) ∂x o ∂t = ∇ • M c (ϕ, x o , x u )∇ μo -μu + M T (ϕ, x o , x u )∇ln (T ) (49b) μo -μu = ∂g s ∂x s o - ∂g s ∂x s u , with x u + x o = 1 (49c) ρC p ∂T ∂t = ∇ • (k∇T ) - ∂h ∂x o - ∂h ∂x u ∂ρx o ∂t -ρ ∂h ∂ϕ - 3 2 σ ∇ 2 ϕ ∂ϕ ∂t (49d)
where, for numerical convenience, we have reformulated the Soret term in Eq.(49b) as a function of the gradient of the logarithm of the temperature (i.e. 1/T ∇T = ∇ln (T )).

At this stage, it is interesting to discuss the link between the phase-field model and a CALPHAD database. As mentioned in §1, the goal is to use the thermodynamic data from the TAF-ID [START_REF] Guéneau | Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the u-pu-o-c systems[END_REF][START_REF] Guéneau | Taf-id: An international thermodynamic database for nuclear fuels applications[END_REF]. This database provides a complex description of the solid and liquid phases based on sub-lattices models that does not allow to make a direct link to the homogeneous Gibbs energy function of the phase-field model. Indeed, to illustrate the complexity, the variables of the Gibbs energy functions in the sub-lattices models provided by the TAF-ID are the mole fractions of constituents in each sub-lattice (e.g. ion fractions in the liquid ionic model) whereas ours are expressed in mole fraction of the U and O elements. So, among the different approaches available in the open literature to interface a CALPHAD thermodynamic description with a phase-field model, our coupling method relies on thermodynamic equilibrium calculations performed with the OpenCalphad thermochemical solver [START_REF] Sundman | Opencalphad-a free thermodynamic software[END_REF]. More particularly, all CAL-PHAD contributions in Eqs. [START_REF] Howard | Matter transport in solids[END_REF] The coupling is detailed in §4.

Phase-field solver

The phase-field model given by Eqs.( 49), has been implemented in a C++ program. It can be used as a standalone program but also as a dedicated component in the PLEIADES/Fuel Performance Codes to simulate incipient fuel melting and oxygen transport.

This phase-field solver is directly coupled with the OpenCalphad thermochemical solver recently integrated in the PLEIADES platform [START_REF] Introïni | Development of a robust, accurate and efficient coupling between pleiades/alcyone 2.1 fuel performance code and the opencalphad thermo-chemical solver[END_REF] which relies on the TAF-ID database [START_REF] Guéneau | Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the u-pu-o-c systems[END_REF][START_REF] Guéneau | Taf-id: An international thermodynamic database for nuclear fuels applications[END_REF] for equilibrium calculations. The use of a thermochemical solver forces us to perform a partitioned scheme at each time step (cf. §4.1). As a first straightforward implementation to well analyze and parameterize the phase-field model, we consider 1D problems, discretized by a Finite-Difference scheme (cf. §4.2).

In the following, the numerical treatment of the heat equation Eq.(49d ) is not discussed. Without loss of generality, the focus is on Eq.(49a), Eq.(49b) and Eq.(49c) assuming the temperature T be known.

Partitioned scheme solved at each time step

As previously explained, the use of a thermochemical solver with a CALPHAD database leads us to develop a partitioned scheme, here solved at each time step by a fixed-point algorithm. Fig. 3 presents the solution procedure performed at each iteration of the fixed-point algorithm. It consists in three main stages, starting with the local equilibrium calculations (see 〈〈 Stage 1 〉〉 in Fig. 3). These calculations are performed with the OpenCalphad thermochemical solver recently integrated in the PLEIADES platform [START_REF] Introïni | Development of a robust, accurate and efficient coupling between pleiades/alcyone 2.1 fuel performance code and the opencalphad thermo-chemical solver[END_REF]. Here, the scope of the numerical strategies proposed in [START_REF] Introïni | Development of a robust, accurate and efficient coupling between pleiades/alcyone 2.1 fuel performance code and the opencalphad thermo-chemical solver[END_REF] have been expanded for the needs of the current application. Thus, equilibrium calculations are either done in a pure phase (liquid or solid) or in the interfacial region depending on the value of the phaseindicator ϕ. As done in [START_REF] Introïni | Development of a robust, accurate and efficient coupling between pleiades/alcyone 2.1 fuel performance code and the opencalphad thermo-chemical solver[END_REF] to deal with the trace fission products ( §2.4.4 in reference [START_REF] Introïni | Development of a robust, accurate and efficient coupling between pleiades/alcyone 2.1 fuel performance code and the opencalphad thermo-chemical solver[END_REF]), a preliminary step is added to classify the nodes of the mesh in three groups depending on whether they belong to the solid phase (i.e. ϕ = 1), to the liquid phase (i.e. ϕ = 0) or to the interfacial region (i.e. ϕ ∈]0, 1[). The spatial strategy discussed in §2.4.2 of reference [START_REF] Introïni | Development of a robust, accurate and efficient coupling between pleiades/alcyone 2.1 fuel performance code and the opencalphad thermo-chemical solver[END_REF] to initialize the thermochemical calculations is then used. There is no technical difficulty in performing equilibrium calculations in the pure phases for the U-O binary system. However, regarding the nodes of the mesh located at the interface, it is a little more tricky since we have to find the liquid and solid compositions that are consistent with the average composition of the mixture and that ensure the equality of the chemical potentials. In other words, we have to solve a non linear problem that can be written as follows. Let x o and ϕ being known, we have to find x l o such that: where F is an univariate function defined by:

