
HAL Id: cea-03581208
https://cea.hal.science/cea-03581208

Submitted on 19 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental characterization and modelization of ion
exchange kinetics for a carboxylic resin in infinite

solution volume conditions. Application to
monovalent–trivalent cations exchange

Sébastien Picart, Isabelle Ramière, Hamid Mokhtari, Isabelle Jobelin

To cite this version:
Sébastien Picart, Isabelle Ramière, Hamid Mokhtari, Isabelle Jobelin. Experimental characterization
and modelization of ion exchange kinetics for a carboxylic resin in infinite solution volume conditions.
Application to monovalent–trivalent cations exchange. Journal of Physical Chemistry B, 2010, 114
(34), pp.11027-11038. �10.1021/jp102120m�. �cea-03581208�

https://cea.hal.science/cea-03581208
https://hal.archives-ouvertes.fr


Experimental characterization and modelization of

ion exchange kinetics for a carboxylic resin in

infinite solution volume conditions. Application to

monovalent-trivalent cations exchange.

Sébastien Picart,∗,† Isabelle Ramière,∗,‡ Hamid Mokhtari,† and Isabelle Jobelin†

CEA, Nuclear Energy Division

RadioChemistry and Processes Department, Actinides Chemistry and Conversion Laboratory,

F-30207 Bagnols-sur-Cèze, France, and

Fuel Study Department, Fuel Simulation Laboratory, F-13108 Saint-Paul-lez-Durance, France

E-mail: sebastien.picart@cea.fr; isabelle.ramiere@cea.fr

∗To whom correspondence should be addressed
†RadioChemistry and Processes Department
‡Fuel Study Department

1

sebastien.picart@cea.fr
isabelle.ramiere@cea.fr


Abstract

This study is devoted to the characterization of ion exchange inside a microsphere of car-

boxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be

controlled by interdiffusion in the particle. The fractional attainment of equilibrium function

of time depends on the concentration of the cations in the resin which can be modelized by

the Nersnt Planck equation. A powerful approach for the numerical resolution of this equation

is introduced in this paper. This modelling is based on the work of Helfferich but involves

an implicit numerical scheme which reduces the computational cost. Knowing the diffusion

coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics

can be hence completely determined. When those diffusion parameters are missing, they can

be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient

optimization tool coupled with the implicit resolution hasbeen developed for this purpose. A

monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic

resin. Diffusion coefficients and concentration profiles inthe resin were then deduced through

this new model.

1 Introduction

The carboxylic resins find numerous applications in daily life for the softening and demineraliza-

tion of water but also in industry for the purification of metallurgical1 or biological products2.

Their outstanding properties are a very high exchange capacity and a strong selectivity between

divalent (or trivalent) and monovalent cations3. Recently, those ion exchangers have been studied

for the removal of Fe(III) from an acid sulphate media representative of mining solutions and efflu-

ents4 or for analytical purpose concerning the determination of U(VI) in environmental samples5.

However, their applications to the field of materials have been investigated to a lesser extent. Yet,

the loading of a spherical cation exchanger by a lanthanide or an actinide cation followed by its

carbonisation can be an interesting way to obtain perfect microsphere of lanthanide or actinide

oxide6,7. This process was successfully exploited to produce kernels of uranium oxide or carbide
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for the nuclear fuel of high temperature gas reactor8,9 and stands for an alternative route to sol-gel

process10 or infiltration method11. For this purpose, the saturation of the resin by a lanthanide

cation is required and the kinetics of the loading operationhas to be perfectly mastered. Few stud-

ies are devoted to this subject. We are then interested in a full comprehensive understanding of the

exchange rate between the monovalent counter-ion of the resin and the lanthanide cation present

in solution12.

Only few studies are devoted to the in-depth modelling of thekinetics of the ion exchange. Most of

the time, adsorption models with first-order kinetics are used13. In some particular situations, e.g.

isotopic exchanges14, an analytical solution describing the time evolution of the concentration in

the resin can be obtained. Hence the kinetics of the exchangecan be totally determined. Generally

speaking, the full understanding of the exchange requires numerical resolutions. In the conditions

of relatively high concentration in solution (0,1-0,5mol/L), the limiting step of the reaction is the

interdiffusion process in the microsphere (intraparticlediffusion) instead of the film diffusion phe-

nomena. The interpretation of this particular diffusion ofcharged species in an ionic polymer is

obtained from the numerical resolution of the Nernst-Planck equation. Those concepts and explicit

calculations were first exposed by Helfferich and co-workers15 who succeeded in describing the

evolution of the fractional attainment of equilibrium withtime for monovalent and divalent cations

characterized by different diffusion coefficients. For practical purposes (mainly based on calcu-

lation times), we propose here to use an implicit resolutionof the Nernst-Planck equation. This

implicit resolution is based on a semi-implicit scheme thatenables us to obtain a linear system that

can be easily solved. Otherwise fully implicit schemes applied to the Nernst-Planck equation lead

to a non-linear system to be solved, which implies an iterative resolution where a linear system is

solved at each step, see for example the recent application for liquid junctions in16.

The novelty of this article is then to determine self diffusion coefficients of both partners from ex-

perimental data through an optimization procedure based onthe semi-implicit resolution Nernst-

Planck equation. This optimization process is first validated by treating some data from the litera-

ture for monovalent/monovalentexchanges. The method was then applied to the proton/ammonium
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and the ammonium/neodymium exchange. To the best of our knowledge, it is the first full mod-

elling of a monovalent/trivalent exchange.

2 Experimental: Materials and procedure

2.1 Preparation of materials

2.1.1 Screening of the resin

The ion exchange material employed in this investigation was an acrylic resinous exchanger in

its proton form, from Rohm & Haas Company (Chauny, France), called IMAC HP 333. Be-

cause the particle size is of importance for kinetics, a mechanical wet screening was performed

on a Retsch apparatus (Retsch, AS200 Basic) through successively finer standard sieves (Prolabo,

400µm/600µm/800µm/1000µm). A final manual screening was operated on each size range

with the same sieves by means of a brush under a stream of deionized water. The fraction of

600−800µm size was selected for our experiments.

2.1.2 Washing of the resin

The resin was first washed by repeated column equilibration with a 1M aqueous ammonia solution,

deionized water, 1M aqueous nitric acid solution and deionized water (3 cycles). The capacity

of the resin was checked at the third cycle by measuring the quantity of ammonium and proton

exchanged: the analytical weight capacity is equal to 11.6 meq/g of dry H+ resin and the technical

volume capacity is about 3.7 meq/mLof resin bed17. Eventually, it was removed from the column

and was dried at 105◦C and stored dry in its proton form.

