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ABSTRACT

This paper focuses on a new algorithm for the quasi-static simulation of unstable crack propagation in
time-independent brittle material. The proposed approach is based on a combination of the standard
Newton’s algorithm with a fictive path loading algorithm. First, a time step refinement process,
associated to the Newton’s algorithm, enables us to efficiently detect the beginning of unstable crack
extension. Then, a fictive path loading algorithm is performed to assess an estimation of the post
instability solution. Finally, this estimated solution is used as initial guess in the standard Newton’s
algorithm for the same time increment. The final converged solution satisfies both the mechanical
equilibrium and the mechanical behaviour integration. This paper highlights several advantages of the
proposed algorithm such as robustness, easy implementation on an existing Newton’s type solver,
genericity for different unstable nonlinear physical problems. An application of this new method is
presented for a smeared crack model, based on a local continuous damage formulation, devoted to the
simulation of brittle nuclear fuel rupture. The efficiency of the proposed algorithm is demonstrated

through a set of 2d and 3d simulation results.



Nomenclature

Latin symbols

Relative and absolute error given for the stress residual of the static equilibrium

er,€q

E Fourth order tensor of the elastic behaviour (Hooke law)

[E] Finite element stiffness associated to the material elastic behaviour
L Incremental Lagrange function

Gy Nonlinear function derived from the minimisation of £ with respect to x
g Damage law for the brittle rupture

G Dissipated energy per unit surface of crack

Hp Softening modulus of a local damage law

K,R Tangent operator and residual of the Newton formulation
n External normal to the surface

n; Unit tensor associated to the crack basis
u Displacement vector field according a Lagrangian formulation

ut Weak formulation test function

Vz , Sk Volume of the damage zone and associated surface
w; Unit vectors used to define an orthonormal crack basis
Greek symbols

a Internal state variable for nonlinear material constitutive equations
Ax Time increment of the variable x
ox Iterative variation of x during the Newton algorithm
g Strain tensor according a small strain assumption
g* Strain tensor associated to the weak formulation test function U

Etot gcrack

-

Total strain and mean crack strain associated to the displacement discontinuity

all

Cauchy stress tensor

=

Rupture stress

1. INTRODUCTION

Numerical simulation of crack initiation and growth in nuclear fuel ceramics is an important issue to
assess mechanical integrity of the first confinement barrier for radio elements. Under irradiation, fuel
pellet macroscopic fragmentation has to be considered because of its impact on the cladding loading and
associated risk of cladding rupture [1]. Pellet fragmentation at microscopic scale is also an important

issue for Loss Of Coolant Accident (LOCA) transient loading condition [2]. Since years 2000 this has
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been studying in our laboratory [3], [4] in the framework of a cooperative program between EDF,
AREVA and the CEA. These studies concern Pellet Cladding Interaction (PCI) phenomenon in fuel rods
of Pressurized Water Reactors (PWRs), in order to take into account the impact of pellet fragmentation in
Stress Corrosion Cracking cladding rupture [6], and also fuel dispersal risk assessment under a LOCA
[2]. A first smeared crack model [3] has been proposed and implemented in the fuel performance software
environment PLEIADES [1]. This approach is consistent with the Griffith theory and has been used for
many years to simulate stable crack extension in the 1D, 2D and 3D fuel models of the PWR fuel
performance code ALCYONE [7] of the PLEIADES platform. However, in this approach unstable crack
extension simulation is still a limitation of our quasi static nonlinear finite element solver. This topic has
to be addressed in other application fields than nuclear fuel as far as we have to deal with a brittle
material. The objective of this paper is then to propose a new numerical methodology in order to be able
to extend the quasi static approach to the simulation of unstable crack extension.

In a first part, the new numerical approach for unstable crack extension is presented with the
bibliographic background. Then, an updated version of the continuous damage model used to simulate
brittle rupture in nuclear fuels is presented. In the last part, simulation results, based on the new numerical

approach and the continuous damage model, are discussed with a set of 2D and 3D applications.

2. UNSTABLE RUPTURE SIMULATION WITH A QUASI STATIC APPROACH

A first approach to deal with unstable rupture is to switch to a truly dynamic simulation of the crack
propagation (Teng [14], Acary [15]), the description of which is out of the scope of this paper, in order to
compute kinetic energy induced by the difference between dissipation rate and elastic energy restitution
rate. However the numerical integration associated to this approach is a real challenge, due to the very
small time steps required to catch stress waves associated to the kinetic energy increase in the structure,
and due to the computation of the damping effects linked to material dissipation or non-reflective stress
wave boundary conditions. Although the issue of small time steps can be overcome using classical mass
scaling techniques (Bobineau, Maurel, and Morancgay [16]), this dynamic approach is not considered here
as the time steps required are not tractable for our applications. It is however the idea of equivalent

dynamic steps which is the basis of the algorithm presented here.

2.1. Quasi-static formulation

Expressing the problem of crack evolution as a minimization problem is the basis of the pioneering work
of Francfort and Marigo [8], Bourdin, Francfort, and Marigo [9] or Amor, Marigo, and Maurini [10]. For
standard generalized materials (Halphen and Nguyen [11]) the evolution of a mechanical system in quasi-
static loading can be expressed as a minimum problem of an incremental Lagrange function £ (See
Germain, Nguyen, and Suquet [12], Lorentz and Andrieux [13] for details) with respect to the

displacement increment A and the state variables increment Aa:



(4 u,Aa) = argmin L(A V¥, A B, ul, al,, dt) (1)
AV,AB

This framework is used in this introduction to simplify the discussion but this does not entail the
generality of the conclusions that will be drawn here. For the sake of readability, variables describing the
state of the system at the beginning of the time step (ul;, a|;, dt) are omitted in the following. The
Gateaux derivative of the Lagrange function L with respect to the displacement increment is equivalent

to the virtual work principle (2) :
vﬁ*j&(E(A W), Aa):&.dV = j?.ﬁ*ds )
v s

Where 7 is the Cauchy stress tensor, € the strain, T the prescribed traction on the boundary S, u* is a test
function (or virtual displacement) and £* its associated strain tensor (or virtual strain).
In the following, Equation (1) is replaced by its discrete equivalent obtained by a spatial discretisation
based on the finite element method with a solution basis in an approximate finite dimension space. Again,
for the sake of simplicity, the same notations are used for the discrete approximation of the unknowns A
and Aa. To solve the discrete formulation of Equation (1) various approaches have been proposed in the
literature, most of them are based on an iterative algorithm. Minimization with respect to A and Aa can
often be decoupled and this leads to use standard fixed point algorithms. For example, let Au® and Aa®
be the current estimation of the displacement field increment and the internal state variable increment. A
new estimation of the internal state variable increment Aa(*1) is obtained thanks to function G,
describing the mechanical behaviour (3). The latter is equivalent to a minimization step with respect to
A« as it can be demonstrated for given G,,.