F (x l o ) = 0 ( 50 
)
F (x l o ) = ∂g s ∂x s o (x l o ) - ∂g s ∂x s u (x l o ) - ∂g l ∂x l o - ∂g l ∂x l u (x l o ) (51) 
Here-above, the chemical potentials are consecutively calculated by the OpenCalphad thermochemical solver in the liquid phase with x l o and in the solid phase with

x s o = x o -1 -h(ϕ) x l o /h(ϕ)
whereas the root of Eq.( 50) is found with TOMS Algorithm 748 [START_REF] Alefeld | Algorithm 748: enclosing zeros of continuous functions[END_REF]. The algorithm used to perform equilibrium calculations during the first stage is schematically described in Fig. 4. As mentioned in this figure, the outputs of interest are the chemical potentials, the Gibbs energies and the oxygen molar fractions in pure phases. They are used to calculate the CAL-PHAD source term in the Allen-Cahn equation Eq.(49a), which is solved during the second stage of the partitioned scheme. The thermodynamic outputs of the first stage are also used with the updated phase-indicator ϕ resulting from the second to estimate the diffusive driving force of the oxygen thermal diffusion equation Eq.(49b) (with Eq.(49c)). The latter equation is solved during the third stage of the partitioned scheme. At the end of this third stage, the phase-field variable and the oxygen molar fraction are updated and their values can be used to start a new iteration of the fixed-point algorithm. When the convergence of the fixed-point iterations is reached, the phase-field problem can be solved at the next time step using the same procedure. 

Finite-Difference solution of the two-phase compositional problem

As explained in §4.1, after doing all the equilibrium calculations, the two-phase problem and the oxygen thermal diffusion problem are solved sequentially. Even if the time discretization scheme is implicit within each equation, the problem splitting (partitioned resolution) involves a semi-implicit resolution of the global problem variables. Therefore, this may lead to a time step restriction depending for instance on the magnitude of the mobility coefficients, the temperature, the chemical potentials and the space size. Regarding the space discretization, we focus here on one-dimensional problem solved by centered Finite Differences. The interested reader may refer to Appendix D for more details about the derivation of this numerical scheme.

Demonstration problems

In this section, we present two demonstration problems based on applications to nuclear fuel already studied in open literature. The range of U-O of interest for these two demonstration problems is shown in the phase diagram depicted in Fig. 5. Following Simunovic & al. [START_REF] Simunovic | Modeling and simulation of oxygen transport in high burnup lwr fuel[END_REF], we begin by simulating the oxygen transport in UO 2.005 under an imposed thermal gradient with a maximum temperature lower than the liquidus. This numerical experiment aims at verifying the thermodynamic consistency of the phase-field model when one of the two phases is initially absent and at assessing the impact of the formulation of the diffusive driving forces on the results. Then, based on the work proposed by Welland & al. [START_REF] Welland | Computer simulations of non-congruent melting of hyperstoichiometric uranium dioxide[END_REF], we check the robustness and the capability of our phase-field model to simulate incipient melting and oxygen transport in oxidized fuel under an increasing thermal gradient. For this demonstration problem, we consider two oxidation levels with initial uniform oxygen-to-uranium ratios O/U equal to 2.01 and 2.05. Before presenting the results, let us define the kinetics parameters of the models and the computational domain used for these two tests.

Kinetics parameters

As previously explained, the CALPHAD terms in our phase-field model result from OpenCalphad equilibrium calculations done with the thermodynamic data of the TAF-ID. More particularly, the liquid phase is thermodynamically described by a single ionic two-sublattice model [START_REF] Guéneau | Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the u-pu-o-c systems[END_REF][START_REF] Hillert | A two-sublattice model for molten solutions with different tendency for ionization[END_REF] while the solid phase of mixed oxides with a fluorite structure is described by a three-sublattice model [START_REF] Guéneau | Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the u-pu-o-c systems[END_REF]. In case of a uranium-oxygen binary system, it reduces to the following description:

(U 3+ , U 4+ , U 5+ ) 1 (O 2-, Va) 2 (O 2-, Va) 1 ( 52 
)
where the first sublattice corresponds to the metallic cations, the second to the normal site for oxygen anions while 240 the third sublattice represents the interstitial oxygen anions in the fluorite phase [START_REF] Guéneau | Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the u-pu-o-c systems[END_REF][START_REF] Guéneau | Taf-id: An international thermodynamic database for nuclear fuels applications[END_REF]. Moore & al. [START_REF] Moore | Diffusion model of the non-stoichiometric uranium dioxide[END_REF] have related the concentration of defects in UO 2±x (i.e. the site fractions of each component in each sublattice) to the stoichiometric deviation and developed a model of oxygen and uranium diffusion in non-stoichiometric uranium dioxide. For more details about the diffusion mechanisms associated to each component, we refer the interested reader to reference [START_REF] Moore | Diffusion model of the non-stoichiometric uranium dioxide[END_REF]. According to their model, the uranium mobility M s u in Eq.(47a) can be expressed as:

245 M s u = y U 3+ M U 3+ exp - Q U 3+ RT + y U 4+ M U 4+ exp - Q U 4+ RT + y U 5+ M U 5+ exp -Q U 5+ + y U 4+ y U 5+ I U 5+ RT ( 53 
)
where R is the gas constant (J.mol -1 .K -1 ) and T the temperature. In Eq.( 53), the quantities y are the site fractions of cationic species (calculated by the OpenCalphad thermochemical solver) while the parameters M , Q and

U 3+ U 4+ U 5+ M [mol.m 2 .J -1 .s -1 ] 1.55 × 10 -8 5.5 × 10 -9 1.35 × 10 -9 Q [kJ.mol -1 ] 540 580 440 I [kJ.mol -1 ] - - 345 
Table 1: Pre-exponential factors and activation energies associated with the uranium mobility in the solid phase [START_REF] Moore | Diffusion model of the non-stoichiometric uranium dioxide[END_REF] I denote pre-exponential factors, activation energies and a non-temperature dependent mixing term, respectively. Their values are given in Table .1. The diffusion model proposed in [START_REF] Moore | Diffusion model of the non-stoichiometric uranium dioxide[END_REF] describes the oxygen mobility M s o in Eq.(47a) in the following form:

M s o = y V a 1 -y V a M V a exp -Q V a + y V a 1 -y V a (A V a -B V a T ) RT + y I o 1 -y I o M I o exp -Q I o + y I o 1 -y I o A I o RT ( 54 
)
where the subscripts • V a and • I o correspond to quantities associated with the oxygen vacancy in the second sublattice and the interstitial oxygen anions in the third sublattice, respectively. The pre-exponential factors M , the activation energies Q and the mixing terms A and B are given in Table .2. Regarding the liquid phase, the uranium