2.2 Cations Exchanges

All experiments were performed at room temperature (20±2◦C).
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2.2.1 Proton-Ammonium ion exchange rate measurements

The day of the experiment, a weight portion ofH+ form resin (about 30mg) was introduced in a

small column (BioRad, 5cmhigh, 0.5 cmof diameter) and hydrated for 2 hours by contact with

deionized water. The cell was flushed initially with deionized water to remove air bubbles. After a

few minutes, a 0.3M NH4NO3 (pH≃ 5) solution was passed through the shallow bed of absorbent

(flow rate = 100mL/min, Ismatec Reglo volumetric pump) for a given timet and followed by a

water wash (200mL). The quantity of proton released in the filtrateQH(t) was estimated from the

change of pH between the feeding solution and the percolate (Metrohm Combined glass electrode)

and from speciation simulation on proton, ammonia and nitrate using Jchess Program18. The

amount of ammonium fixed in the resin,QNH4(t), is equivalent toQH(t).

At last, a batch experiment was also carried out by contacting for 2 days a mass of 51.3mgof proton

form resin with 1L of a 0.3 mol/L NH4NO3 solution. This experiment is useful to characterize

the equilibrium.

2.2.2 Ammonium-Neodymium ion exchange rate measurements

A weight portion ofNH+
4 form resin (about 20mg) was rehydrated for 2 hours by contact with

10 mL of a 1mmol/L NH4NO3 solution and was placed in the same column as described before.

Then a 0.1 mol/L Nd(NO3)3 aqueous solution was forced through the shallow resin bed for a

determined timet at a fixed flow rate of 100mL/min. After contact, the resin was thoroughly

washed with of 200mL of deionized water. The amount of neodymium contained in the resin was

measured by dissolution when getting back theNd3+ cation into solution with an acid treatment

(HNO3 1 mol/L, volume = 2mL) and measuring the concentration of the lanthanide cation by a

spectrophotometric analysis. This quantity, namedQNd(t), was expressed inµeq by multiplying

the number ofµmolesby the charge ofNd3+, that is 3.The resin left was collected and dried at

105◦C for 4 hours and then weighed. By multiplying the weight capacity by this mass, the total

exchange capacity of the resin,Qmax, initially present in its ammonium form, was estimated.

As previously, a batch experiment was performed by equilibrating for 3 days a mass of 52.7 mgof
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ammonium form resin (corresponding to 36.7 mgof proton form resin) with 1L of a 0.1 mol/L

Nd(NO3)3 solution. TheNd content in the resin was analyzed at equilibrium by dissolution in

5 mL HNO3 1 mol/L solution.

3 Results

The results of the proton/ammonium exchange can be found in Table 1. The initial mass of the

proton resin are reported as well as the quantity of proton released in the percolate from the pH

analysis, which corresponds to the quantity of ions exchanged for a given time. The ratio of the

amount of ammonium in the resin over the full exchange capacity, QNH4(t)/Qmax= QH(t)/Qmax,

represents the degree of conversion of the resin. From the batch experiment, the equilibrium is then

considered to be achieved when the conversion of the resin reaches 16.5 %. The conversion is not

complete because the feeding solution is slightly acid and the separation factor between proton and

ammonium may be high. The fractional attainment of equilibrium F is then calculated by using

the following relation

F(t) =

QH(t)
Qmax

Q∞
H

Q∞
max

(1)

Table 1: Observed degree of conversion and fractional attainment of equilibrium for a pro-
ton/ammonium exchange on a IMAC-HP333 carboxylic resin (r0 = 350µm).

t RH pH initial pH f inal QH(t) Qmax
QH(t)
Qmax

F(t)
s mg µ eq µ eq % %

20 29.6 5.01 3.78 6.4 343.4 1.9 11.4
52 29.2 5.01 3.90 12.3 338.7 3.6 22.2

117 29.5 5.01 4.11 16.3 342.2 4.8 29.1
308 24.9 4.99 4.46 20.3 288.8 7.0 42.9
597 28.9 5.01 4.50 35.8 335.2 10.7 65.2
900 29.0 5.01 4.63 36.9 336.4 11.0 67.0

1800 26.1 4.99 4.75 45.6 302.8 15.1 91.9
3000 30.1 5.11 4.93 54.2 349.2 15.5 94.7

172800 51.3 5.02 4.13 97.5 595.1 16.4 ∼ 100
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The experimental results of the ammonium/neodymium exchange are given in Table 2. The initial

mass of the ammonium resin and its equivalent proton mass measured after dissolution experiments

and drying are reported as well as the concentration ofNd in the dissolution solution and the

quantity ofNd fixed in the resin inµeq. As regards the result of the batch experiment, the resin

is fully converted at equilibrium which means(QNd/Qmax)
∞ = 1. Hence, the fractional attainment

of equilibrium is directly given by the ratio of the amount ofNd in the resin over the exchange

capacity,QNd(t)/Qmax.

F(t) =
QNd(t)
Qmax

(2)

Table 2: Observed degree of conversion and fractional attainment of equilibrium for an am-
monium/neodymium exchange on a IMAC-HP333 carboxylic resin (r0 = 350µm).

t RH [Nd] QNd(t) Qmax F(t)
s mg mmol/L µ eq µ eq %

60 15.7 3.6 21.5 181.7 11.8
120 16.0 6.2 37.4 185.5 20.2
300 16.3 9.8 58.7 189.0 31.1
600 14.9 11.6 69.8 172.6 40.4

1200 14.7 16.2 97.0 170.1 57.0
2400 9.5 13.8 82.8 110.2 75.1
3050 18.6 28.4 170.4 215.8 79.0

259200 36.7 27.8 417.0 425.7 ∼ 100

For the two systems, the relative uncertainty of measurement on F(t) stems essentially from the

weighing operations of the resin and was estimated at 7%.

4 Modelling of the ion exchange

4.1 Formulation of the problem

We consider the ion exchange between spherical resin beads of uniform size in contact with a

well-stirred solution. The exchange process is controlledby the interdiffusion of the species A and
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B, either in the resin particle or in the diffusion layer adherent to the resin particle. In this paper,

only the case of particle control is treated which corresponds to experimental conditions of effi-

cient stirring, large diameter of the resin and relatively concentrated solution19 (> 100mmol/L).