A+ = G, (A7D) 3)
For local behaviours, G, is the mechanical behaviour integration step, performed at each integration
point: in this case, expression of G,is based on the strain increment. For phase-field or non-local
behaviours, various operators can be used.
In the most common algorithms, an update value of the stress tensor, associated to Aa*D s then used to
get a new estimation of the displacement increment Azi¢+1) via the residual Ry derived from equation (2).
This correction often takes the form of (4) given by the Newton’s like algorithm where K is an
appropriate search operator.

AG+D = Gﬁ(Aﬁ(i)’Aa(iH)) = AU®D — K71 Rz (AU®, Aa(+D) 4)
2.2. Unstable crack extension simulation

2.2.1. Convergence of the Newton algorithm

To discuss this point a schematic illustration is given in Figure 1. This example shows that in case of

unstable crack extension the solution of equation (2) is not possible without a reverse displacement under



unstable crack propagation (black curve between point A and B in Figure 1) when the softening
behaviour leads to internal forces smaller than the internal force induced by the elastic energy restitution
rate under a constant displacement boundary condition (red line AB in Figure 1). For the standard
iterative Newton algorithm, the tangent operator will lead to predict an increasing displacement increment
after point A, which means that the residual R; will suddenly increase with a jump of the solution
beyond point B in Figure 1. This jump will be characterized by a discontinuous evolution of the
displacements AU and the state variables Aa that would not tend toward zero as the time step diminishes.
This discontinuous evolution of the state variables is associated with a loss of energy in the system:
physically, this energy is transformed in kinetic energy which is not taken into account in a quasi-static
approach. After unstable crack propagation (beyond B in Figure 1) the structure reaches a new static
equilibrium state, but the details of this transition cannot be described. Indeed, there are dynamical
phenomena that can't be captured by a quasi-static approach: eigen vibration modes to compute local
inertial energy, interaction of the crack path with elastic waves reflected on the body boundary, saw-tooth
crack path at the microscopic level which dissipates more energy than straight propagation, etc... The
physical validity of the solution found by a quasi-static approach thus greatly depends on the case treated.
From a numerical point of view, the equilibrium point at the onset of the unstable crack propagation is a
saddle point of the Lagrange function, i.e. is characterized by the loss of convexity of the problem and a
tangent operator no more definite positive. The last point and the lack of static solution in the vicinity of
the previous solution explain most of the numerical difficulties reported in the literature. Thus, an
important issue for unstable crack simulation concerns the choice of the numerical algorithm to solve the

partial derivative equations system (2).

2.2.2. Globalization of the standard Newton algorithm

As the minimum problem associated to the mechanical equilibrium locally loses its convexity, the
standard Newton algorithm, Equation (4) is no more appropriate. To overcome this problem many authors
propose to combine the Newton algorithm with a globalization technique. Among the large number of
methods proposed in the literature, the trust region Newton method or the Powell Dogl.eg method are
well-known approaches. In computational mechanics, the most popular approach however relies on
combining the Newton algorithm with a line-search technique (See Belytschko [17] and the references

therein).

2.2.3. Unbalanced steps

Another solution consists in accepting solutions that do not satisfy the mechanical equilibrium at
intermediate time steps. The Implex algorithm by Oliver and al. [18] extends this idea. In this case, it is

important to note that the displacements are corrected using extrapolated values of the state variables A&



from the previous steps (5). Once AU is known, the evolution of the state variables is given by Equation
(6).
A1 = Gy(0,4@) (5)
Aa = G, (4AW) (6)

An adaptive time step strategy using a predictor/corrector scheme is introduced to control the error. As
discussed before, the time-continuity of the displacement and of the state variables cannot be assumed for
unstable crack propagation. Thus, this class of algorithms is not directly suited for our needs. More
recently, in the context of phase field modelling of the crack propagation, Miehe [19] proposed to accept
unbalanced steps where the damage results, obtained from the values of the elastic energies at the
beginning of the time step (7), and the displacements are only corrected using the secant tangent operator
(8) (See Miehe, Hofacker, and Welschinger [19] and Nguyen et al. [20] for details). Nguyen et al. [21]
improved this algorithm by converging on the displacements at constant damage over the time step (9),

leading to the following algorithm.
Aa = G,(40) (7
AU = argmin gz L(AV, Aa) (8)
Equation (8) is solved as following :

ARHD = G5 (AUD, Aa) )

2.2.4. Control loading path

Controlled loading path algorithms [27] introduce a modification of the loading time history in order to
make the damage stage consistent with the static equilibrium during the unstable rupture and lead to a
mechanical response presenting snap-backs as illustrated in Figure 1. Such algorithms encompass the
classical arc-length methods which introduce a loading control parameterAz. The latter is a new
unknown of the problem and a local control loading criterion is added to the nonlinear mechanical
formulation in order to obtain a well-posed problem. If we refer to the results presented in reference [27],
this new algorithm leads to a lot of iterations associated to a very complex loading time history during the
damage stage. Moreover, to avoid elastic unloading a special care is brought to the control loading

criterion.

2.3. Main features of the Cast3M algorithm

The Cast3M algorithm used to solve the nonlinear equilibrium equation (2) is described in Figure 2.
Compare to a standard Newton algorithm the following modification have been proposed:
e the Jacobian matrix is replaced by a stiffness matrix derived from the undamaged material elastic
behaviour: it leads to a so-called quasi Newton Algorithm (QNA),

¢ a fixed point acceleration method based on the equilibrium residual nodal forces is used,



e a Fictive Path Loading Algorithm (FPLA) is used to overcome convergence problems.

The QNA is based on a fixed point method using equations (10) and (11).