Va I o M [mol.m 2 .J -1 .s -1 ] 4.38 × 10 -12 2.76 × 10 -10 Q [kJ.mol -1 ] 53.498 95.411 A [kJ.mol -1 ] 2.234 -90.548 B [kJ.(mol.K) -1 ]
0.01991 -Table 2: Pre-exponential factors and activation energies associated with the oxygen mobility in the solid phase [START_REF] Moore | Diffusion model of the non-stoichiometric uranium dioxide[END_REF] (here, M I o has to be multiplied by 100 in order to be consistent with the Fig. 6 shown in [START_REF] Moore | Diffusion model of the non-stoichiometric uranium dioxide[END_REF])

and oxygen mobilities M l u and M l o should be defined similarly to M s u and M s o . However, to our knowledge, there is no diffusion model for the ionic two-sublattice model used to describe the liquid phase. Consequently, for these demonstration problems, we consider that at each time step, M l u and M l o are equal to the maximum values of M s u and M s o calculated at the hottest point in the solid phase. As far as the oxygen heat of transport coefficient is concerned, we use as first approximation the correlation recently proposed by Konarski & al. [5] for the solid phase. It reads:

Q s o = -2.04 × 10 -4 × exp     5.35     4 + 2 x o x u -2 0.0508         in J.mol -1 (55) 
To the best of our knowledge, no reference data is available in the open literature for the uranium heat of transport. Consequently, Q s u is null for these demonstration problems. Given the lack of data, Welland & al. [START_REF] Welland | Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel[END_REF] ignored the Soret effect in the liquid phase in their numerical experiments. Here, similarly to [START_REF] Welland | Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel[END_REF], we consider that the difference of the heat of transport coefficients Q l o -Q l u is zero in the pure liquid phase. At this stage, the interfacial energy σ, the interface thickness and the mobility coefficient M ϕ needs to be defined. We consider σ = 6.10 -2 J.m -2 according to [START_REF] Welland | Simulation of melting uranium dioxide nuclear fuel simulation de fusion de combustible nucléaire fait de bioxyde d'uranium[END_REF] and we choose = 3.10 -4 m and M ϕ = 10 -4 . As mentioned in §3, this value is chosen for numerical convenience but it should be estimated on the basis of a rigorous dimensional analysis [START_REF] Tiwari | A consistent approach for coupling lumped-parameter and phase-field models for in-vessel corium to thermodynamic databases[END_REF].

Computational domain and solution algorithm

Fig. 6 shows the computational domain Ω with its boundaries Γ 0 (center of the fuel pellet) and Γ N (periphery of the fuel pellet) that is used for both demonstration problems. It corresponds to a half fuel pellet with a radius center pellet In this work, we consider it is sufficient to perform only one iteration of the fixed-point algorithm described in §4.1 to solve accurately these 1D demonstration problems. In that case, the partitioned scheme solved at each time step reduces to a one way coupling scheme. The time step used for the first problem is equal to 10 -1 s. The harsh conditions associated to melting in the second problem require smaller time steps. Therefore, we have used ∆t = 2 × 10 -2 s and ∆t = 2 × 10 -3 s for the lowest and highest fuel oxidation levels, respectively.

Γ N periphery pellet N Ω r = 0 r = R i = N

Simulation of oxygen transport in UO 2.005 under an imposed radial temperature gradient below the liquidus

In this section, we simulate the oxygen transport in hyperstoichiometric fuel under an imposed temperature gradient below the liquidus. In this case, ϕ = 1 and the phase-field model reduces to the oxygen thermal diffusion equation in the solid phase. This demonstration problem aims at checking the consistency of the model but also assessing the impact of the Soret effect in the solid phase on the oxygen redistribution along the fuel pellet radius. To do so, we have performed two simulations without and with accounting for the temperature gradient in the diffusive driving force. In the following, these simulations are referred to as 〈〈 diffusion case 〉〉 and 〈〈 thermal diffusion case 〉〉 , respectively.

Regarding temperature, we consider a parabolic profile similar to the one proposed in [START_REF] Konarski | Thermo-chemical-mechanical modeling of nuclear fuel behavior: Impact of oxygen transport in the fuel on pellet cladding interaction[END_REF]. It reads:

T (r ) = T (R) + P 0 × R 2 -r 2 4πR 2 k ( 56 
)
where k = 2W.m -1 .K -1 is the thermal conductivity and T (R) = 835K the temperature imposed on Γ N (r = R) and P 0 the linear heat rate calculated to have 1873K imposed on Γ 0 (i.e. P 0 26kW.m -1 ). The radial distribution of temperature obtained with Eq.( 56) is depicted in Fig. 7. It is representative of temperature profiles induced by linear heat rates encountered during power ramps.

Figs. [START_REF] Sundman | The implementation of an algorithm to calculate thermodynamic equilibria for multi-component systems with non-ideal phases in a free software[END_REF] show the initial state of the simulations in terms of oxygen-to-uranium ratio O/U , chemical potential difference μoμu and oxygen chemical potential μo . In Fig. 8a, we can see that the O/U ratio of the fuel is uniform along the pellet radius and equal to 2.005. The graphs of Fig. 8b and Fig. 8c show that the chemical potentials μoμu and μo decrease from the periphery to the center of the pellet while temperature increases. The radial profile of the oxygen chemical potential shown in Fig. 8c is in good agreement with the one obtained by Simunovic & al. (see Fig. 5 in the reference [START_REF] Simunovic | Modeling and simulation of oxygen transport in high burnup lwr fuel[END_REF]).