An empirical criterion defined by Helfferich20 allows to predict the nature of the rate-determining

step for complete conversion, infinite solution volume and counter ions of equal mobility. How-

ever this calculation requires the value of the interdiffusion coefficient in the ion exchanger which

is unknown for the type of carboxylic resin considered here.This study, as we will see in sec-

tion Section 6.1, aims at determining the individual diffusion coefficients in the resin which will

enable to calculate this criterion and verifya posteriorithat the hypothesis of particle control dif-

fusion was well-founded.

The gradient of the chemical potential of one specie is the driving force of its flux. This flux not

only consists in the concentration gradient but it also consists in the gradient of the electrical poten-

tial which is a result of the diffusion process. Under some symplifying assumptions, Nernst-Planck

equations21,22 are well adapted to describe this ionic interdiffusion processes in the resin. These

assumptions, usually encountered for the modelling of ion exchange kinetics15,23, are listed below:

• The resin is considered as a homogeneous phase regardless its porous structure. It is spheri-

cal in shape so that we restrict to radial diffusion,

• The individual diffusion coefficients are constant for a given resin whatever is the resin’s

composition,

• The concentration of ionogenic groups (carboxylate function) troughout the resin is assumed

to be constant. The changes in swelling are not being taken into account,

• The concentration and flux of co-ions (anions in our case) in the resin is neglected because

the concentration of fixed ionic group in the resin is relatively high so that co-ions are ex-

cluded according to the Donnan effect.
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Then, combining the Nernst-Planck equations describing the fluxes of two counter ion speciesA

andB into the resin with the electroneutrality of the system and the no charge accumulation, we

obtain the following flux

ΦA = −

[

DADB
(

z2
ACA +z2

BCB
)

DAz2
ACA +DBz2

BCB

]

∇CA, (3)

where the subscriptsA andB refer to the counter ion species,D is the individual diffusion coeffi-

cient,C is the molar concentration andz is the electrochemical valence.

The quantity in brackets is designed as the “interdiffusioncoefficient” in the literature (see e.g.

Ref. 15) and is often denoted byDAB.

Then for time-dependent processes, the Fick equation (or continuity equation) reads

∂CA

∂ t
= −∇.ΦA

As we are interested by an interdiffusion process between a solution and a spherical resin, the

previous equation is transposed in spherical coordinates.As the resin presents a radial symmetry

(see above assumptions), we have

∂CA

∂ t
=

1
r2

∂
∂ r

(

r2

[

DADB
(

z2
ACA+z2

BCB
)

DAz2
ACA+DBz2

BCB

]

∂CA

∂ r

)

.

wheret is the time andr is the radial coordinate. This equation is defined at all point of the resin.

To finish, in a dimensionless and conservative form, the interdiffusion process is described by the

following partial differential equation (PDE)

∂γA

∂τ
−

1
ρ2

∂
∂ρ

(

1+bγA

1+aγA
ρ2∂γA

∂ρ

)

= 0, ∀ρ ∈ [0,1[, τ ∈ R
+ (4)
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with the dimensionless variables and parameters defined by

γA ≡
zACA

Cmax
, τ ≡ DA

t

r2
0

, ρ ≡
r
r0

, a≡
zADA

zBDB
−1, b≡

zA

zB
−1

wherer0 represents the microspherical resin radius andCmax= zACA+zBCB is the total equivalent

concentration which is constant since there is no charge accumulation. ThenγA + γB = 1 with

0≤ γA,γB ≤ 1.

The previous PDE holds whatever the subscriptA designs the ion adsorbed by the resin or the ion

rejected in the solution. The choice of the counter ionA influences only the boundary and initial

conditions of the problem to be solved.

The initial condition corresponds to the initial dimensionless concentration of the specieA in the

resin. This initial concentration is supposed to be uniformis the resin:

γA(ρ,0) = γ0
A, ∀ρ ∈ [0,1[ (5)

The boundary conditions read

∂γA

∂ρ
|ρ=0 = 0, (radial symmetry) (6a)

∀τ > 0 (surface concentration) :


































⋆if A = ion rejected in solution:

γA(1−,τ) = 1−λ +λγA(1+,τ)

⋆if A = ion adsorbed by the resin:

γA(1−,τ) = λγA(1+,τ)

(6b)

whereγA(1−,τ) = lim
ρ→1−

γA(ρ,τ), γA(1+,τ) = lim
ρ→1+

γA(ρ,τ) andλ is the distribution ratio of the

resin for the counter ion adsorbed. The first expression of the internal concentrationγA(1−,τ) at
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the surface of the resin is obtained usingγA + γB = 1 in the expression ofλ recalled in Eq. (7)

λ =
γad(1−,τ)

γad(1+,τ)
, ∀τ > 0 (7)

where the subscriptad designs the ion adsorbed by the resin. This distribution ratio is constant in

time.

As the concentrations in solution are considered to be homogeneous, we haveγA(1+,τ) = γA(ρ >

1,τ). Moreover, in the infinite solution volume case, which is of interest here, the concentration in

solution is also constant in time due to the continuous renewal of the solution

γA(ρ > 1,τ) = γS
A, ∀τ ≥ 0 (8)

Then, boundary condition (6b) becomes

γA(1−,τ) = γ∞
A =











1−λ +λγS
A if B = ad

λγS
A if A = ad

∀τ > 0 (9)

Eq. (9) enables us to conclude that the concentrations of counters ions at the surface of the resin

are constant in time forτ > 0 in the infinite volume solution case.

Remark:A distribution ratio of the resin equal to1 leads to the continuity of the concentrations

through the surface of the resin:γA(1−,τ) = γA(1+,τ), ∀τ > 0.

Example:Assuming that initially the resin contains counter ions A only and the infinite volume

solution contains counter ions B only, we have B= ad and

γ0
A = 1, γS

A = 0 and hence γ∞
A = 1−λ
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The solutionγA(ρ,τ) of Eq. (4) enables us to calculate the fractional attainmentof equilibrium

f at each dimensionless time by:

f (τ) =
q0

A−qA(τ)

q0
A−q∞

A

(10)

whereqA(τ) represents the amount of the specieA still present in the unit sphere at the dimen-

sionless timeτ, q0
A = qA(τ = 0) andq∞

A = qA(τ = ∞) (where infinity means the equilibrium state).

qA(τ) = 4π
∫ 1

0
γA(ρ,τ)ρ2 dρ, (11)

and then

f (τ) =
γ0
A−3

∫ 1

0
γA(ρ,τ)ρ2 dρ

γ0
A− γ∞

A

(12)

With this definition, we have

F(t) = f (τ = DA
t

r2
0

) (13)

whereF(t) is the fractional attainment of equilibrium at the timet expressed with non-dimensionless

variables.