[E] {5AU}l = {Ru}t+At (10)

) =F({3) oy.a) (1)

Where [E] is the undamaged stiffness matrix, § is the iterative variation of the solution, {AU} is the
nodal displacement increment between t and t + At at iteration i, {R}i7}, is the nodal equilibrium
residual, o and «a are respectively the stresses and the material internal state variable defined at the Gauss
integration points and F is the nonlinear material law. Equation (10) returns to Equation (4) with Gy =
{aU} - [E]7". {Rg}.

The undamaged stiffness matrix [E] can be easily computed compared to the consistent tangent operator
and has nice mathematical properties (symmetrical, positive definite,etc.). Moreover in case of softening
behaviour a local material stiffness equals to zero doesn’t lead to a singular matrix in this QNA.

The nodal equilibrium residual is derived from equation (12), where {F,,.} is the nodal external loading,

right hand side of equation (2), and [B]is the strain-displacement matrix.
12
(Ra) = (Fuv) — [ 1B110}.a (12
4

However, such a quasi-Newton algorithm is of first-order and may converge very slowly. So, in order to
increase the convergence rate, a fixed point acceleration method based on the equilibrium residual nodal
forces is used. This method, presented in reference [30], is an Anderson method [31] summarized by the

following equations:

M = G5 (870) - AP (65(810) - Gz(a701)) - 2P (63(8TP) — G5 (87¢-2))

. (13)
_ /1%1) (Gﬁ(Aﬁ(i)) _ Gﬁ(Aﬁ(i‘3)))
The coefficients /19, lgi) and /1;0 are obtained by quadratically minimizing the Euclidean norm of
Ry (AE®) — /151') (Rﬁ(Aﬁ(i)) — Rﬁ(Aﬁ(i—l))) _ lgi) (Rﬁ(Aﬁ(i)) - Rﬁ(Aﬁ(i—z)))
(14)

— 29 (Rg(87®) — Ry (20-Y))
In order the accelerated displacement to respect the boundary conditions, the Cast3M software works on

the corresponding accelerated residual:
aCC = ® ® Dy p* (A7 ® O\ p ™ (A72(i- D p*(Ari-
2(000) = AP + 28 +29) R(810) + (2 + 28R (870D) + APR(81D)  (15)
where Rﬁ(Aﬁ(i)) © [E] (Gz(ATW) — Gy (aut-))
As the search operator is non-iteration dependant, substitution of Eq. (15) in Eq (13) gives
MY = Gy (81©) — [E)RY (810) (16)
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Hence, the fixed point iteration (10) is modified as

[E1.{6AUY** = {Radiiae — (R*hiac a7)
Finally R; can also be expressed as

Ro(86®) = Ry(au®) — R (45¢-)

In practice, the Cast3M acceleration algorithm (17) is applied after the third iteration of the fixed point
method (10) and then every other iteration.

The main idea of the FPLA is to do virtual steps when a non-convergence of the Newton algorithm is
detected. A maximal number f of iterations is given to reach the convergence, even for the virtual steps.
Hence, after the f first QNA iterations, the FPLA is activated. The integer (ifp — 1) represents the
virtuel steps counter. When the FPLA is activated the initial state at time t is replaced by the stresses and
the state variables associated to the intermediate non equilibrated solution at iteration i = ifp X f and the
total displacement increment is reinitialized to zero (see virtual loading path loop in Figure 2). As a
consequence of this virtual loading path, once the FPLA is activated the time step is characterized by a
null time increment and the system evolves only to equilibrate the structure. This null time step has to be
taken into account in the integration of the nonlinear behaviour (11). This can be done without
modification in an implicit integration or with a minimal time step, avoiding time dependent behaviour, in
an explicit integration. The FPLA converge when the solution reaches the equilibrium given by the
residual nodal forces.

In our studies a new convergence criterion has been proposed (18) checking the convergence of the stress
tensor at each Gauss point. This convergence criterion is compatible with the proposed QNA as it lies on
the same fourth order elastic tensor than the approximate Jacobian matrix, see Equation (19). In order to
have an efficient criterion even in case of inelastic stress stationarity, this criterion is based on the
difference between an extended elastic stress solution and the non-linear stress tensor derived from the
behaviour integration. Moreover, this proposed criterion turns automatically from a relative error to an

absolute error, respectively e, and e,in Equation (18), when the stress values are small.
max({R‘? ¥ - €r {g}i"'“) |Gauss point  €a (18)

(R = {5V yne — ({5)i3he + {E: E(80U1)}) (19)

2.4. New methodology for unstable rupture simulation

The new approach proposed in this paper is based on a three steps method as following:
e atime step refinement algorithm to detect the beginning of instable crack extension,
e a FPLA to assess the post instability solution,

e a QNA initialized with the FPLA’s solution to validate the results.



The objective of the time step refinement method is to start the unstable crack extension stage as close as
possible of the crack initiation loading. To this end we make the assumption that, except in case of
unstable crack extension, it is always possible to make the QNA converge by reducing the time step
increment. Based on the previous assumption a persistent non-convergence of the QNA when the time
step tends toward zero is due to an unstable crack extension. Hence, the beginning of the unstable rupture
is numerically detected thanks to a small enough time step threshold. From a practical point of view the
minimal time step threshold, used for the detection of the unstable crack propagation, is defined in order
to be consistent with a small variation of the prescribed loading. This guarantees that the last converged
time step is close enough to the unstable crack extension loading. Nevertheless if this time step is not
small enough and hence the non-convergence is not due to an unstable crack extension, the probably
invalid FPLA’s solution would be detected by the third step of the proposed method.

In case of uniform stress fields the QNA can find a uniform damage solution because the convergence
precision can lead to miss the damage localization at crack initiation. To overcome this problem the time
step is also refined if the number of damaged element during a time step is greater than a half of the total
number of element.

In the second step of the proposed method the unstable crack solution is computed with the FPLA
described in section 2.3. In our case, where a dynamic equilibrium is involved during instability, one can
consider that the residual of unbalanced virtual steps is equivalent to the dynamic forces induced by the
kinetic energy. The main idea lies on the fact that the solution reached after the unstable crack extension
will return consistent with a static equilibrium if the external loading is based on Dirichlet boundary
conditions. From the fully dynamic approach point of view, it means that the post-instability static
solution is consistent with a state where the kinetic energy induced during the damage process vanishes
because of material dumping and energy transport. From the path following constraint method point of
view, the proposed approach returns to the case where the reverse loading is no more required to respect
the static equilibrium (stages II in Figure 1).