Figs.9 present the simulation results at steady state. In the graphs, the blue curves refer to the diffusion case whereas the green curves refer to the thermal diffusion case. The radial profiles of the O/U ratio clearly show that the oxygen moved from the periphery (coldest region) to the center of the pellet (hottest region). Moreover, as suggested in [START_REF] Simunovic | Modeling and simulation of oxygen transport in high burnup lwr fuel[END_REF], we observe that oxygen transport is hardly affected by the Soret effect in the conditions considered for this demonstration problem. This result can be viewed as a direct consequence of the definition of the heat flux in Eq.( 20) because the compositional part of the diffusive driving forces is a function of the gradient of the chemical potentials which depend on the temperature implicitly. As discussed in §2.2, the thermodynamic contribution of the heat of transport is in some ways included in the gradient of the chemical potentials and only the kinetic part is associated to the thermal diffusion contribution, here called Soret effect. However, this trend observed under an imposed temperature gradient cannot be generalized to harsher conditions, with higher degree of oxidation and temperature gradients. Now, let us focus on the radial distribution of the chemical potentials presented in the two last graphs of Fig. 9. As expected from Eq.( 49), at the steady state, the difference between the oxygen and the uranium chemical potentials becomes uniform for the diffusion case and proportional to the logarithm of the temperature for the thermal diffusion case.

Contrary to the results obtained by Simunovic & al. (Fig. 5 in reference [START_REF] Simunovic | Modeling and simulation of oxygen transport in high burnup lwr fuel[END_REF]), the oxygen potential remains non uniform along the fuel pellet radius, even for the pure compositional diffusion case. This difference in results is explained simply by the definition of the compositional part of the oxygen equation which describes oxygenuranium inter-diffusion in our model and only oxygen diffusion in the model proposed by Simunovic & al. [START_REF] Simunovic | Modeling and simulation of oxygen transport in high burnup lwr fuel[END_REF].

Our results point out that the contribution of uranium cannot be ignored from the diffusion process in order to be thermodynamically consistent with the equilibrium calculations done for the uranium-oxygen binary system. Consequently, to simulate oxygen diffusion in a multicomponent system [START_REF] Simunovic | Modeling and simulation of oxygen transport in high burnup lwr fuel[END_REF], it seems more thermodynamically consistent to express the compositional part of the diffusive driving forces as a function of the chemical potentials of all the components involved in the system. Such a formulation is provided by the general form of our phasefield model Eqs. [START_REF] Lukas | Computational thermodynamics: the Calphad method[END_REF]. That being said, it should be kept in mind that there is very few experimental measurements of the oxygen chemical potential under these high temperature conditions. The validity of the considered diffusive driving force cannot therefore be assessed for sure. Note furthermore that the proposed formulation of U-O interdiffusion assumes that each O atom is replaced by an U atom. At moderate to high temperatures, this assumption leads to an overestimation of U migration in the fuel which is usually not mobile compared to O. As illustrated in the next part, the proposed phase-field formulation aims at describing incipient melting where one might expect a much higher U mobility more consistent with the proposed formulation of O-U inter-diffusion. (c) oxygen chemical potential μo vs. pellet radius r at initial state Figure 8: Radial distribution of O/U , μoμu and μo along the pellet radius r calculated at the initial state for the simulations done with (diffusion case) and without the Soret effect (thermal diffusion case). The temperature profile is also indicated. (c) oxygen chemical potential μo vs. pellet radius r at steady state Figure 9: Radial distribution of O/U , μoμu and μo along the pellet radius r calculated at the steady state for the simulations done with (diffusion case) and without the Soret effect (thermal diffusion case). The temperature profile is also indicated.

Simulation of incipient melting and oxygen transport in oxidized fuel under an increasing thermal gradient

In this section, following [START_REF] Welland | Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel[END_REF], we apply our phase-field model to simulate incipient melting together with oxygen transport in oxidized fuel under an increasing thermal gradient. In order to demonstrate the capability of the phase-field model, we perform two simulations with initial oxygen-to-uranium ratios O/U equal to 2.01 and 2.05.

As done in §5.3, we simulate the heat transfer across the oxidized fuel pellet by prescribing a parabolic temperature profile that changes as a function of time t according to:

T (r, t ) = T (R) + P 0 + min t × Ṗ , P max × R 2 -r 2 4πR 2 k ( 57 
)
At the initial state, Eq.( 57) corresponds exactly to Eq.( 56). Here-above, Ṗ = 900W.m -1 .s -1 is the linear power ramp rate allowing us to increase the linear power during more than forty seconds till P max = 65kW.m -1 . At the end of this power ramp, the temperature near the center of the pellet reaches 3420K . The initial and final temperature profiles along the pellet radius are plotted in Fig. 10. In this figure, we also present the liquidus in order to show the beginning of the melting for both oxidized fuels. This thermodynamic property is automatically calculated at run-time by the OpenCalphad thermochemical solver with the TAF-ID. Phase-field modeling of nucleation (in the present case, the onset of melting) is a complex computational issue out of scope of the present paper. For these simulations, given the high temperatures, we propose to simplify the nucleation problem by assuming that the liquid phase suddenly appears and immediately initiates the fuel melting. From a numerical point of view, this consists in prescribing a Dirichlet-like condition when the liquidus is calculated by OpenCalphad. Here, as expected for one-dimensional simulations performed with the parabolic temperature profile given by Eq.( 57), the liquid phase appears first at the hottest grid point of the mesh on Γ 0 (r = 0). In practice, we prescribe ϕ(r = 0) = 0.1 when the liquidus is calculated by OpenCalphad. Further parametric studies regarding this arbitrary choice will be considered in a thorough analysis of the model properties. In the case O/U = 2.01, the fuel melting starts after 34s and the liquidus is equal to 3086.95K. This temperature is lower than the liquidus obtained for stoichiometric fuel, i.e. 3123.50K, and higher than the liquidus 2929.39K calculated for the O/U = 2.05 fuel that is reached after 29s. These results confirm the trend observed in [START_REF] Welland | Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel[END_REF]: the more the fuel is oxidized, the lower the liquidus is and the earlier incipient melting occurs.