Remark: AsγA + γB = 1, we have

qA(τ)+qB(τ) = qmax

where qmax=
4π
3

is the volume of the unit sphere.

Hence, another definition of the fractional attainment of equilibrium is

f (τ) =
q0

B−qB(τ)

q0
B−q∞

B
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As usually q0B = 0, the expression of the fractional attainment of equilibrium becomes f(τ) =
qB(τ)

q∞
B

and then returns to Eqs.(1) and (2) with the temporal transformationτ = DA
t

r2
0

.

4.2 Implicit numerical resolution

4.2.1 Notations

In the sequel, the following notations are used for the discretization in space and time. The domain

[0,1]× [0,τmax] is discretized with a constant space step∆ρ and a constant time step∆τ defined by

∆ρ =
1

Ni +1
, ∆τ =

τmax

Nn
(14)

whereτmax is the dimensionless simulation time (τmax= Da
tmax

r2
0

, with tmax the desired simulation

time (in s)).

Hence,Ni +2 equidistant discretization points are used in space whileNn+1 equidistant discretiza-

tion points are used in time. The nodes of the regular mesh aredesigned by

(ρi,τn) = (i∆ρ,n∆τ) ∀i ∈ {0, ..,Ni +1}, ∀n∈ {0, ..,Nn} (15)

As the space discretization concerns the resin only, the discrete pointρNi+1 = 1 represents the

interior surface point.

Thenγn
i denotes the approximation of the exact solutionγA at the node(ρi,τn) andγn the discrete

solution vector at timeτn: γn = (γn
i )i∈{0,..,Ni+1}

4.2.2 A semi-implicit Euler finite difference scheme

In their publications, Hellferichet al.15,23 use finite differences to numerically solve Eq. (4). An

explicit Euler numerical scheme (also called forward Eulerscheme) is performed in time. In

explicit time-marching schemes, at each space node the discrete solution at the new time is directly

obtained from the solution at previous times. For example, the explicit Euler scheme applied to the
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PDE described in Eq. (4) reads for the time step∆τ = τn− τn−1, n > 0

γn− γn−1

∆τ
−

1
ρ2

∂
∂ρ

(

1+bγn−1

1+aγn−1ρ2∂γn−1

∂ρ

)

= 0. (16)

The numerical solutionγn is easily obtained at each time step. However, the main drawback of this

approach is that the time step is limiting by the space step through the so-called CFL condition24

to have a stable numerical algorithm. The resulting calculation times may become very important.

We decide to use an implicit Euler time scheme (also called backward Euler scheme), for which a

system has to be solved to obtain the solution at a current time with respect to the solution at the

previous time. For example, for the PDE (4) the implicit Euler scheme reads forn > 0

γn− γn−1

∆τ
−

1
ρ2

∂
∂ρ

(

1+bγn

1+aγnρ2∂γn

∂ρ

)

= 0. (17)

In Eq. (17), the discretization of the space operators will lead to solve a system in order to obtain

γn. In implicit time-marching schemes, the stability condition is less restraining than for explicit

schemes. Larger time steps can thus be used. For some kind of PDE (linear for example) and space

discretization (centered finite difference for example), the Euler implicit scheme is unconditionally

stable: the time step and the space step are independent. Therefore, even if this approach requires

an extra computation (resolution of a system at each time step), accurate solutions are obtained in

much less computational time than for an explicit method. Both Euler time-marching schemes are

of first-order in time.

As the PDE under study (see Eq. (4)) is non-linear, the fully implicit scheme leads to a non-

linear system to be solved (cf. Eq. (17)). At each time step, an iterative procedure has then to be

performed to obtain the solution. This non-linear resolution can become really costly. In order

to solve a linear system at each time step, for which efficientand fast numerical methods can be

applied, we decide to use a semi-implicit scheme. This semi-implicit scheme consists in applying

the Euler implicit scheme on the PDE (4) with an explicit discrete diffusion coefficient. This

explicit discrete coefficient is obtained evaluating the diffusion coefficient with the solution at the
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previous time. The semi-implicit time scheme writes

γn− γn−1

∆τ
−

1
ρ2

∂
∂ρ

(

1+bγn−1

1+aγn−1ρ2∂γn

∂ρ

)

= 0. (18)

This scheme is still first-order accurate in time.

The initial approximationγ0 = (γ0
i )i∈{0,..,Ni+1} is deduced from the initial condition (5). As the

characteristic time required to reach the distribution ratio of the resin is negligible compared to

the discretization time, we consider that the initial solution respects the boundary condition (6b).

Thus, we set

γ0
i = γ0

A, ∀i ∈ {0, ..,Ni}, (19)

γ0
Ni+1 = γ∞

A . (20)

Therefore, onlyNn vectorsγn (n∈ {1, ..,Nn}) have to be determined.

4.2.3 A centered space finite difference scheme

In space, we use the same second-order centered finite difference for the gradient than Helfferich

∂Jn

∂ρ

∣

∣

∣

∣

ρi

≈
Jn

i+ 1
2
−Jn

i− 1
2

∆ρ
, ∀i ∈ {1, ..,Ni},∀n∈ {0, ..,Nn}. (21)

whereJ denotes here either
1+bγn−1

1+aγn−1ρ2∂γn

∂ρ
or γn. At each time step∆τ = τn−τn−1, the diffusion

term−
1

ρ2

∂
∂ρ

(

1+bγn−1

1+aγn−1ρ2∂γn

∂ρ

)

is then discretized by

−
1

∆ρ





1+bγn−1
i+ 1

2

1+aγn−1
i+ 1

2

(

ρi +
1
2∆ρ

ρi

)2
γn
i+1− γn

i

∆ρ

−
1+bγn−1

i− 1
2

1+aγn−1
i− 1

2

(

ρi −
1
2∆ρ

ρi

)2
γn
i − γn

i−1

∆ρ



 , ∀i ∈ {1, ..,Ni} (22)

15



The estimation ofγn−1
i+ 1

2
(resp. γn−1

i− 1
2

) is obtained by linear interpolation betweenγn−1
i and γn−1

i+1

(resp.γn−1
i andγn−1

i−1 ) which is consistant with the second-order space discretization scheme.