To confirm the validity of the virtual loading steps solution, the unstable step is recomputed using the
fictive path loading solution as estimation of the solution in the Cast3M QNA without FPLA option. In
this case, an initial value of nodal displacement ({AU}™ in Figure 2) is given. If this solution is valid, the
convergence must be reached in very few iterations: in this case the new solution both satisfies the
equilibrium and the mechanical behavior according to a unique displacement increment at the end of the
time step.

The fact that virtual steps are characterized by a null time increment makes this procedure mostly suitable
for time-independent materials, as the time dependent part will be associated to a non-equilibrated
solution. However, for behaviors combining time-dependent and time-independent mechanisms, the last
step of the algorithm (initialization of the QNA) will correct the virtual step solution. The main interests

of this algorithm are:
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»  its robustness, as demonstrated by the various examples provided in this paper;

* its easy implementation, as it only consists in a loop over the standard Newton algorithm and a final

restart of the Newton algorithm with a prescribed initial guess;

* its genericity, as it can be used with any kind of instability (unstable crack propagation, buckling) in
small and finite strain, without any modification to the mechanical behavior. The restriction to time-

independent mechanism has been discussed earlier

» it provides a solution that satisfy the equilibrium equation and the mechanical behaviour.

3. CONTINOUS DAMAGE APPROACH OF THE RUPTURE PROCESS

3.1. Smeared crack model formulation for nuclear fuels

The formulation of the smeared crack model is given by Equations (20) to (22).

0=. — E: (gtot _ gcrack) (20)

= o 21

gcrack — Z Eicrack . Wi®Wi ( )
i

g(@: (W,@w)), e ) =0 (22)

Where E is the fourth order elastic tensor, £79¢ is the crack strain tensor, w; is the unit vectors used to

define an orthonormal crack basis and g is the damage law for brittle rupture.

Material softening during the damage process is given by the linear function g illustrated in Figure 3. In
the latter stage 2 represents the damage process from microscopic cracks up to a macroscopic rupture
where the material stiffness is equal to zero. Crack closure due to unloading is also possible thanks to the
model (stages 6 and 5 in Figure 3). If unloading occurs during the softening stage, the unloading path is
assumed to be elastic with an affine linear stiffness. It means that local plasticity due to microscopic
cracks is negligible, which seems reasonable for brittle rupture. After a complete crack closure the
material can recover its elastic stiffness (stage 7 in Figure 3) under a compressive stress state defined in
the fracture basis. In this paper the fracture basis is derived from the stress tensor’s eigenvalues at crack
initiation. At this stage we didn’t introduce constitutive equations to model material softening under a
shear strain loading occurring in the fracture basis after crack initiation. Moreover, in this formulation it is
assumed that the stress eigen basis doesn’t change during the softening process (radial stress relaxation).
For the numerical resolution of the smeared crack model with an implicit method, the constitutive
equations of the function g are defined in Table 1. The damage law g is a piecewise linear function
depending on the stage considered in Figure 3. In order to select which stage is consistent with the

iterative solution of the implicit solver, a set of required conditions has been defined as given in Table 1.
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Then the Jacobian matrix and the residual of the Newton method are computed using the appropriate

definition of g.
Stage Required condition to select the ' _
. Damage law equation g(: 71, %) = 0
(see Figure 3) damage stage
1 F’I‘ack — 0 and O_p <o Lcrack —
! max(t) 1 R éi 0
crack O-R
0<¢g; —
max(t) Hf _
2 ’ ___'_( _ crack)_
and oni—lo,—H, g =0
gcmck — gcmck
i i max(t)
. o . _
3-6 f’“"’k >—% and 5;’"“"’" >0 o n =0
max(t) H LA A
crack O-R
0<¢g; —
max(r)  H p = = o
4-5 . _ R _ crack _
and o .n crack Hf i 0
0< gcrack < gcrack ! max(t)
i i max(t)
rack crack _ :
7 g ) >0and & =0 gi"'“"’k =0
Table 1 : Analytical expressions of the damage law ( 7; = W;®@w; , gfTek is the historical

t |max (t)

maximal value of the cracking strain in direction i,af 1s the maximal principal stress)

As defined in Table 1 the damage law g has two material parameters o and Hy discussed in the next

section.

3.2. Physical meaning of the rupture parameters

3.2.1.

Softening modulus and mesh size effect

Considering the rupture process of a brittle material, as illustrated with stage 2 in Figure 3, the continuum

damage approach has to deal with material damage initiation, material softening and free surface creation

at the continuum material scale description. In a brittle material one considers [25] that material softening

is the result of micro-cracks  propagation up to a macroscopic size regarding the continuum description.

1 . . . . .
Micro has to be considered as a subscale of the continuum media scale representation.
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Based on this consideration it appears that the energy requested for macroscopic crack nucleation is
related to the material toughness. In order to ensure the consistency of the total energy dissipated in the
continuous damage approach of section 3.1, balance equation (23) is used.

2 (23)
Gc.Sp = jj a:dérack dv

VR O
Where G is the dissipated energy per surface unit, & is the Cauchy stress tensor, £7%* is the local strain
induced by the damage process, Sy is the cracked surface, &g is the rupture strain at macroscopic crack

nucleation and Vj is the volume of the damage zone.

If we introduce the definition of the damage function g during stage 2 in equation (23) we can compute
the softening modulus as following:

ot Vq (24)
2.G¢ ' Sg

Where oy, is the rupture stress of the damage law.

Equation (24) gives the regularization method required to ensure that the dissipated energy will not be
mesh size dependent in the finite element computation. The characteristic length defined as the ratio
Vr /Sgr of the finite element can be computed for each crack orientation as the scalar product between the
mesh size vector and the unit vector normal to the surface crack (see Eq. (25)).

O-I% 7 | (25)

From a practical point of view the vector h is defined with the three edges of a cubic volume element
equivalent to the real finite element (see Figure 4). In the case of an octahedral finite element the

equivalent cubic element can be easily chosen, however for other finite element shape the definition of

the mesh size vector & must be adapted. For our application on tetrahedral finite elements, a scalar mesh
size parameter has been used with the direct computation of the ratio Vi /Sy of the finite element.
Regarding Equations (24) or (25) the direct physical meaning of the characteristic length is not obvious,
because it will depend on the local damage law formulation. In all cases the characteristic length is the
size of the zone affected by the rupture process in the computation. The computational size will be
consistent with the real damaged zone size only if the dissipated strain energy density is consistent with
the one involved in the damage process. As the real size of the damaged zone can be very small, the
characteristic length is often much greater in order to have an equivalent size consistent with the
representative volume needed for a homogenized description of the strain and stress fields.