The thermodynamic system obtained at the end of the power ramp thus consists of a liquid-solid mixture. At this stage, the highest temperature gradient is maintained during more than 100s in order to study the melting front propagation together with the oxygen redistribution process in the two-phase system. Fig. 11 and Fig. 12 show the results obtained for the fuels with O/U ratios of 2.01 and 2.05, respectively. The radial profiles given in these figures show that the oxygen transport is consistent with the melting front propagation. When the fuel starts to melt, the liquid phase is characterized by a peak of the O/U ratio. Then, the central melted zone extends towards the periphery with a decrease of the O/U ratio in the liquid phase. The fuel oxidation observed in the liquid phase is compensated by a reduction of the oxygen content in the solid phase. Consequently, the local melting temperature raises and the formation of the liquid phase is thus limited. The graphs of Fig. 11 and Fig. 12 indicate that the melting front reaches a steady state after one hundred seconds. The trends observed in these graphs are in good agreement with those published in [START_REF] Welland | Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel[END_REF]. It is however noteworthy that the radial profiles of oxygen in the liquid phase at the end of the calculation and, more particularly, with O/U = 2.01 slightly differ from those presented in [START_REF] Welland | Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel[END_REF]. Indeed, the graphs of Fig. 11 suggest that the composition gradient has changed sign in the liquid phase after 50s. A convergence study in time has confirmed these results. This profile can be explained by the small part of the solid phase near the interface where the fuel is hypostoichiometric at 45s and 50s. In that specific case, the oxygen thermal diffusion process is from the center (hottest region) to the periphery (coldest region) [START_REF] Konarski | 3d simulation of a power ramp including fuel thermochemistry and oxygen thermodiffusion[END_REF]. This trend is not seen with O/U = 2.05 because the fuel remains hyperstoichiometric until the end of the simulation. In that case, the shape of the oxygen distribution obtained in the liquid phase also differs from the one presented in [START_REF] Welland | Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel[END_REF] which was uniform (Fig. 5 in reference [START_REF] Welland | Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel[END_REF]). Here, as shown in Fig. 12, the oxygen quantity increases from the liquid-solid interface to the center of the pellet (r = 0). This trend seems consistent with the prescribed parabolic temperature profile. To confirm these results, a sensitivity study on the interface thickness and the mobility M ϕ remains to be done.

As a whole, these and the previous results presented in this paper show the capability of our phase-field model to simulate incipient melting and oxygen transport in the fuel with thermodynamics data coming from the TAF-ID. 

Conclusion

The purpose of this work was to improve the modeling included in the PLEIADES platform in order to perform simulations of incipient melting and oxygen transport in the fuel using the thermodynamic properties of the TAF-ID. To this end, a phase-field model for a two phase compositional (multicomponent) system has been developed and combined with the CALPHAD thermodynamic description of the fuel available in the TAF-ID. The governing equations were first derived within a consistent thermodynamic framework and considering rigorous thermodynamic closures, namely the Gibbs energy of the system and the description of the interfacial region based on the Kim-Kim-Suzuki model. The model was then reduced to a uranium-oxygen binary system in a solid/liquid mixture, of interest in nuclear applications.

In this limiting case, the liquid-solid phase change is described by the Allen-Cahn equation and the oxygen transport by a thermal diffusion equation whose diffusive driving forces include the compositional (oxygenuranium inter-diffusion) and the thermal gradients (Soret effect). The mobility coefficients of the phase-field model were defined to satisfy some consistency properties in the sense that the model had to remain valid when one of the two phases or one of the two components vanishes. The interface with the thermodynamic description of the TAF-ID is performed by coupling the phase-field model with the OpenCalphad thermochemical solver.

Two 1D demonstration problems have been proposed to demonstrate the performance of the numerical scheme. First, oxygen transport in a UO 2.005 fuel under an imposed parabolic radial temperature profile below the liquidus temperature has been analyzed. The gradient of the difference between the oxygen and the uranium chemical potentials is used as the main driving force for oxygen diffusion together with the temperature gradient. The radial oxygen redistribution expected for hyperstoichiometric fuel in these thermal conditions is satisfactorily reproduced by the phase-field model. The simulation results clearly show that oxygen redistribution is hardly affected by the Soret effect, as suggested by Simunovic & al. [START_REF] Simunovic | Modeling and simulation of oxygen transport in high burnup lwr fuel[END_REF]. However, the contribution of the uranium chemical potential appears non negligible and raises the question of its consideration in oxygen diffusion equations.

The second problem describes incipient melting and oxygen transport in oxidized fuel under an increasing radial thermal gradient. For this demonstration problem, two simulations were performed with initial uniform oxygen-to-uranium ratios equal to 2.01 and 2.05. The simulation results clearly show that the melting front propagation is strongly coupled with oxygen transport in the liquid-solid mixture. As already explained by Welland [START_REF] Welland | Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel[END_REF], oxygen redistribution leads to a self-regulating process. Indeed, the oxidation occurring in the liquid phase is compensated by a decrease of the oxygen content in the solid phase, which, in turn, increases the liquidus and stops the fuel melting. These results demonstrate the consistency of the phase-field model and its capability to simulate incipient melting and oxygen transport with a thermodynamic description of the fuel based on the TAF-ID.

Future work will concern the application of the phase-field model to more complex problems such as power ramps. The numerical scheme could also be adapted in 2D and 3D. The extension of this approach to the uraniumplutonium-oxygen ternary system at hand in Mixed OXide fuels is planned. In that case, the formulation of the phase-field problem may have to be written on the basis of a grand-potential functional [START_REF] Tiwari | A consistent approach for coupling lumped-parameter and phase-field models for in-vessel corium to thermodynamic databases[END_REF][START_REF] Plapp | Unified derivation of phase-field models for alloy solidification from a grand-potential functional[END_REF][START_REF] Welland | Linearization-based method for solving a multicomponent diffusion phase-field model with arbitrary solution thermodynamics[END_REF][START_REF] Aagesen | Grand-potential-based phase-field model for multiple phases, grains, and chemical components[END_REF].

For systems with much larger number of components, the interfacing of an advanced thermodynamic database with a phase-field solver may become a computational issue and thus, the use of an approximate albeit accurate thermodynamic representation derived from CALPHAD databases (see [START_REF] Coutinho | Combining thermodynamics with tensor completion techniques to enable multicomponent microstructure prediction[END_REF]) might be considered.