The boundary conditions (6) are used to obtain the discretization scheme at the nodesρ0 andρNi+1.

At ρ0(= 0), we use a first-order discretization of the homogeneous Neumann condition

γn
1 − γn

0

∆ρ
= 0, ∀n∈ 0, ..,Nn (23)

As the space finite difference scheme is second-order accurate, this first-order discretization causes

a little lost of precision near the boundary. However the L2 error-norm on the solution will remain

of second-order in space. Eq. (23) leads toγn
0 = γn

1 , which enables us to eliminateγn
0 of the

unknowns vector.

The Dirichlet boundary condition (6b) applied atρNi+1 (=1) gives directly the discrete solution at

this node

γn
Ni+1 = γ∞

A , ∀n∈ 0, ..,Nn (24)

Hence, at each time step onlyNi space unknowns (i ∈ {1, ..,Ni}) have to be determined.

4.2.4 Linear evolution system

The linear system of dimensionNi ×Ni to be solved at each time step∆τ = τn− τn−1 writes

M G = F (25)

where the matrixM of the system is tridiagonal. In the sequel,DM(i) will denote the diagonal term

of M at row i, UM(i) the upper-diagonal term andLM(i) the lower-diagonal term. The unknown

vectorG corresponds to the solutionγn for nodesi ∈ {1, ..,Ni}. The right hand sideF results from

the time discretization and the boundary conditions, as detailed below.
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For 1< i < Ni , the coefficients of the linear system (25) can be expressed by

DM(i) = 1+
∆τ

(∆ρ)2 × (R+(i)D+(i,n)+R−(i)D−(i,n)) (26)

UM(i) = −
∆τ

(∆ρ)2 × (R+(i)D+(i,n)) (27)

LM(i) = −
∆τ

(∆ρ)2 × (R−(i)D−(i,n)) (28)

F(i) = γn−1
i (29)

where the notationsR+, R−, D+ andD− are those of Hellferichet al.15,23defined∀i ∈ {1, ..,Ni}

R+(i) =

(

ρi +
1
2∆ρ

ρi

)2

, R−(i) =

(

ρi −
1
2∆ρ

ρi

)2

(30)

D+(i,n) =
2+b(γn−1

i+1 + γn−1
i )

2+a(γn−1
i+1 + γn−1

i )
, D−(i,n) =

2+b(γn−1
i + γn−1

i−1 )

2+a(γn−1
i + γn−1

i−1 )
(31)

As R+(i) 6= R−(i +1), the matrixM is non-symmetric.

For the indexesi = 1 and i = Ni , there are special terms coming from the discretization of the

boundary conditions. Ati = 1, the discretization of the Neumann boundary condition (23) enables

us to determine the terms of the matrix and the right hand side

DM(1) = 1+
∆τ

(∆ρ)2 × (R+(1)D+(1,n)) , (32)

UM(1) = −
∆τ

(∆ρ)2 × (R+(1)D+(1,n)) , (33)

F(1) = γn−1
1 (34)

As i = 1 is the first index of the unknown vectorG, the matrixM does not contain any lower-

diagonal term.

For i = Ni there is no upper-diagonal term. The contribution of the Dirichlet condition at the last
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space indexed byi = Ni +1 (cf. Eq. (24)) is taken into account thanks to the right handtermF(Ni).

F(Ni) = γn−1
Ni

+
∆τ

(∆ρ)2 × (R+(Ni)D+(Ni ,n))× γ∞
A (35)

The diagonal termDM(Ni) and the lower-diagonal termLM(Ni) are simply obtained using Eqs.(26)

and (28) withi = Ni .

Usual techniques (e.g. Ref. 25) enables us to conclude that this semi-implicit scheme converges to

the solution of the continuous problem (4). We get a first-order accuracy in time and second-order

accuracy in space. Moreover this scheme is unconditionallystable. The choice of the time and

space steps will thus only depend on the desired precision, see Section 5.2. As this scheme verifies

the maximum principle, we have∀n≥ 0 and∀i ∈ {0, ..,Ni +1}

min(γ∞
A ,γ0

A) ≤ γn
i ≤ max(γ∞

A ,γ0
A) (36)

4.3 Determination of optimal individual diffusion coefficients by a refine-

ment procedure

In practical case, one has to determine the diffusion coefficients of the counter speciesA etB from

data of fractional attainment of equilibrium, cf. Section 3. The optimal diffusion coefficients are

those that minimize the distance between the experimental data and the numerical fractional at-

tainment of equilibrium obtained with these coefficients.

Classical optimization algorithms (gradient, Levenberg-Marquardt, ...) strongly depends on the

starting values and requires many data to give a reliable estimation of the parameters. Unfortu-

nately, we only have an idea of the order of magnitude of the diffusion coefficient which may not

be enough to have a good starting point. Moreover, we have toofew experimental data at our dis-

posal (around 6 points to determine 2 diffusion coefficients) to use classical optimization methods.

We decide to use a refinement procedure to find the optimal diffusion coefficients. The ground

principle of this optimization process comes from multigrid methods26. It consists in a “in-depth”
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research instead of a research of descent directions. When the problem under study leads to a suf-

ficiently smooth behavior of the error with respect to the parameters to optimize (which is the case

here), the algorithm by refinement has the main advantage to yield physical optimal parameters

even if few data are given.

The optimization procedure by recursive refinements can be described by the following steps :

i) set initial variation intervals VIA and VIB for DA andDB,

ii) set a number of discretization points for each interval VIA and VIB. In each variation interval,

the points are chosen to be equidistantly distributed. If a variation interval covers more than

one power of 10, the equidistant distribution is made in the logarithm scale. This enables us

to chose variation intervals covering several power of 10.

iii) for each node of the mesh of the domain VIA×VIB:

a- solve the PDE (4) with the semi-implicit numerical methoddescribed above. The diffusion

coefficientsDA andDB used for this resolution are the discrete values associatedto the node

under study,

b- for each discrete timeτn, n∈ {0, ..,Nn}, calculate the approximate fractional attainment of

equilibrium thanks to Eq. (12). A quadrature formula is usedto evaluate an approxima-

tion of the integral ofγA from the discrete numerical solution(γn
i )i∈{1,..,Ni+1} obtained at

step iiia,

c- estimate the error on the fractional attainment from the experimental data. The time coor-

dinate transformation has to be taken into account (see Eq. (13)). Interpolation techniques

have often to be used in order to evaluate the discrete fractional attainment of equilibrium

at each experimental time.

iv) determine the node of the mesh that yields to the minimal fractional attainment error.

v) test the stop criteria, which is typically based on the relative difference between two success-

sive values of the error on the fractional attainment of equilibrium or on a maximal number of
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iterations of the process.

a- if the stop criteria is verified, the ’minimization’ node gives the optimal values ofDA and

DB,

b- else, determine new variation intervals VIA and VIB centered on the estimations ofDA

andDB associated to the minimization node. The bounds of the new intervals are chosen

to be discrete values of the diffusion coefficients associated to the neighbor nodes of the

minimization node. A special treatment is made when the minimization node is on the

boundary of a variation interval. Then, this variation interval is enlarged in the concerned

direction while the other variation interval is kept unchanged. Then, go back in iii.

A graphical representation of this procedure is given in Figure 1.
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Figure 1: Refinement procedure to determinate optimal individual diffusion coefficients (obtained
here within 3 iterations).

Thus, this algorithm consists in determining finer and finer variation intervals forDA andDB while
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kipping the same number of discretization nodes for each interval: we are well in a recursive re-

finement procedure.

For this kind of optimization procedure consisting in performing many times the numerical scheme

used to discretize the time- and space-dependent PDE, an implicit time-marching scheme is nec-

essary to reach the optimal parameters within acceptable calculation times.

5 Numerical validation

5.1 Solver, norm and quadrature

The non-symmetric linear system (25) is solved using the Bi-CGSTAB algorithm27. This iterative

solver has been optimized here for tridiagonal matrices.

At each time, the fractional attainment of equilibrium is computed as post-processing. To do this,

the integral of the solution taking place in the expression of the fractional attainment of equilibrium

(see Eq. (12)) is performed using a Simpson quadrature rule which is exact for polynomials of third

order or less. An even number of constant subintervals is required to apply this formula.

The root mean square error (or deviation) on the fractional attainment of equilibrium is performed

through the following expression:

eF =













nbpts

∑
d=1

(F(td)−Fd)
2

nbpts













1/2

(37)

whereeF denotes root mean square error on the fractional attainmentof equilibriumF calculated

from nbptsexperimental data. The indexd refers to the data. ThenF(td) is the discrete fractional

attainment of equilibrium evaluated at the experimental timetd while Fd is the experimental frac-

tional attainment of equilibrium at the same time. The errorgiven by Eq. (37) is a good measure

of the fitting precision.
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The stop criterion of the optimization procedure is reachedwhen the relative difference on the

fractional attainment error is less than 1% between two iterations of refinement. This optimization

process typically converges within 3 or 4 iterations. The maximal number of iterations is set to 20.

5.2 Validation of the semi-implicit approach

5.2.1 Precision and calculation times

First, the semi-implicit approach has been validated with respect to the results obtained with the

explicit time discretization of Helfferich15,23. We consider a monovalent/monovalent ion exchange

with individual diffusion coefficients in a ratio of 1/10. The initial condition isγ0
A = 1 while the

boundary condition at the surface of the resin is set atγ∞
A = 0. In this case,A designs the only

ion initially present in the resin and that is rejected in thesolution. On Figure 2, we compare the

fractional attainment of equilibrium (cf. Eq. (12)) calculated from the solution obtained using the

explicit scheme (we return to the results presented in Ref. 15) to the one obtained from the solution

of the semi-implicit scheme described in (18).

For a fixed space step∆ρ = 1/20, the stability condition used for the explicit scheme leads to a

time step∆τ = 1/10000. As the semi-implicit scheme is unconditionally stable (see Section 4.2.4),

the time step can be chosen arbitrarily. In this example we performed the semi-implicit scheme

with ∆τ = 1/200 and∆τ = 1/500. Consequently the resulting calculation times are reduced with

the semi-implicit scheme. The main conclusions drawn from Figure 2 are the classical ones:

• the semi-implicit solution converges when the time step decreases,

• the main difference between the solutions obtained with theexplicit or the implicit scheme

are located at the beginning of the unsteady state (beginning of the ion exchange),

• the permanent solution (τ = τmax) is the same whatever the time-marching scheme and the

time step (it depends on the space step only).

In the sequel, the semi-implicit scheme will be performed inorder to fit experimental data which

are given within a relative precision about 7% and at experimental times leading toτ > 10−2. The
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Figure 2: Comparison of the semi-implicit and the explicit approaches for a monova-
lent/monovalent ion exchange.
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comparison presented on Figure 2 enables us to conclude thatthe semi-implicit solution obtained

with Nn = 500 is precise enough. In this case, the CPU time is improved by more than 60% with a

semi-implicit approach instead of an explicit approach.

This confirms that for an optimization procedure, for which many resolutions are performed, the

semi-implicit approach will reach the optimal solution within less computational time than the

explicit approach.

5.2.2 Optimization procedure

The optimization method based on a refinement procedure was tested on experimental results

from literature. The data was taken from Boyd and co-workersstudies14 on the kinetics of al-

cali metal cations exchange between chloride solutions andthe ionic exchanger Amberlite IR-1

bearing methylene sulfonic acid groups20: it concerned the experiment R-3 describing the ion up-

take of sodium used as a radioactive tracer (8 10−5 M) from 0.111 M potassium chloride solutions

at room temperature (30◦C). The resin, initially in its potassium form, exchanges its counter ions

for sodium. If R denotes the resin, the reaction writesRK+Na+
⇋ RNa+K+. The evolution of

the fractional attainment of equilibrium with time is givenin Table 3.

Table 3: Exchange of sodium ion from 0.1 M chloride solutions; Amberlite IR1 phenol-
formaldehyde ionic exchanger; r0 = 0.0177 cm; T = 30◦C ; composition of solution
8 10−5 mol/L NaCl, 0.111mol/L KCl; experiment R-3 from Ref. 14

t (in s) F(t) (in %)

1.3 37.2
2.5 46.2
5.0 60.4
7.5 69.7

10.0 76.4
15 92.6
30 98.3
60 100

As the concentration in Na+ is much smaller than the concentration in K+, the interdiffusion

coefficient assumes the individual diffusion coefficient ofNa+, cf. Eq. (3) and Ref. 20. The
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optimization process will then yield to the optimal individual diffusion coefficient of Na+ only.

The analytical expression of the fractional attainment of equilibrium proposed by Boyd in14 for an

isotopic exchange can be used in this particular case since the interdiffusion coefficient returns to

the diffusion coefficient of one counter ion only. Then, we have

F(t) = 1−
6
π

∞

∑
n=1

1
n2 exp

(

−
DNa+π2n2t

r2
0

)

(38)

As the counter ion of interest Na+ is adsorbed by the resin, the interdiffusion equation (4) issolved

with A = ad. Then,γ0
A = 0 andγ∞

A = λγS
A. The dimensionless concentration of Na+ in solution is

obtained byγS
A =

8 10−5

0.111+8 10−5 ≃ 7.2 10−4. The distribution ratio of the resin is considered to be

equal to 1 since no selectivity of the resin is supposed between Na+ and K+ . Thenγ∞
A = 7.2 10−4.

With an initial variation interval[10−6,10−5] divided into 10 subintervals forDA, the optimization

procedure converges within 3 iterations. The optimal diffusion coefficient of the sodium in the

resin then obtained isDNa+ = 3.31 10−6 cm2/s which is in good agreement with Boyd’s value of

3.5 10−6 cm2/s. The root mean square error on the fractional attainment of equilibrium is then

0.0234. The analytical fractional attainment of equilibriumgiven in Eq. (38) applied to the dif-

fusion coefficient obtained by Boyd (DNa+ = 3.5 10−6 cm2/s) yields for the same experimental

data to an error of 0.0253 which is superior to the error obtained with the optimization process.

Figure 3 enables us to appreciate the accuracy of the solution obtained with the optimization pro-

cedure. Furthermore, as in this case only one parameter has to be determined from 8 experimental

data, a classical optimization procedure can be applied. The Levenberg-Marquardt algorithm leads

to DNa+ = 3.34 10−6 cm2/s which confirms the result obtained by our approach with recursive

refinements.

This example confirms the validity and the accuracy of the optimization procedure by refinement

introduced in this article.
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Figure 3: Optimization procedure and analytical solution for the R-3 Boyd14 experiment
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6 Characterization of cation exchange in a carboxylic resin

6.1 Determination of individual diffusion coefficients

Using the experimental data given in section Section 3 of this article, the self diffusion coefficients

of H+, NH+
4 andNd3+ in the IMAC HP333 carboxylic resin were determined thanks tothe op-

timization procedure. Knowing the diffusion rate of each cation, it was then possible to plot the

radial concentration profile in the resin during the exchange for both examples.

In all the following optimizations,Ni +2= 21 discretization points are used in space whileNn+1=

501 discretization points are used in time. The variation intervals will consist of 11 discretization

points (10 subintervals).

6.1.1 Proton/Ammonium exchange

For this first exchange, as the concentration of the rejectedion H+ is measured, the optimization

process is performed withB = ad. We haveγ0
A = 1, γS

A ≃ 0 (negligible presence of proton in

solution) and henceγ∞
A = 1−λ . The distribution ratio of the resin is determined thanks tothe data

at equilibrium:λ = 0.164. With initial variation intervals of[10−8,10−6] for DH+ andDNH+
4

, the

optimal values ofDH+ = 1.58 10−7 cm2s−1 andDNH+
4

= 1.01 10−7 cm2s−1 were obtained. They

are typical values for monovalent cation diffusion encountered for example in cross-linked strong-

acid cation exchanger28. Figure 4 shows the good agreement between the fractional attainment of

equilibrium obtained with this coefficient and the experimental data from Table 1. The root mean

square error is around 3 10−2.

The optimization process performed withA = ad and henceγ0
A = 0, γS

A = 1 andγ∞
A = λ yields

exactly the same optimal coefficients. It confirms that the optimization process is independent to

the choice of the counter ion used for the dimensionless formulation (see Section 4.1).

If we consider the diffusion coefficients at infinite dilution of the ammonium and the proton in

aqueous solution, 1.96 10−5 cm2s−1 and 9.31 10−5 cm2s−1 respectively29, the diffusion rate of the

proton was expected to be five times greater than the diffusion rate of the ammonium in the resin.
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Figure 4: Fit of the fractional attainment of equilibrium for the proton/ammonium exchange. Ex-
perimental data given in Table 1.

It is in fact only almost two times bigger because of the largeaffinity that the proton possesses

for the carboxylate group. Its specific chemical interaction surely diminishes its diffusivity in the

resin in spite of its small size compared to ammonium. The interaction between ammonium and

carboxylate groups is indeed essentially of an electrostatic nature which is less energetic.

6.1.2 Ammonium/Neodymium exchange

For this second case, the optimization scheme is performed as previously with a distribution ratio

λ = 1 and initial variation intervals of[10−8,10−6] for DNH+
4

and[10−9,10−7] for DNd3+ . The dif-

fusion coefficients ofNH+
4 andNd3+ were estimated at 9.86 10−8 cm2s−1 and 7.82 10−9 cm2s−1

respectively. A graphical representation of the data fitting for the fractional attainment of equi-

librium is given in Figure 5. The fitting error is better than for the proton/ammonium exchange

(around 10−2). The mobility of neodymium is less important than in solution where the diffusion
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coefficient is equal to 6.16 10−6cm2s−1 (Ref. 29).
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Figure 5: Fit of the fractional attainment of equilibrium for the ammonium/neodymium exchange.
Experimental data given in Table 2.

The value ofDNH+
4

found here coincides with the one determined for the proton/ammonium ex-

change: the average of the two values, ie 1 10−7 cm2s−1, is then taken as the optimal value for the

individual diffusion coefficient of the ammonium. Moreover, the diffusion rate forNd3+ is less

than forNH+
4 and is comparable to values obtained by Soldano30 for Y3+ in a 5 % cross-linked

sulfonated polystyrene exchanger. The effect of charge upon diffusion rate is naturally strong be-

cause the electrostatic force fields exert a great influence on the movement of cations in the resin.

In Table 4 are shown the values of self diffusion coefficient of the three different cations studied

in the carboxylic resin. These results confirm that the full conversion time deeply depends on the

orders of magnitude of both diffusion coefficients. The notion of interdiffusion coefficients is then

of primary importance and rules the kinetic of the exchange.In our examples, a full attainment of

equilibrium will take 7500s for theH+/NH+
4 conversion (D ∼ 10−7 cm2s−1) and 10000s for the
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Table 4: Self diffusion coefficients of cations in the IMAC-HP333 carboxylic resin;T = 20◦C

ion D
(10−7 cm2s−1)

H+ 1.6
NH+

4 1.0
Nd3+ 0.08

NH+
4 /Nd3+ conversion (D ∼ 10−8−10−7 cm2s−1) for beads of radius of 350µm at 20◦C.

RemarkThe criterion for the rate-determining step mentioned in Section 4.1 and proposed by

Helfferich20 for complete conversion experiments is based on the ratio

CresDresδ
CsolDsolr0

(5+2αA
B) (39)

whereCres is the concentration of fixed ionic groups in the resin,Dres is the interdiffusion coeffi-

cient in the ion exchanger,δ is the film thickness,Csol is the concentration in solution in equiva-

lents,Dsol is the interdiffusion coefficient in the film,r0 is the bead radius andαA
B is the separation

factor (A represents here the rejected ion). If this ratio is lower than 1, the exchange is controlled

by particle diffusion. Otherwise, we have a film diffusion control.

This ratio can only be estimated in the case of the ammonium-neodymium exchange because only

this exchange is complete. In details, a batch experiment was preliminary performed to estimate

the separation factorαA
B which consisted in contacting a 0.257 mol/L Nd(NO3)3 solution with

1.16 g of ammonium form resin and measuring the concentrationsof both cations in solution and

in the resin at equilibrium (after a 4 hours contact). The final concentrations of ammonium and

neodymium in solution were respectively 0.231 and 0.181mol/L and the resin was converted up

to 91.4%. The separation factor was expressed as follow:

αA
B =

Cres,NH4 ×Csol,Nd

Cres,Nd×Csol,NH4

=
8.6
91.4

×
3×0.181

0.231
= 0.221 (40)
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Mean values are used for interdiffusion coefficient either in the resin or in solution:

D = DADB(zA+zB)/(zADA+zBDB)

which gives for the resin :Dres = 2.5 10−8cm2s−1 and for solutionDsol = 1.3 10−5cm2s−1. The

concentration of fixed ionic groupsCres was measured to be 5.8 meq/cm3. The film thickness is

considered to be close to 10−3 cmwhich is characteristics of a well-stirred solution. According to

(Eq. (39)), the criterion becomes:

ratio =
5.8×2.5 10−8×10−3

3×0.1×1.3 10−5×0.035
× (5+2×0.221) ≃ 6 10−3.

This value is greatly inferior to 1 which confirms that the rate is effectively controlled by particle

diffusion in this particular case. The concentration rangewhich corresponds to the particle dif-

fusion control can also be roughly determined: the criticalconcentration is 1.7 10−3 eq/L which

corresponds to 6 10−4 mol/L for neodynium. Below this concentration, the exchange may shift to

film transfer.

6.2 Description of concentration profiles

The calculated concentration profiles in the resin and theirevolution with time are plotted in Fig-

ure 6 for the proton/ammonium exchange and in Figure 7 for theammonium/neodymium ex-

change. As remarked by Helfferich15, the shape of the profile depends on the ratio of the diffusion

coefficients between the ion rejected by the resin and the ionadsorbed. In both cases the faster ion

is initially found in the resin but the ratio of diffusion coefficients are different. In the first case,

the ratioDH+/DNH+
4

is close to 1.6 while the ratioDNH+
4
/DNd3+ is close to 13 in the second case.

The concentration of the faster ion will stay large in the resin and become smaller near the surface.

The interdiffusion then decreases towards the center. The more important is the ratio between the

diffusion coefficients, the quicker the outer shells is depleted compared to the rest of the resin. In

the second case a sharper boundary is then formed.
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Figure 6: Concentration profiles in the resin for the proton/ammonium exchange.
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Figure 7: Concentration profiles in the resin for the ammonium/neodymium exchange.
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We introduce the notion of inhomogeneity factor defined by

|γA(0,τ)− γ∞
A |

|γ0
A− γ∞

A |
(41)

This inhomogeneity factor will evolve differently according to the ratio of mobilities of the ex-

changing cations, see Figure 8.
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Figure 8: Representation of the homogeneity factor versus the fractional attainment of equilibrium
for the two exchanges studied in a carboxylic resin.

For example, for a fractional attainment of equilibrium of 95%, an inhomogeneity factor of 16% is

found for the first exchange while 26% is obtained for the second exchange. The more important

is the ratio of diffusion coefficients between the ion rejected by the resin and the ion adsorbed,

the more important is the inhomogeneity factor for a same fractional attainment of equilibrium.
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However, in order to reach a full homogeneity in the resin (less than 5% inhomogeneity factor),

a 100% achievement is necessary: the time required will depend on the mobilities of both cations

and on the direction of the exchange (forward or backward).

Conclusion and perspectives

This preliminary work shows that it is possible to extract self diffusion coefficients of two counter

ions in an ionic exchange resin by fitting the exchange kinetics through a semi-implicit numeri-

cal resolution of the Nersnt-Planck equation and an optimization procedure. This modelling was

applied to monovalent-monovalent cations exchange but also to monovalent-trivalent cations ex-

change and allowed to determine the self diffusion coefficients of H+, NH+
4 andNd3+ in a car-

boxylic resin. Those parameters are fundamental for modelling and describing the evolution of

the fractional attainment of equilibrium with time for an exchange implying trivalent lanthanide

with microspheres of carboxylic resin. Above all, it allowsto determine the concentration profile

in the resin and to check the full achievement of the reactionand the homogeneity of a lanthanide

distribution inside the kernel for a given time of contact.

In further works, more experimental data has to be measured.Hence classical efficient optimiza-

tion methods could be used, which would even more decreases the calculation time required for

the optimization. Moreover, the rate of convergence and theresults reliability of the optimization

process could be improved by giving weight factors for each experimental data. These weight fac-

tors should be linked to the measurement uncertainties and would be taken into account through

the error calculation. Eventually, this approach could be applied to the treatment of ionic exchange

with resin in finite solution volume conditions which can be encountered in batch experiments.

In this case, the time variation of concentrations in solution has to be taken into account. The

distribution ratio will play an important role in the determination of self diffusion coefficients.
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List of symbols

Real Dimensionless Signification

r0 radius of the resin,

r ρ radial coordinate,

t τ time,

RH resin in its proton form,

n number of equivalent,

Q q amount of specie,

Qmax full exchange capacity,

F f fractional attainment of equilibrium,

C γ concentration,

Cmax total equivalent concentration,

D individual diffusion coefficient,

z electrochemical valence,

λ distribution ratio.

The subscriptsA andB refer to the counter ion species. The superscript 0 (resp.∞) corresponds to

an evaluation of the variable at initial time (resp. equilibrium time).
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Experimental and modelized fractional attainment of equilibrium in a carboxylic
resin during an ammonium/neodymium exchange.
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