Thanks to this local softening modulus (23) we can avoid first order mesh size effect in our approach, at

least to be consistent with a Griffith criterion in the case of an initial flaw [3], however some limitations

12



still remain. A first limitation is due to the computation of the characteristic length which is based on an
assumption of a uniform cracking strain in the finite element, and then can be easily transpose only on
linear finite element. Another limitation is due to the crack path sensitivity to the mesh texture. In the case
of mixed mode propagation and crack bifurcation, the local approach reduces the possible paths for
propagation from one gauss point to another and leads to high sensitivity of the solution to the chosen
finite element and the mesh organization with its apparent texture (see for instance mixed mode loading
application in section 4.2). Despite these limitations this approach gives already very interesting results
for applications where crack propagation is mainly under mode I loading and if we don’t need too much

precision in the crack path assessment.

3.2.2. Rupture stress

The second parameter of this continuous damage model is the rupture stress o which is usually defined
as the experimental rupture stress observed in a rupture test without initial macroscopic crack. The
physical meaning of this rupture stress should be clarified in order to understand the link between damage
process at microscopic scale and macroscopic scale and to avoid inappropriate scale transfer. The rupture
stress controls the beginning of the softening stage when the softening modulus controls the energy
needed per surface unit to create the macroscopic crack according to the Griffith criterion. As the
beginning of the softening stage is related to microscopic crack initiation for a brittle material, we can
also use a Griffith criterion to define the relevant scale associated to this parameter. Then the rupture
stress parameter can be seen as the result of Equation (26) where a is the microscopic crack size. This
leads to conclude that the rupture stress is scale-dependent and that we should use an appropriate
experimental measure of this parameter. When a relevant rupture test can’t be carried out, a scale transfer

coefficient can be derived from the statistical distribution of subscale cracks in the material.

E.Gc (26)

Oor ® |—
R mw.a

4. SIMULATION RESULTS

In order to test the capacity of the proposed algorithm to detect if crack propagation is stable or unstable
different configurations have been tested in the following sections. Another objective of these tests under
stable crack growth conditions is also to confirm that the convergence of the QNA can be obtained with

the time step refinement, and that the FPLA is needed only for unstable crack growth steps.
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4.1. Mode I loading in smooth and cracked specimens

In order to simulate stable crack propagation for 2D configurations given in Figure 5, numerical values of

Table 2 have been used.

Specimen t L a E v G. o g
Smooth 0,25.107% | 0,125.t 200 GPa | 0.3 507 /m? | 164,7 MPa | 0.13%
Cracked 1 0,25.t 8 J/m?

Table 2 : Input data for 2D simulation of stable crack extension

Results for the smooth specimen are presented in Figure 6. As we can see, the stress-strain curve is
consistent with a stable crack extension configuration because the slope of the curve in the softening stage
is finite. This means that after crack initiation there is a static equilibrium where elastic energy restitution
rate is equal to crack energy dissipation rate. Damage starts from the weakest element at the centre of the
specimen, and then, when damage extension reaches approximately one fifth of the thickness (see Figure
6 d), new cracks initiate at the bottom of the specimen because of the stress relaxation induced by damage
extension at the middle of the specimen. The macroscopic stress-strain curve can be validated with
analytical results of a cohesive zone model consistent with this one dimensional configuration. The stress
level expected from the cohesive zone model, given in Figure 7, after a total strain of 0.13% is 95 MPa.
This result is consistent with the smeared crack simulation (Figure 6) where the final stress is
approximately 100 MPa after a total strain of 0.13%. As expected under stable crack growth condition,
the FPLA is not necessary and the time step refinement method is enough to get the convergence during
the crack growth stage.

To analyse the influence of the boundary condition on the damage extension, the same configuration has
been tested with a homogenous stress boundary condition (HSBC) for the tensile loading. This type of
boundary condition, proposed in [28], is defined with Equation (21). In the later the loading is given by
the mean displacement and the HSBC is possible through the degrees of freedom given by the following

linear equation.

1

@. ?zl(fSNi.uf.ds) - Uy =0 (27)

imp

S is the surface with HSBC, n the number of nodes of the surface S, N; the finite element shape functions,

Y

y - .
u; the vertical component of the nodal displacement and U;,,,,

the mean displacement loading.

The damage extension at the end of the loading obtained with this boundary condition is given in Figure
8. When the local stress relaxation is not possible, there is only one crack initiated from the weakest
element, and then the crack extension occurs in a single element row under a mode I loading. If we
consider the crack length given by the smeared crack model and the stress level at the end of the loading,

we can compute the energy restitution rate with the G THETA method [29]. The numerical application,
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given in Figure 9, confirms that crack extension stops because the energy restitution rate is lower than
material toughness set at 50 J/m”. Just after the crack initiation there is a first stage where the crack
extension is unstable, and then, when the crack size leads to enough stress relaxation, the crack extension
is stable up to the end of loading (see these two stages in Figure 10). According these results we can see
that the maximum load level is controlled by the rupture stress property and that the final crack size is
controlled by the material toughness.

Results obtained for the cracked specimen are presented in Figure 11. The stress-strain curve shows a
stable crack growth stage starting after the reaching of the maximum mean tensile stress. The stable crack
growth is possible only with a non-uniform displacement boundary condition represented in Figure 5 for
the cracked specimen 1. The elastic energy restitution rate (G integral) is computed as a function of the
displacement loading for different crack sizes defined through the smeared crack model damage results.
As shown in Figure 11, the crack extension starts when the G integral is greater than 8 J/m” and then
during the stable crack, this integral almost constant around 9 J/m”. This result confirms that the smeared
crack model is consistent with a Griffith criterion. The sensitivity analysis, done in Figure 12, confirms
that the crack extension doesn’t depend on the mesh size and on the finite element as expected with the

introduction of a characteristic length as discussed in section 3.2.1.