∂g 0 ∂x i = ∂g s ∂x s i = ∂g l ∂x l i (A.2)
which enables to re-write Eq.(37d ) as:

μi = ∂g s ∂x s i - λ i ρ ∇ 2 x i (A.3)
or, by using Eq.(A.2), in the following equivalent form:

μi = ∂g l ∂x l i - λ i ρ ∇ 2 x i (A.4)
Now, we focus on the potential η (multiplied by the molar density ρ) given by Eq.(37b). The derivative of relationships Eq.( 5) and Eq.( 7) with respect to ϕ gives:

∂g 0 ∂ϕ = h (ϕ) g s -g l + h(ϕ) n i =1 ∂g s ∂x s i ∂x s i ∂ϕ + 1 -h(ϕ) n i =1 ∂g s ∂x l i ∂x l i ∂ϕ (A.5a) h(ϕ) ∂x s i ∂ϕ + 1 -h(ϕ) ∂x l i ∂ϕ = h (ϕ) x l i -x s i (A.5b)
Next, by using Eq.(A.5b), one can simplify Eq.(A.5a) as follows:

∂g 0 ∂ϕ = h (ϕ) g s -g l - n i =1 ∂g s ∂x s i h (ϕ) x s i -x l i (A.6)
which enables to express the potential η (multiplied by the molar density ρ) as:

ρη = -ρh (ϕ) g l -g s - n i =1 ∂g s ∂x s i x i l -x i s + W (ϕ) -κ∇ 2 ϕ (A.7)
Here again, by using Eq.(A.2), Eq.(A.7) can be written in the following equivalent form:

425 ρη = -ρh (ϕ) g l -g s - n i =1 ∂g l ∂x l i x i l -x i s + W (ϕ) -κ∇ 2 ϕ (A.8)
At this stage, as the pure molar Gibbs energies g s and g l are homogeneous functions, it is interesting to note that the CALPHAD contributions in Eq.(A.7) and Eq.(A.8) can be calculated according to:

ρ g l -g s - n i =1 ∂g l ∂x l i x i l -x i s =   g l ρx l i -g s ρx s i - n i =1 ∂g l ρx l i ∂ρx l i ρx i l -ρx i s   (A.9)

Appendix B. Derivation of the heat equation from the entropy balance equation

In this appendix, we detail the derivation of the heat equation Eq.( 40) from the entropy balance equation Eq.(37e).

To begin, we recall the reader that the molar entropy is defined from the molar Gibbs energy g according to Eq.(11b) and g depends on p, T , {x i }, {∇x i }, ϕ and ∇ϕ. In these conditions, according to Eq.( 11), one can write:

d s = - ∂ 2 g ∂T ∂p d p + ∂ 2 g ∂T 2 d T + n i =1 ∂ 2 g ∂T ∂x i d x i + ∂ 2 g ∂T ∂∇x i • d ∇x i + ∂ 2 g ∂T ∂ϕ d ϕ + ∂ 2 g ∂T ∂∇ϕ • d ∇ϕ = - ∂V m ∂T d p - ∂s ∂T d T + n i =1 ∂µ i ∂T d x i + ∂ψ i ∂T • d ∇x i + ∂θ ∂T d ϕ + ∂ζ ∂T • d ∇ϕ (B.1)
In this work, the molar volume V m is constant and we also assume that the coefficients ψ i , ζ do not depend on the temperature. In these conditions, by assuming local thermodynamic equilibrium conditions [START_REF] De Groot | Non-equilibrium thermodynamics[END_REF], Eq.(B.1) reads:

∂s ∂t = -- C p T ∂T ∂t + n i =1 ∂µ i ∂T ∂x i ∂t + ∂θ ∂T ∂ϕ ∂t (B.2)
where C p is the heat capacity at constant pressure defined by:

C p = T ∂s ∂T P (B.3)
Now, by multiplying Eq.(B.2) by ρT , we obtain:

T ∂ρs ∂t = ρC p ∂T ∂t -T n i =1 ∂µ i ∂T ∂ρx i ∂t -ρT ∂θ ∂T ∂ϕ ∂t (B.4)
Then, we can introduce the potential term μi + β in Eq.(B.4), yielding:

T ∂ρs ∂t = ρC p ∂T ∂t -T n i =1 ∂ μi + β ∂T ∂ρx i ∂t -ρT ∂θ ∂T ∂ϕ ∂t (B.5)
Now, in order to simplify the heat equation, we introduce the molar enthalpy h defined by:

h = g -T ∂g ∂T p,ϕ,∇ϕ,{x i },{∇x i } (B.6)
Then, by using Eqs. [START_REF] Simunovic | Modeling and simulation of oxygen transport in high burnup lwr fuel[END_REF] together with Eq.( 38) and after some calculations, we can write the derivative of Eq.(B.6)

with respect to x i in the following form:

∂h ∂x i = μi + β + λ i ρ ∇ 2 x i -T ∂ μi + β ∂T i = 1, . . . , n (B.7)
Similarly, for the phase-field variable ϕ, we have:

∂h ∂ϕ = η + κ ρ ∇ 2 ϕ -T ∂θ ∂T (B.8)
According to Eq.(B.7) and Eq.(B.8), Eq.(B.5) reads:

T ∂ρs ∂t = ρC p ∂T ∂t + n i =1 ∂h ∂x i -μi + β - λ i ρ ∇ 2 x i ∂ρx i ∂t + ρ ∂h ∂ϕ -η - κ ρ ∇ 2 ϕ ∂ϕ ∂t (B.9)
At this stage, we substitute Eq.(37e) and Eq.(8b) in Eq.(B.9) to obtain the heat equation in the following form:

ρC p ∂T ∂t = ∇ • (k∇T ) - n i =1 ∂h ∂x i - λ i ρ ∇ 2 x i ∂ρx i ∂t -ρ ∂h ∂ϕ - κ ρ ∇ 2 ϕ ∂ϕ ∂t -∇ • n i =1 μi + β • j i (B.10)
In this work, we assume that the latter term on the right-hand-side in Eq.(B.10) is of an order of magnitude lower than the other contributions and thereby, it can be neglected. This estimate can be explained on the basis of a rigorous dimensional analysis but it is out of scope of the present paper. In these conditions, the heat equation reduces to:

ρC p ∂T ∂t = ∇ • (k∇T ) - n i =1 ∂h ∂x i - λ i ρ ∇ 2 x i ∂ρx i ∂t -ρ ∂h ∂ϕ - κ ρ ∇ 2 ϕ ∂ϕ ∂t (B.11)

Appendix C. One-dimensional analysis of the phase-field model at the equilibrium state

In this appendix, our purpose is to define the depth of the double-well potential ω as a function of the interfacial energy and the interface thickness. To do so, we follow an approach proposed in [START_REF] Kim | Phase-field model for binary alloys[END_REF], to cite among others, to conduct an one-dimensional analysis of the Allen-Cahn equation Eq.(42a) at the equilibrium state In these conditions, Eq.(42a) reduces to:

κ ∂ 2 ϕ eq (z)
∂z 2 = -ρh (ϕ eq ) g lg s - where we used ϕ eq (+∞) = 1 (solid) and ϕ eq (-∞) = 0 (liquid). At this stage, for the sake of simplicity, we consider the following variable change: In Eq.(C .7), K is a constant of integration. We can easily show that it is zero by defining the interface location such that ϕ eq (z = 0) = 0.5. Finally, according to Eq.(C .5) and Eq.(C .7), the phase-field variable at equilibrium is defined by:

v(z) = 2ϕ eq (z) -1 (C.
ϕ eq (z) = 1 2 1 + tanh 1 2 2ω κ z (C.8)
At this stage, it remains to make links between κ, ω, the interfacial thickness and the interfacial energy σ. To do so, we begin by defining σ in one-dimension as follows: Here, it is interesting to mention that all the relationships obtained in this appendix are equivalent to those given by [START_REF] Welland | Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel[END_REF] and [START_REF] Kim | Phase-field model for binary alloys[END_REF] by setting = 4δ in [START_REF] Welland | Review of high temperature thermochemical properties and application in phase-field modelling of incipient melting in defective fuel[END_REF] and = 2λ with α = 1 in [START_REF] Kim | Phase-field model for binary alloys[END_REF]. Here-above, when the mesh is uniform (i.e. ∆z i = ∆z ∀i = 0, . . . , N ), the latter term of the right-hand-side of Eq.(D.1) degenerates in the well-known 3-point stencil Laplacian: where the subscript • -1 denotes a virtual grid point located at a distance ∆z 0 = ∆z 1 from the zero grid point.
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This non-linear problem is solved by using a standard Newton method. ∆z i (∆z i + ∆z i +1 ) where we have defined two virtual grid points located at a distance ∆z 0 = ∆z 1 from the zero grid point and ∆z N = ∆z N -1 from the point number N , respectively.

+ M i + 1 2 T ln T n+1 i +1 ∆z i +1 (∆z i + ∆z i +1 ) - ln T n+1 i ∆z i M i + 1 2 T + ∆z i +1 M i -1 2 T ∆z i ∆z i +1 (∆z i + ∆z i +1 ) + M i -1 2 T ln T n+1 i -1 ∆z i (∆z i + ∆z i +1 )        (D.

Figure 1 :

 1 Figure 1: Schematic representation of the smooth variation of the phase-indicator ϕ across the interface, the double-well potential W (ϕ), the interpolation function h(ϕ) and its derivative h (ϕ)

Figure 2 :

 2 Figure 2: U-O phase diagram calculated by the OpenCalphad thermochemical solver [9] at 5Mpa (pressure representative of the reactor conditions of interest) with the TAF-ID database [2, 39]: visualization in a range of U-O of interest for nuclear reactors.

Figure 3 :

 3 Figure 3: Partitioned scheme solved by a fixed-point algorithm at each time step ∆t .

Figure 4 :

 4 Figure 4: Schematic representation of the proposed algorithm used to perform equilibrium calculations during the first stage of the partitioned scheme

Figure 5 :

 5 Figure 5: U-O phase diagram calculated by the OpenCalphad thermochemical solver[START_REF] Sundman | Opencalphad-a free thermodynamic software[END_REF] at 5Mpa (pressure representative of the reactor conditions of interest and used for the demonstration problems) with the TAF-ID database[START_REF] Guéneau | Thermodynamic modelling of advanced oxide and carbide nuclear fuels: Description of the u-pu-o-c systems[END_REF][START_REF] Guéneau | Taf-id: An international thermodynamic database for nuclear fuels applications[END_REF]: focus on the hyperstoichiometric region.
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 6 Figure 6: Schematic representation of the computational domain Ω = [0, R] with its boundaries Γ 0 and Γ N

Figure 7 :

 7 Figure 7: Parabolic temperature profile prescribed along the fuel pellet radius

  (a) oxygen-to-uranium ratio O/U vs. pellet radius r at initial state Chemical potentials difference μoμu vs. pellet radius r at initial state

  (a) oxygen-to-uranium ratio O/U vs. pellet radius r at steady state Chemical potentials difference μoμu vs. pellet radius r at steady state

Figure 10 :

 10 Figure 10: Initial and final temperature profiles prescribed along the fuel pellet radius

Figure 11 :

 11 Figure 11: Radial distributions of O/U and ϕ along the pellet radius r calculated at several times after detecting incipient melting in the fuel with an initial O/U = 2.01

Figure 12 :

 12 Figure 12: Radial distributions of O/U and ϕ along the pellet radius r calculated at several times after detecting incipient melting in the fuel with an initial O/U = 2.05

  eq denotes quantities evaluated at equilibrium. Now, by multiplying the equation Eq.(C .1) by ∂ϕ eq ∂z and by integrating over ±∞, one can find: g lg sto simplify Eq.(C .1) in the following form:κ ∂ 2 ϕ eq (z) ∂z 2 = W (ϕ eq (z)) = 2ωϕ eq (z) 1 -ϕ eq (z) 1 -2ϕ eq (z) (C.3)Here again, we multiply Eq.(C .3) by ∂ϕ eq ∂z and, afterwards, by integrating over ±∞, one obtain:∂ϕ eq (z) ∂z = 2ω κ ϕ eq (z) 1 -ϕ eq (z) (C.4)

5 )