Specimen | 7 (m) L a E % G, Op g
Smooth 0,25.107* 1,5 200 GPa | 0.3 4 J/m? | 1647 MPa | 0.13%
Cracked2 | 0,125.107 0,5.t 8J/m’

Table 3 : Input data for 2D simulation of unstable crack extension
In order to have unstable crack propagation for 2D configurations presented in Figure 5 we use the
numerical values proposed in Table 3. As explained in section 2.2.1, the standard QNA can’t converge in
this case due to the loss of convexity of the problem. An illustration of this convergence problem is given
in Figure 13 where the equilibrium residual always increases when the crack extension starts and the
convergence can’t be achieved even after a large number of iterations. Results with the proposed
algorithm for the smooth specimen tensile test are presented in Figure 14. As expected, the unstable crack
extension leads to a sudden tensile stress drop with a total strain increment equal to zero (see Figure 14a).
The convergence process of the fictive path loading algorithm during the unstable rupture (see
Figure 14b) leads to 132 iterations. Virtual steps updates are done every 50™ iterations. After the first
virtual step, the elastic energy decreases up to zero as damage progresses through the thickness. Crack
extension starts at iteration 50 and crosses the thickness at iteration 100 as shown in Figure 14c with the
damage field and the crack extension energy. In this case, the use of a uniform stress level at the crack
initiation leads to a thickness of the damage zone without physical meaning as we don’t expect a multi-
layer crack pattern in a brittle material. As presented in a further section, a non-uniform stress distribution

at the crack initiation loading wouldn’t lead to the same result. Despite the lack of physical meaning of
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the damage zone thickness, we can see that the fracture energy is still much smaller than the elastic
energy at crack initiation, and other parameters (rupture stress, stress-strain curve, crack orientation,
number of damage zones,...) are in good agreement with the expected results. In Table 4 a sensitivity

analysis shows that the maximal load o,, 1s not mesh size dependent. In all these cases, the crack

extension is unstable as expected if we consider a single crack and available elastic energy at crack

initiation.

L meshsize h | o,,, (MPa) Fracture energy (J) | Elastic energy (J) | Type of FE
1.5xt t/70 163.5 0.156 0.627 QUA4
1.5xt t/50 163.7 0.136 0.628 QUA4
1.5xt t/50 164 0.13 0.630 TRI3
t t/50 163.7 0.119 0.419 QUA4
2xt t/50 163.7 0.163 0.837 QUA4

Table 4 : Unstable crack extension simulation results for a tensile smooth specimen
For the specimen “Cracked 17 of Table 2 the simulation results are given in Figure 15 and Table 5. In the
latter a sensitivity analysis has been achieved. The crack extension starts at a maximum stress of 21.5
MPa and leads to an unstable rupture. As mentioned previously, a non-uniform stress distribution, due to
the initial crack, leads to a damage zone thickness equal to one element. As shown in Table 5, the
maximum load level is not mesh size dependent, this result as well as the computation of the G integral
confirm once again that the smeared crack model is equivalent to a Griffith criterion (see also size effect

in Table 5). We can also confirm that the specimen size effect is in good agreement with the Griffith

. . . a .
criterion when we compare different results for the same | ratio.

t (m) L mesh size alt Maximal load (MPa) G integral (J/m®) Type of FE
0.125e-2 1.5xt t/50 0.5 21.5 9.2 QUA4
0.125e-2 1.5xt t/70 0.5 21.5 8.9 QUA4
0.125e-2 1.5xt t/100 0.5 22 9 QUA4
0.125e-2 1.5xt t/50 0.5 19 7.5 TRI3
0.125e-2 1.5xt t/50 0.25 36.8 9.4 QUA4
0.0625¢-2 1.5xt t/50 0.5 28.5 7.4 QUA4

Table 5 : Unstable crack extension simulation results for a tensile cracked specimen

The FPLA step and its verification, as proposed in this new methodology (see section 2.4), are illustrated

in Figure 16 for unstable rupture of the cracked specimen. In Figure 16a the convergence process is
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similar to the one obtained for the smooth specimen with a decrease of the equilibrium residual error
occurring only when the crack extension is maximal and when the elastic energy is almost relaxed. In
Figure 16b we can see that the convergence of the QNA, initialized with the FPLA solution, is reached
after only 2 iterations. This verification confirms that the solution satisfies both the equilibrium condition
and the material law. In Figure 16c, the QNA without initialization shows that no convergence seems
possible even after a large number of iterations. In this last case the crack extension can’t start, probably
because the QNA is trapped in a local minimum of the equilibrium residual. According to the damage
extension of Figure 16d and to the crack extension energy of Figure 16a, we can conclude that the FPLA

solution is consistent with a progressive damage extension from the crack tip.

4.2. Mixed mode loading

A cracked specimen under mixed mode loading I and II has been simulated according the geometrical
configuration presented in Figure 17a and input data given in Table 6. As shown in Figure 17b the crack
initiation starts for a maximum shear stress of 23 MPa in a direction oriented at an angle of 60° compare
to the initial crack plane. There is a stable crack extension up to 20% of the normalized displacement
loading, and then an unstable crack extension reaches the bottom of the specimen and leads to a complete
relaxation of the shear stress loading. After that, the tensile stress can increase up to a maximum value of
17 MPa leading to an unstable crack extension at the bottom of the specimen, under a mode I loading,
from the first mixed mode crack tip. A sensitivity analysis with respect to the ratio shear over tensile
displacement loading has been achieved. This study shows that through this ratio one can have mode II,
mode I or mixed mode I and II rupture types. The stress-displacement curve as well as the crack path are
not mesh size dependent. However the finite element type and the spatial mesh distribution have a
significant impact on crack path due to discrete approximation of the stress field as it is illustrated in
Figure 18. In the latter one can see that in the mode II loading case the crack path orientation (red curve in
Figure 18) depends on the finite element type. This problem seems to be related to an artificial texture
effect brings by the maximal principal stress criterion and the finite element approximation of the stress

field.

!(m) L a E v G, op u

0,25.10 | 0,5.t 0,5.t 200 GPa | 0.3 4J/m* | 1647 MPa | 450,.L

Table 6 : Input data for 2D simulation under mixed mode loading

4.3. Bi-material tensile test

A bi-material tensile test has been simulated according to the geometrical configuration presented in

Figure 19 and input data given in Table 7. The first material is considered to be elastic. The rupture can
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occur only in the second material with a toughness set at 2 or 1 J/m”. For the crack initiation, we define a
weak finite element located at the bottom of the specimen in material 2. In each case, we can see in
Figure 19 that the crack initiation occurs at a tensile stress of 164 MPa which is consistent with the
rupture stress. For the smaller toughness case, a first unstable rupture occurs at the bottom of the
specimen with a crack extension through one third of the bi-material interface. Then the crack extension
goes on at the bi-material interface under a stable stage up to the end of the loading. For the 2 J/m’
toughness case, the first unstable rupture stops at the bi-material interface. Then the crack extension
continues along the interface, and new cracks, parallel to the first one, initiate regularly along the
specimen length. These results are consistent with the ones proposed in reference [32] where the periodic

length between two horizontal cracks has an inverse proportionality with the material toughness.

t=4,=b (m) L | E=E |v=v,| o, u,

0,025.1072 t 200 GPa | 0.3 164,7MPa | 20, .L
E

Table 7 : Input data for 2D simulation of a bi-material tensile test
4.4. 3D nuclear fuel simulation

4.4.1. Macroscopic fragmentation under thermal gradient

In order to study nuclear fuel pellet fragmentation under irradiation we have developed a 3D finite
element simulation of one single pellet fragment [1]. In this study, we propose an improvement of the
simulation with a full pellet finite element model as presented in Figure 20. Isostatic boundary conditions
are used in order to avoid rigid body motion of the fuel pellet. The loading is induced by a radial thermal
radial gradient with a parabolic shape according higher temperatures at the center of the pellet. This
thermal gradient is increased gradually in order to reach a maximal mean value of -150 °C/mm at the end
of the loading. Other input data are given in Table 8 and simulation results are presented in Figure 21.
The crack extension is unstable and starts at a thermal gradient of -25 °C/mm with initiation sites
localized on the outer part of the pellet where the tensile thermal stresses are maximal. At this stage, there
are three pellet fragments with crack planes oriented perpendicularly to the circumferential direction. It is
worth noting that although the tensile circumferential stress is almost constant on the outer part of the
pellet, we don’t need to introduce a weak element to have damage localization leading to a first crack. In
this case, the stress scattering due to numerical noise is enough to start the localization of the damage
initiation before crack extension. A higher thermal gradient loading tends to increase the extension of the
existing cracks and the connections between cracks including the ones coming from new initiation sites.
In Figure 21e) the pellet fragmentation has been illustrated with an amplification of the displacement field

and a suppression of the damaged elements. In this figure, we can see that the thermal gradient loading on
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the fragmented pellet leads to the well-known pellet hour-glass shape, as the phenomenon was established
through a simplified 3D model and experimental results in the framework of pellet cladding interaction
studies [1]. If we compare the crack pattern to experimental observations, we can conclude that the
number of pellet fragments and their shape are representative of the beginning of irradiation.

For mesh sensitivity analysis purpose, three different mesh refinements have been used with 3340, 7658
and 24397 nodes respectively. Results are presented in Figure 22 with the pellet fragmentation obtained
for the maximal thermal gradient. The local softening modulus of the damage model has been computed
according Equation (24) in order to have a material toughness equal to 17 J/m’>. The results are
qualitatively consistent for the three meshes if we consider the fragment size and the hour glass shape of
the pellet. The cracked surfaces, estimated through the volume of the damaged element, are 5.4, 4.9 and
5.1 cm’ for mesh 1 to 3 respectively. The variation between mesh 2 and 3 seems reasonable, however
mesh convergence should be confirmed with higher refinements. Computation times are 1, 3 and 18 hours
for mesh 1 to 3 respectively. The numbers of time steps used for meshes 1 to 3 are 2400, 3400 and 5500
respectively. For mesh 3 computation, there is 140 FPLA steps and a mean number of QNA iterations of
10. The FPLA steps for the first unstable cracks required a high number of iterations (between 300 and
400).

Fuel pellet Material properties

radius height | Young | Poisson | Rupture | Toughness | Thermal
modulus | ratio stress expansion

4 mm 7mm | 200000 | 0.3 100 10 J/m’ le-05
MPa MPa

Table 8 : Input data for fuel pellet fragmentation simulation

4.4.2. Microscopic fragmentation under fission gas pressure loading.

Under irradiation, gaseous fission products tend to precipitate in small bubbles and induced internal
stresses in the porous material. To study the risk of fuel pellet microscopic fragmentation, we have
developed a 3D volume element model of the nuclear fuel [2]. The finite element mesh (see Figure 23),
derived from a MOX fuel microstructure [33], is based on a periodic volume element of the porous
material. Bubble size statistical distribution is defined with post irradiation micrographic examinations,
and bubble spatial localization is derived from a Random Sequential Addition algorithm. Input parameter
are given in Table 9. As the loading due to pressure driven forces on the crack surfaces is not represented
in the finite element simulation, we have to use a reduced value of the real material toughness. This
effective toughness has been estimated thanks to the difference between the material toughness and the

work due the pressure on the surface crack. This leads to a very small value of 0.001 J/m’ as given in
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Table 9. In order to avoid an indeterminacy of the static solution under Neumann boundary condition, the
pressure loading is replaced by a strain control loading. The latter is defined through a fictive thermal
expansion of the bubble gas, itself considered as a linear elastic material with a shear modulus much
smaller than the bulk modulus. Numerical results are presented in Figure 24 with an amplification of the
displacement field and a suppression of damaged elements. As presented in Figure 24a, the mean bubble
pressure, induced by the fictive thermal loading, increases up to 120 MPa when a first unstable crack
extension occurred. After the first crack extension the pressure is no more homogeneous in bubbles.
Bubbles crossed by or near a crack plane have a reduced pressure due to the softening of damaged
material. This leads to a mean pressure drop for each new crack extension as shown in Figure 24a.
Through these results, we can understand the fuel fragmentation mechanism which depends on the

material microstructure and the pressure induced by gaseous fission products.

Fuel Volume element Material properties
Size | Bubble volumic | Young modulus | Poisson | Rupture | Effective Fictitious
fraction ratio ratio stress material thermal
toughness expansion
9 um | 8% 200000 MPa 0.3 100 0.001 J/m* | 1.
MPa

Table 9 : Input data for fuel microscopic fragmentation

4.4.3. Discussion

These 3D applications demonstrate the robustness of the proposed algorithm to simulate a rupture process
involving multiple crack initiation sites and complex crack extension patterns. Thanks to the continuous
damage model this approach doesn’t need a specific mesh refinement method. Computation times
obtained with personal computers are reasonable (between 1 and 2 days) compared to the complexity of
the rupture process. Such simulations can now be achieved to study with more details the fuel
fragmentation process at macroscopic and microscopic scales, in order to have a better understanding of

its impact on the fuel element structural integrity.

5. CONCLUSIONS

A new numerical approach has been proposed for unstable rupture simulation in brittle material. It is
based on a three-steps algorithm: a time step refinement associated to a quasi-Newton algorithm (QNA)
to detect the non-convergence only due to an unstable crack extension, a fictive path loading algorithm
(FPLA) to reach the static post instability solution and finally a quasi-Newton algorithm initialized by the

solution obtained from the fictive path loading algorithm to ensure the final solution to verify the quasi-
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static equilibrium as well as the behaviour law. This method doesn’t need a fully dynamic description of
the rupture and can overcome the discontinuous solution problems induced by the quasi-static equilibrium
formulation.

An application of this new method has been presented for a smeared crack model, based on a local
continuous damage formulation, devoted to brittle nuclear fuel rupture simulation. The robustness of the
algorithm has been demonstrated through a set 2D and 3D simulation results.

First, we can conclude that the time step refinement process is efficient for the detection of unstable crack
propagation steps. Thanks to the time step refinement the convergence of the QNA can be reached for
softening behaviour under stable crack condition, and hence the FPLA is activated just at the beginning of
the unstable crack growth. The FPLA, which can be easily implemented on an existing Newton type
algorithm, provides a real improvement to simulate unstable crack extension in some cases where
convergence is not possible with a QNA. The method has not been directly compared to other algorithms
mentioned in the bibliography, nevertheless computation times seem reasonable regarding the complexity
of applications proposed in the paper. The third step of the proposed methodology provides a simple
verification to make sure that the FPLA has been used in an appropriate situation.

Further perspectives can be considered to improve the convergence of the algorithm such a sensitivity
analysis to the numerical parameters used to control the time step refinement or the number of iterations
between virtual steps. Comparison with other approaches can also be achieved through the extension to
other damage models. A work is currently in progress to apply the proposed numerical strategy for a non-

local damage model coupled to a phase field formulation. The first results are extremely encouraging.
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6. FIGURES
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Figure 1 : Quasi static snap back under unstable crack extension and path following constraint solution.
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Figure 6 : Stable crack propagation results for the smooth specimen and uniform displacement boundary

conditions (displacement amplification factor=100).
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Figure 7 : Cohesive zone model and analytical solution for the smooth specimen rupture.
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Figure 8 : Damage extension for the smooth specimen with homogeneous stress boundary conditions

(displacement amplification factor=100).
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Figure 9 : Energy restitution rate computation for the smooth specimen with homogeneous stress

boundary conditions (displacement amplification factor=100).

30



180
160
crack size (a/t) G (J/m2?)
0.31 47.5

140
T 100 -
s crack size (a/t) G (J/m2?)
= 0.42 41.5
w80 i
A

40 | \/
0

0.00% 0.02% 0.04% 0.06% 0.08% 0.10% 0.12% 0.14%

Axial strain (%)
Figure 10 : Strain stress curve for the smooth specimen with homogeneous stress boundary conditions

(displacement amplification factor=100) (mesh size t/100).

31



1.00 35
0.90
30
0.80
0.70 25
<
© —_
o 0.60 203
] s
S 0.50 —+—crack size s
5 15 9
© 0.40 ~#-Mean tensile stress ﬁ
0.30 10
0.20
5
0.10
0.00 0
0.00% 0.05% 0.10% 0.15% 0.20% 0.25% 0.30% 0.35%
Maximal Axial strain (%)

a) Crack extension and stress-strain curve

b) Normalized crack strain opening (displacement amplification factor=100)

1.20 12
1.00 10
. 080 8
~
© —_—
S N
] £
~ 0.60 6 =
X =
© O
o
—+—crack size
0.40 4
-=-Elastic energy restitution rate
0.20 2
0.00 0
0.00% 0.05% 0.10% 0.15% 0.20% 0.25% 0.30% 0.35%
Maximal Axial strain (%)
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Figure 11 : Stable crack propagation results for the cracked specimen (mesh size = t/200) .
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Figure 12 : Mesh size sensitivity analysis for stable crack propagation in the cracked specimen.
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Figure 13 : Residual nodal forces of the Cast3M Quasi-Newton algorithm in the case of unstable crack

extension.
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b) Convergence of the fictive path loading algorithm during the rupture time step

c) Damage field at iterations 50, 62, 100 and 132 of the unstable rupture time step

Figure 14 : Fictive path loading algorithm results for a tensile smooth specimen.
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Figure 15 : Fictive path loading algorithm results for a tensile cracked specimen.

35



—Newton Raphson solution required precision
—+Newton Raphson solution residual error
1000.00 —+-Crack extension energy in the specimen 9.0E:03
-#-Elastic energy in the specimen ‘
T T T T 8.0E-03
7.0E-
100.00 0E-03
6.0E-03 =
2 5.0E-03 g
& 1000 &
E 4.0E-03
o
3.0E-03
1.00
2.0E-03
1.0€-03
0.10 0.0E+00
0 200 400 600 800 1000 1200
Iteration number

a) Convergence of the fictive path loading algorithm during the rupture time step
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¢) Convergence of the quasi Newton algorithm without initialization of the displacement solution
Figure 16 : Verification of the fictive path loading algorithm solution.
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Figure 17 : Unstable crack propagation under mixte mode loading I and II.
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Figure 18 : Impact of the finite element type on crack path.
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Figure 19 : Crack initiation and growth in a bi-material tensile test specimen.

Figure 20 : 3D finite element mesh for nuclear ceramic fragmentation under thermal gradient.
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a) -25 °C/mm b) -50 °C/mm ¢) -90 °C/mm

d) -150 °C/mm e) -150 °C/mm (displacement amplification factor=50)
Figure 21 : Numerical results of the nuclear fuel pellet fragmentation simulation for different thermal
gradient loading levels

a) Mesh 1 3340 nodes b) Mesh 2 7658 nodes d) Mesh 3 24397 nodes
Figure 22 : Mesh sensitivity analysis for the nuclear fuel pellet fragmentation (displacement amplification

factor=50)
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Figure 23 : Finite element mesh for the 3D volume element model of nuclear fuel.
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Figure 24 : Numerical results for fuel fragmentation at microscopic scale (displacement amplification
factor=500).
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