 5 where v(+∞) = 1 and v(-∞) = 0. Then, the relationship Eq.(C .5) is substituted in Eq.(C .4), yieldings:

2 +eq 1 - 13 )

 2113 W (ϕ eq (z))d z (C.9) Then, according to the relationships Eq.(C .3) (integrated over [0, 1]) and Eq.(C .4), Eq.(C .9) takes the form: ϕ eq ∂ϕ eq = 1 6 2ωκ (C.10) Furthermore, one can express the interface thickness as: At this stage, substituting Eq.(C .12) in Eq.(C .6) yields: of Eq.(C .14) together with Eq.(C .12) gives the depth of the double-well potential in the following form: ω = 12 σ (C.15)

  this problem, by assuming that the right side (i = N ) of the domain remains solid, the following Neumann-Dirichlet boundary conditions are considered:

3 . 2 c

 32 At this stage, using the estimations of ϕ n+1 i i +1 (∆z i + ∆z i +1 ) -∆z i ∆z i +1 (∆z i + ∆z i +1 )

, (x o ) n i 2 6 )- 1 -

 261 n+1 i + j , (x o ) n i + j + M α ϕ n+1 i for α = T,C and j = ±1 (D.5)Here-again, when the mesh is uniform (i.e. ∆z i = ∆z ∀i = 0, . . . , N ), the right-hand-side of Eq.(D.Regarding to the boundary conditions associated to this discretization, we consider the following Neumann-Neumann boundary conditions: ln T n+1 i for i = 0 and i = N (D.7)

  , namely g l ,g s , μu = 〈〈 local 〉〉 equilibrium calculations performed at each time step and at each node of the mesh.

	by OpenCalphad 2	∂g s ∂x s u	, μo =	∂g s ∂x s o	, x l o , x l u , x s o , x s u ,	∂h ∂x o	and	∂h ∂x u	will be given

  1. Using ϕ ni , T n i , (x o ) n i , perform all the equilibrium calculations and find an estimation of (g l ) n+1

										i	,
	(g s ) n+1 i	, (x s o ) n+1 i	, (x l o ) n+1 i	, ( μo ) n+1 i	and ( μu ) n+1 i
	2. Afterwards, calculate the discrete CALPHAD term (g l ) n+1 i	-(g s ) n+1 i	-(x l o ) n+1 i	-(x s o ) n+1 i	( μo ) n+1 i	-( μu ) n+1 i
	and find ϕ n+1 i	such that:			
	ϕ n+1 i ∆t -ϕ n i	= -M ϕ -ρh (ϕ n+1 i	) (g l ) n+1 i	-(g s ) n+1 i	-(x l o ) n+1 i	-(x s o ) n+1 i	( μo ) n+1 i	-( μu ) n+1 i	n+1 i
			+ 24	σ ϕ n+1 i	× 1 -ϕ n+1 i	× 1 -2ϕ n+1 i
			-	3 2	σ	2ϕ n+1 i +1 ∆z i +1 (∆z i + ∆z i +1 )	-	2ϕ n+1 i ∆z i ∆z i +1	+	2ϕ n+1 i -1 ∆z i (∆z i + ∆z i +1 )	(D.1)

Using the terminology considered in[START_REF] Sundman | The implementation of an algorithm to calculate thermodynamic equilibria for multi-component systems with non-ideal phases in a free software[END_REF], it is important to keep in mind that the derivation of the model is based on the mole fractions of components, not on the mole fractions of species nor on the sites fractions as in[START_REF] Welland | Multicomponent phase-field model for extremely large partition coefficients[END_REF] 

h(ϕ) = ϕ 3 6ϕ 2 -15ϕ + 10(6)

For more details about the links between these thermodynamics quantities and the OpenCalphad thermochemical solver, the interested reader may refer to the Eq.22 in reference[START_REF] Sundman | The implementation of an algorithm to calculate thermodynamic equilibria for multi-component systems with non-ideal phases in a free software[END_REF] which defines the molar Gibbs energy. Their values are computed at run-time from the outputs of the OpenCalphad thermochemical solver managed by an application software interface (see §2.2.3 in reference[START_REF] Introïni | Development of a robust, accurate and efficient coupling between pleiades/alcyone 2.1 fuel performance code and the opencalphad thermo-chemical solver[END_REF]).
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R = 4.65mm. Regarding the discrete problem, Ω is described by an uniform grid composed of 41 points (i.e grid similar to those that are commonly used to perform one dimensional simulations with Fuel Performance Codes [START_REF] Michel | Chapter 9 -two fuel performance codes of the pleiades platform: Alcyone and germinal[END_REF]) and then, 5 grid points in the liquid-solid interface, sufficient to have a precise resolution without increasing the computational cost too much.

Explicit form of the generalized chemical potential

In this appendix, we present the developments leading to the potentials Eqs. [START_REF] Geiger | Modelling nuclear fuel behaviour with taf-id: Calculations on the verdon-1 experiment, representative of a nuclear severe accident[END_REF]. Following [START_REF] Kim | Phase-field model for binary alloys[END_REF], the first step is to calculate the partial derivative of Eqs. [START_REF] Loukusa | Thermochemical modeling of nuclear fuel and the effects of oxygen potential buffers[END_REF] with respect to x i . It reads:

Then, by substituting the relationships Eq.( 7) and Eq.(A.1b) in Eq.(A.1a), one obtains:

Appendix D. Centered Finite Differences scheme

In this appendix, we present the centered Finite Differences scheme used to solve one-dimensional problem. Before detailing the numerical scheme, let us define some practical notations: Ω denotes the non-uniformly discretized one-dimensional domain and Γ its boundary; ∆t refers to the time increment between two successive time steps t n and t n+1 ; N is the maximum number of grid points, i the node index whereas ∆z i +1 and ∆z i correspond to the space sizes from i to i + 1 and from i to i -1, respectively; and the curly brackets define a set of variables indexed by i for i = 0, . . . , N .

In the following, we assume that ϕ n i , T n i , (x o ) n i are known at the time step t n . In these conditions, by focusing on Eq.(49a), Eq.(49b) and Eq.(49c), the time marching reads: