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Abstract

This study is devoted to the characterization of ion exchangide a microsphere of car-
boxylic resin. It aims at describing the kinetics of this leange reaction which is known to be
controlled by interdiffusion in the particle. The fractadrattainment of equilibrium function
of time depends on the concentration of the cations in thie mekich can be modelized by
the Nersnt Planck equation. A powerful approach for the migakresolution of this equation
is introduced in this paper. This modelling is based on thekvad Helfferich but involves
an implicit numerical scheme which reduces the computationst. Knowing the diffusion
coefficients of the cations in the resin and the radius of gireescal exchanger, the kinetics
can be hence completely determined. When those diffusicempsters are missing, they can
be deduced by fitting experimental data of fractional attent of equilibrium. An efficient
optimization tool coupled with the implicit resolution hiasen developed for this purpose. A
monovalent/trivalent cation exchange had been experatigrharacterized for a carboxylic
resin. Diffusion coefficients and concentration profileshia resin were then deduced through

this new model.

1 Introduction

The carboxylic resins find numerous applications in dafly for the softening and demineraliza-
tion of water but also in industry for the purification of miéegicalt or biological products.
Their outstanding properties are a very high exchange dgpaed a strong selectivity between
divalent (or trivalent) and monovalent catichsRecently, those ion exchangers have been studied
for the removal of Fe(lll) from an acid sulphate media repreative of mining solutions and efflu-
ents! or for analytical purpose concerning the determination @f1)Jin environmental samplées
However, their applications to the field of materials haverbmvestigated to a lesser extent. Yet,
the loading of a spherical cation exchanger by a lanthanidaactinide cation followed by its
carbonisation can be an interesting way to obtain perfectasphere of lanthanide or actinide

oxide®’. This process was successfully exploited to produce kewfalranium oxide or carbide



for the nuclear fuel of high temperature gas red&¥and stands for an alternative route to sol-gel
proces$? or infiltration method!. For this purpose, the saturation of the resin by a lantianid
cation is required and the kinetics of the loading operatias to be perfectly mastered. Few stud-
ies are devoted to this subject. We are then interested ith@fmprehensive understanding of the
exchange rate between the monovalent counter-ion of the aes the lanthanide cation present
in solutiont2,

Only few studies are devoted to the in-depth modelling okihetics of the ion exchange. Most of
the time, adsorption models with first-order kinetics aredd In some particular situations, e.g.
isotopic exchangé$, an analytical solution describing the time evolution & toncentration in
the resin can be obtained. Hence the kinetics of the exchzargbe totally determined. Generally
speaking, the full understanding of the exchange requuesenical resolutions. In the conditions
of relatively high concentration in solution (0,1-0y®l/L), the limiting step of the reaction is the
interdiffusion process in the microsphere (intrapartdifeusion) instead of the film diffusion phe-
nomena. The interpretation of this particular diffusioncbirged species in an ionic polymer is
obtained from the numerical resolution of the Nernst-Pkaaguation. Those concepts and explicit
calculations were first exposed by Helfferich and co-waskewho succeeded in describing the
evolution of the fractional attainment of equilibrium wiime for monovalent and divalent cations
characterized by different diffusion coefficients. Forgti@al purposes (mainly based on calcu-
lation times), we propose here to use an implicit resolutbthe Nernst-Planck equation. This
implicit resolution is based on a semi-implicit scheme @rables us to obtain a linear system that
can be easily solved. Otherwise fully implicit schemes egaplo the Nernst-Planck equation lead
to a non-linear system to be solved, which implies an iteeatesolution where a linear system is
solved at each step, see for example the recent applicatidigid junctions irte.

The novelty of this article is then to determine self diftusicoefficients of both partners from ex-
perimental data through an optimization procedure basati@semi-implicit resolution Nernst-
Planck equation. This optimization process is first vabddty treating some data from the litera-

ture for monovalent/monovalentexchanges. The methodhveasapplied to the proton/ammonium



and the ammonium/neodymium exchange. To the best of our lkdge, it is the first full mod-

elling of a monovalent/trivalent exchange.

2 Experimental: Materials and procedure

2.1 Preparation of materials
2.1.1 Screening of the resin

The ion exchange material employed in this investigatios aa acrylic resinous exchanger in
its proton form, from Rohm & Haas Company (Chauny, France)led IMAC HP 333. Be-
cause the particle size is of importance for kinetics, a raedal wet screening was performed
on a Retsch apparatus (Retsch, AS200 Basic) through sucsgdmer standard sieves (Prolabo,
400um/600um/800um/100Qum). A final manual screening was operated on each size range
with the same sieves by means of a brush under a stream ofizliowater. The fraction of

600— 800um size was selected for our experiments.

2.1.2 Washing of the resin

The resin was first washed by repeated column equilibratibmavlM aqueous ammonia solution,
deionized water, M aqueous nitric acid solution and deionized water (3 cycl@$)e capacity
of the resin was checked at the third cycle by measuring tlaatgy of ammonium and proton
exchanged: the analytical weight capacity is equal t6 frieq/g of dry H™ resin and the technical
volume capacity is about Bmeg/mL of resin bed’. Eventually, it was removed from the column

and was dried at 10& and stored dry in its proton form.

2.2 Cations Exchanges

All experiments were performed at room temperature#20C).



2.2.1 Proton-Ammonium ion exchange rate measurements

The day of the experiment, a weight portiontdf form resin (about 3Gng) was introduced in a
small column (BioRad, &mhigh, 05 cmof diameter) and hydrated for 2 hours by contact with
deionized water. The cell was flushed initially with dei@davater to remove air bubbles. After a
few minutes, a BM NHsN O3 (pH ~ 5) solution was passed through the shallow bed of absorbent
(flow rate = 10@nL/min, Ismatec Reglo volumetric pump) for a given timand followed by a
water wash (20@L). The quantity of proton released in the filtr&dg (t) was estimated from the
change of pH between the feeding solution and the percdlge¢hm Combined glass electrode)
and from speciation simulation on proton, ammonia and teittesing Jchess Prografa The
amount of ammonium fixed in the resiQup, (t), is equivalent taQy (t).

At last, a batch experiment was also carried out by contgébin2 days a mass of 53mgof proton
form resin with 1L of a 0.3 mol/L NH4NO;s solution. This experiment is useful to characterize

the equilibrium.

2.2.2  Ammonium-Neodymium ion exchange rate measurements

A weight portion ofN H4+ form resin (about 20ng was rehydrated for 2 hours by contact with
10 mL of a 1mmol/L NHsNO;z solution and was placed in the same column as describedebefor
Then a 01 mol/L Nd(NOzs)3 aqueous solution was forced through the shallow resin bed fo
determined time at a fixed flow rate of 10@nL/min. After contact, the resin was thoroughly
washed with of 2001L of deionized water. The amount of neodymium contained @r#dsin was
measured by dissolution when getting back N@¥* cation into solution with an acid treatment
(HNOs 1 mol/L, volume = 2mL) and measuring the concentration of the lanthanide catjom b
spectrophotometric analysis. This quantity, nar@gg@(t), was expressed ipeq by multiplying
the number ofumolesby the charge oNd3*, that is 3.The resin left was collected and dried at
105°C for 4 hours and then weighed. By multiplying the weight cajyaloy this mass, the total
exchange capacity of the resf@mayx initially present in its ammonium form, was estimated.

As previously, a batch experiment was performed by equailibg for 3 days a mass of 52mgof



ammonium form resin (corresponding to.3@ng of proton form resin) with 1L of a 0.1 mol/L
Nd(NOs)3 solution. TheNd content in the resin was analyzed at equilibrium by dissahuin

5mL HNG; 1 mol/L solution.

3 Results

The results of the proton/ammonium exchange can be foundh’:ﬂem. The initial mass of the
proton resin are reported as well as the quantity of protteased in the percolate from the pH
analysis, which corresponds to the quantity of ions excbdrigr a given time. The ratio of the
amount of ammonium in the resin over the full exchange capa@in, (t)/Qmax= QH (t)/Qmax
represents the degree of conversion of the resin. From thlk baperiment, the equilibrium is then
considered to be achieved when the conversion of the resahmes 16 %. The conversion is not
complete because the feeding solution is slightly acid beadéparation factor between proton and
ammonium may be high. The fractional attainment of equiiiorF is then calculated by using
the following relation

QH(t)

F(t) = - (1)

Qhax

Table 1: Observed degree of conversion and fractional attament of equilibrium for a pro-
ton/ammonium exchange on a IMAC-HP333 carboxylic resinrp = 350 um).

t RH | pH initial | pH final | Qu(t) | Qmax %HT(;) F(t)

S mg Ueq U eq % %
20 | 296 5.01 3.78 6.4 | 3434 19 114
52 29.2 5.01 3.90 123 | 3387 3.6 22.2
117 | 295 5.01 411 16.3 | 3422 4.8 291
308 | 249 4.99 4.46 20.3 | 2888 7.0 42.9
597 | 289 5.01 450 358 | 3352 | 10.7 65.2
900 | 29.0 5.01 4.63 369 | 3364 | 110 67.0
1800 | 26.1 4.99 4.75 456 | 3028 | 151 919
3000 | 301 511 4.93 542 | 3492 | 155 94.7

172800 | 513 5.02 4.13 975 | 5951 | 164 ~ 100




The experimental results of the ammonium/neodymium exgaane given in Tabﬂ 2. The initial
mass of the ammonium resin and its equivalent proton massurezhafter dissolution experiments
and drying are reported as well as the concentratioN@fin the dissolution solution and the
guantity ofNd fixed in the resin inueg As regards the result of the batch experiment, the resin
is fully converted at equilibrium which mea®yg4/Qmax)® = 1. Hence, the fractional attainment

of equilibrium is directly given by the ratio of the amountgtl in the resin over the exchange

capacityQnd(t)/Qmax

_ Qna(t)
Qmax

F(t) 2)

Table 2. Observed degree of conversion and fractional attaiment of equilibrium for an am-
monium/neodymium exchange on a IMAC-HP333 carboxylic resi (ro = 350 um).

t RH | [Nd | Qnd(t) | Qmax | F(t)

S mg | mmol/L | ueq ueq %
60 15.7 3.6 215 | 1817 118
120 16.0 6.2 374 | 1855 20.2
300 16.3 9.8 587 | 1890 311
600 14.9 116 698 | 1726 404
1200 14.7 16.2 970 | 1701 570
2400 95 138 828 | 1102 75.1
3050 18.6 284 1704 | 2158 79.0

259200 | 36.7 278 | 4170 | 4257 | ~ 100

For the two systems, the relative uncertainty of measuréoreR(t) stems essentially from the

weighing operations of the resin and was estimated at 7%.

4 Modelling of the ion exchange

4.1 Formulation of the problem

We consider the ion exchange between spherical resin bdadsform size in contact with a

well-stirred solution. The exchange process is contrddethe interdiffusion of the species A and
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B, either in the resin particle or in the diffusion layer acttg to the resin particle. In this paper,
only the case of particle control is treated which corresisaio experimental conditions of effi-
cient stirring, large diameter of the resin and relativapcentrated solutic (> 100 mmol/L).
An empirical criterion defined by Helfferié allows to predict the nature of the rate-determining
step for complete conversion, infinite solution volume aadnter ions of equal mobility. How-
ever this calculation requires the value of the interdifinscoefficient in the ion exchanger which
is unknown for the type of carboxylic resin considered heFais study, as we will see in sec-
tion Sectior@l, aims at determining the individual diftuscoefficients in the resin which will
enable to calculate this criterion and ver#yposteriorithat the hypothesis of particle control dif-
fusion was well-founded.

The gradient of the chemical potential of one specie is tiherdy force of its flux. This flux not
only consists in the concentration gradient but it also s the gradient of the electrical poten-
tial which is a result of the diffusion process. Under sonmaghfying assumptions, Nernst-Planck
equationé!:2? are well adapted to describe this ionic interdiffusion sses in the resin. These

assumptions, usually encountered for the modelling of imhange kinetict:23 are listed below:

e The resin is considered as a homogeneous phase regardlpessoitis structure. It is spheri-

cal in shape so that we restrict to radial diffusion,

e The individual diffusion coefficients are constant for aegiwvesin whatever is the resin’s

composition,

e The concentration of ionogenic groups (carboxylate fumjttroughout the resin is assumed

to be constant. The changes in swelling are not being takeragtount,

e The concentration and flux of co-ions (anions in our casefé@résin is neglected because
the concentration of fixed ionic group in the resin is rekgvhigh so that co-ions are ex-

cluded according to the Donnan effect.



Then, combining the Nernst-Planck equations describiedltixes of two counter ion speciés
andB into the resin with the electroneutrality of the system dmelno charge accumulation, we

obtain the following flux

DaDg (Z2Ca + Z2Ch)

Pp = —
A DAZ£CA + DBZ%CB

OCa, 3)

where the subscripts andB refer to the counter ion specids,is the individual diffusion coeffi-
cient,C is the molar concentration ards the electrochemical valence.

The quantity in brackets is designed as the “interdiffusioefficient” in the literature (see e.g.
Ref.lil) and is often denoted Dag.

Then for time-dependent processes, the Fick equation (dimzoty equation) reads

ACa
A _ Do
ot A

As we are interested by an interdiffusion process betweenlwien and a spherical resin, the

previous equation is transposed in spherical coordin#tsghe resin presents a radial symmetry

0Cxp
or |

wheret is the time and is the radial coordinate. This equation is defined at all pairhe resin.

(see above assumptions), we have

DaDg (ZiCA + ZéCB)
D AZ%\CA + DBZéCB

Cr_19
ot r2or

To finish, in a dimensionless and conservative form, thedlffesion process is described by the

following partial differential equation (PDE)

o 19 (it

= +
ot pzdp 1+aya dp) =0 VPE[O,l[, TER (4)



with the dimensionless variables and parameters defined by

ZaCa t r ZpDa Zn
= —,T=Dp—,p=—, a= -1, b=—-1
A Crmax Arg P ro zgDg ZB

whererg represents the microspherical resin radius@gngk= zaCa + z3Cg is the total equivalent
concentration which is constant since there is no chargenagiation. Thenya + yg8 = 1 with
O<ya¥<1

The previous PDE holds whatever the subsohipesigns the ion adsorbed by the resin or the ion
rejected in the solution. The choice of the counterAomfluences only the boundary and initial
conditions of the problem to be solved.

The initial condition corresponds to the initial dimend&ss concentration of the spedan the

resin. This initial concentration is supposed to be unifggtie resin:

Wa(p:0) = R, VP[0, (5)
The boundary conditions read
WAl o — 0, (radial
%| p—0 = 0, (radial symmetry) (6a)
V1 >0 (surface concentration) :

)
*if A =ion rejected in solution:

— —1_ +
VA(l 7T)_1 )\+)\VA(1 7T> (Gb)

*if A =ion adsorbed by the resin:

| Va(17, 1) =Ay(17, 1)

whereya(17,1) = Iin; ya(p,T), ya(1™,7) = IinI+ ya(p,T) andA is the distribution ratio of the
p—1 p—

resin for the counter ion adsorbed. The first expressionefriternal concentratiopgs (17, 1) at

10



the surface of the resin is obtained usiagt y8 = 1 in the expression of recalled in Eq.H?)

)\ — Vad(l_a T)

, V>0 7
Vo1, T) @

where the subscri@d designs the ion adsorbed by the resin. This distributido ratconstant in
time.

As the concentrations in solution are considered to be hemeaus, we have (11, 7) = ya(p >

1, 7). Moreover, in the infinite solution volume case, which isrdkrest here, the concentration in

solution is also constant in time due to the continuous rahefthe solution

e >11)=ys, V¥1>0 ®)
Then, boundary conditiofi (bb) becomes

1-A+A if B=ad
Ya(l™,T) =ya = VE VT >0 (9)
)\yﬁ if A=ad

Eq. u) enables us to conclude that the concentrations aftemiions at the surface of the resin

are constant in time far > 0 in the infinite volume solution case.

Remark:A distribution ratio of the resin equal tt leads to the continuity of the concentrations

through the surface of the resipa(1, 1) = ya(1", 1), VT > 0.

Example:Assuming that initially the resin contains counter ions Ayaand the infinite volume

solution contains counter ions B only, we have-RBd and

YA=1, ya=0 andhence yf =1-A

11



The solutionya(p, T) of Eqg. ﬂ) enables us to calculate the fractional attainnoérquilibrium

f at each dimensionless time by:
_ R Ga(1)
a2 —

f(1) (10)

wherega(T) represents the amount of the spe&istill present in the unit sphere at the dimen-

sionless timer, g = ga(7 = 0) andgy = ga(T = «) (where infinity means the equilibrium state).

Oa(T) = 4T /0 “Ya(p, )p% dp, (11)
and then L
VR— 3/0 va(p,T)p% dp
(1) = pa (12)
With this definition, we have
F(1) = 1(1=Day) (13)

whereF (t) is the fractional attainment of equilibrium at the titrexpressed with non-dimensionless

variables.

Remark: Asya+ yg = 1, we have

ga(T) 4+ 0B(T) = Omax

47t . .
where Ghax= 3 is the volume of the unit sphere.

Hence, another definition of the fractional attainment afiiégrium is

0 _
f('[) _ qBO qBE})
0z —Og

12



Os(T)

O

As usually @ =0, the expression of the fractional attainment of equilibmibecomes (fr) =

. . t
and then returns to Eggl(1) and (2) with the temporal tramsftiont = DAr_z'
0

4.2 Implicit numerical resolution
4.2.1 Notations
In the sequel, the following notations are used for the @iszation in space and time. The domain

[0,1] x [0, Tmax is discretized with a constant space sigpand a constant time stéyg defined by

1 Tmax
= AT = 14
N +1’ Nn (14)

Ap

wheretnax is the dimensionless simulation timgyax= Da%x, with tmax the desired simulation
0

time (in s)).

Hence N, + 2 equidistant discretization points are used in space Whitel equidistant discretiza-

tion points are used in time. The nodes of the regular mestiesigned by
(pi,Tn) = (IAp,nAT) Vi€ {0,..,Ni+1},Vne {0,..,Nn} (15)

As the space discretization concerns the resin only, theretis pointpn.1 = 1 represents the
interior surface point.
Theny" denotes the approximation of the exact soluggmt the nod€ p;, 7,) andy" the discrete

solution vector at timén: V' = (W)icqo,. .N+1}

4.2.2 A semi-implicit Euler finite difference scheme

In their publications, Hellferictet al 1223 use finite differences to numerically solve EH (4). An
explicit Euler numerical scheme (also called forward Edelneme) is performed in time. In
explicit time-marching schemes, at each space node theethssolution at the new time is directly

obtained from the solution at previous times. For exampkegiplicit Euler scheme applied to the

13



PDE described in Eqﬂ(4) reads for the time sf@p=1,— 11, N >0

Yoyl 19 (1+byn—1 Zayn_l):(). 16)

AT plap\1xay P Tap

The numerical solutiop” is easily obtained at each time step. However, the main drakvbf this
approach is that the time step is limiting by the space stequtih the so-called CFL conditigf
to have a stable numerical algorithm. The resulting catmrigimes may become very important.
We decide to use an implicit Euler time scheme (also calle@tward Euler scheme), for which a
system has to be solved to obtain the solution at a curremt with respect to the solution at the

previous time. For example, for the POR (4) the implicit Eldeheme reads far> 0

Yoyt 19 <1+by” 2@)20 an

At pZop \1xay’ ap

In EQ. EJY), the discretization of the space operators wéll to solve a system in order to obtain
Y. In implicit time-marching schemes, the stability condglitiis less restraining than for explicit

schemes. Larger time steps can thus be used. For some kidEdfliRear for example) and space
discretization (centered finite difference for examplie¢, Euler implicit scheme is unconditionally

stable: the time step and the space step are independemngfdiee even if this approach requires
an extra computation (resolution of a system at each tinpg,stecurate solutions are obtained in
much less computational time than for an explicit methodhBguler time-marching schemes are
of first-order in time.

As the PDE under study (see Egl (4)) is non-linear, the futtplicit scheme leads to a non-

linear system to be solved (cf. EQ.L17)). At each time stepiexative procedure has then to be
performed to obtain the solution. This non-linear resolutcan become really costly. In order
to solve a linear system at each time step, for which efficiek fast numerical methods can be
applied, we decide to use a semi-implicit scheme. This sepiicit scheme consists in applying

the Euler implicit scheme on the PDHE (4) with an explicit dige diffusion coefficient. This

explicit discrete coefficient is obtained evaluating thiéudion coefficient with the solution at the

14



previous time. The semi-implicit time scheme writes

V—y1 19 /1+by1 A% B
AT _?%(Haw“’ dp)‘o‘ (18)

This scheme is still first-order accurate in time.

The initial approximation® = yO )iefo,..N+1} 1S deduced from the initial conditiol](5). As the
characteristic time required to reach the distributionoraf the resin is negligible compared to
the discretization time, we consider that the initial s@intrespects the boundary conditiénl(6b).

Thus, we set

W=y,  Vvie{0,. N}, (19)
Wir1=Ya- (20)

Therefore, onlyN, vectorsy” (n € {1,..,N,}) have to be determined.

4.2.3 A centered space finite difference scheme
In space, we use the same second-order centered finiteediffefor the gradient than Helfferich

\]n l_\]n

i+3 i3
% -_ =

Bp

oJ"

— , vie{l, ., N},vne{0,..,Ny}. (21)
ap o

V”

whereJ denotes here elth

+hy" !
10 1+bynl A
35 )

or Y. At each time stepAt = 1, — 751, the diffusion

term— is then discretized by

023p \11ay1

1 1+by|”+_ er2 Vn+1 W
1+ayi”+%

”bWJ o300\ Y-y
1+ayi”%< P ) Ap

1) . Vie{l,.. N} (22

15



The estimation ofyi':l1 (resp. y") is obtained by linear interpolation betwegfr * and y" ;!
2 2

(resp.yi”‘1 and yinjll) which is consistant with the second-order space dis@tbia scheme.

The boundary conditionEl(6) are used to obtain the dise#biz scheme at the nodegandpy; 1.

At po(= 0), we use a first-order discretization of the homogeneous Mearnondition

Al )
Bp

=0, Vneo,.,N, (23)

As the space finite difference scheme is second-order aectings first-order discretization causes
a little lost of precision near the boundary. However tRestror-norm on the solution will remain
of second-order in space. E@.l(23) leadsyfo= \{', which enables us to eliminatg of the
unknowns vector.

The Dirichlet boundary conditiofiL{bb) applied@i 1 (=1) gives directly the discrete solution at

this node

Wil = Yas vneo,..,N, (24)

Hence, at each time step orlly space unknowns € {1,..,N;}) have to be determined.

4.2.4 Linear evolution system

The linear system of dimensid¥y x N; to be solved at each time st&p = 1, — 17,,_1 Writes

MG=F (25)

where the matriM of the system is tridiagonal. In the sequ@j, (i) will denote the diagonal term
of M at rowi, Uy (i) the upper-diagonal term arqy (i) the lower-diagonal term. The unknown
vectorG corresponds to the solutigfl for nodes € {1,..,N;}. The right hand sid€ results from

the time discretization and the boundary conditions, asiléet below.

16



For 1< i < N;, the coefficients of the linear system125) can be expresged b

Du(i) = L+ oz (Re)D (i) +R-()D-(1.n) (26)
Un(i) = g (Re()D (i) 27)
Lui) =~ * (R-(D- (i) (28)
F(i) = v (29)

where the notationR,, R_, D, andD_ are those of Hellfericlet al 12:23definedvi € {1,..,N;}

. o+inp\° . o—1inp\’®
Ru()= (725 ) R)= | m 2 (30)

C2+b(y Y _2+b(y ey
S 24alyn ity S 2+al )

D (i,n) D_(i,n) (32)

As R, (i) # R_(i+ 1), the matrixM is non-symmetric.
For the indexes = 1 andi = N;, there are special terms coming from the discretizatiorhef t
boundary conditions. At= 1, the discretization of the Neumann boundary condifioh é&bles

us to determine the terms of the matrix and the right hand side

AT

DM(]-) =1+ (Ap)z X (R+(1>D+<17 ﬂ)), (32)
A

Un(1) =~ a7z * (R-UD-(L.0), (33)
F(1) =y " (34)

As i = 1 is the first index of the unknown vect@, the matrixM does not contain any lower-
diagonal term.

Fori = N; there is no upper-diagonal term. The contribution of thadblet condition at the last

17



space indexed by= N; + 1 (cf. Eq. ad)) is taken into account thanks to the right hizmoh F (N;).

FIN) = W+ gz (R (NIDL (ML) X (35)
The diagonal ternby (N;) and the lower-diagonal teriny, (N;) are simply obtained using EJS.{26)
and [Z8) withi = N;.
Usual techniques (e.qg. RJ-;I 25) enables us to concludehtisaggmi-implicit scheme converges to
the solution of the continuous problel (4). We get a firsieoatcuracy in time and second-order
accuracy in space. Moreover this scheme is unconditiosédiigle. The choice of the time and
space steps will thus only depend on the desired precisia@nSectioQZ. As this scheme verifies

the maximum principle, we hawén > 0 andvi € {0,..,N; + 1}
min(yx, Y3) < W' < max(yx, y) (36)

4.3 Determination of optimal individual diffusion coefficients by a refine-

ment procedure

In practical case, one has to determine the diffusion caoefffis of the counter speciéset B from
data of fractional attainment of equilibrium, cf. Sectﬂxn‘[he optimal diffusion coefficients are
those that minimize the distance between the experimeatal @hd the numerical fractional at-
tainment of equilibrium obtained with these coefficients.

Classical optimization algorithms (gradient, Levenbktgrquardt, ...) strongly depends on the
starting values and requires many data to give a reliablmason of the parameters. Unfortu-
nately, we only have an idea of the order of magnitude of tffasion coefficient which may not
be enough to have a good starting point. Moreover, we havéetoexperimental data at our dis-
posal (around 6 points to determine 2 diffusion coefficiptitsise classical optimization methods.
We decide to use a refinement procedure to find the optimalsiiffh coefficients. The ground

principle of this optimization process comes from muliigmethodg®. It consists in a “in-depth”
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research instead of a research of descent directions. Vidlegaréblem under study leads to a suf-
ficiently smooth behavior of the error with respect to theapagters to optimize (which is the case
here), the algorithm by refinement has the main advantagestd ghysical optimal parameters
even if few data are given.

The optimization procedure by recursive refinements careBertbed by the following steps :

i) setinitial variation intervals VA and VIg for Da andDg,

i) set a number of discretization points for each intervid ®ind Vig. In each variation interval,
the points are chosen to be equidistantly distributed. K@ation interval covers more than
one power of 10, the equidistant distribution is made in tdgatithm scale. This enables us

to chose variation intervals covering several power of 10.
iii) for each node of the mesh of the domaina\# Vig:

a- solve the PDHJ4) with the semi-implicit numerical metledcribed above. The diffusion
coefficientdD p andDg used for this resolution are the discrete values assodiatbd node

under study,

b- for each discrete timg,, n € {0,..,N,}, calculate the approximate fractional attainment of
equilibrium thanks to EqL(12). A quadrature formula is use@valuate an approxima-

tion of the integral ofya from the discrete numerical solutiQW‘)ie{leﬁl} obtained at
stepa,

c- estimate the error on the fractional attainment from #geemental data. The time coor-
dinate transformation has to be taken into account (SEQQI)“ (Interpolation techniques
have often to be used in order to evaluate the discrete dreadtattainment of equilibrium

at each experimental time.
iv) determine the node of the mesh that yields to the minimzadtional attainment error.

V) test the stop criteria, which is typically based on thatieé difference between two success-

sive values of the error on the fractional attainment of Egyuiim or on a maximal number of
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iterations of the process.

a- if the stop criteria is verified, the 'minimization’ nodesgs the optimal values dd, and

Dg,

b- else, determine new variation intervalsp\Mdnd VIg centered on the estimations Dfy
andDg associated to the minimization node. The bounds of the newials are chosen
to be discrete values of the diffusion coefficients assedi& the neighbor nodes of the
minimization node. A special treatment is made when the mmization node is on the
boundary of a variation interval. Then, this variation m#d is enlarged in the concerned

direction while the other variation interval is kept unchad. Then, go back injii.

A graphical representation of this procedure is given imFéB.

@® node of the mesh
A node minimizing the.2 error norm refinement zone
X optimal paramaters

*—o
o—0
@
/
® o &
> —\
® S _;-A
Vlia
/y "
Iteration 1 Iteration 2 Iteration 3

Figure 1: Refinement procedure to determinate optimal iddal diffusion coefficients (obtained
here within 3 iterations).

Thus, this algorithm consists in determining finer and firsration intervals foD andDg while
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kipping the same number of discretization nodes for eadrvat: we are well in a recursive re-
finement procedure.

For this kind of optimization procedure consisting in peniang many times the numerical scheme
used to discretize the time- and space-dependent PDE, diinipme-marching scheme is nec-

essary to reach the optimal parameters within acceptaldelaton times.

5 Numerical validation

5.1 Solver, norm and quadrature

The non-symmetric linear syste@125) is solved using thEBISTAB algorithn®’. This iterative
solver has been optimized here for tridiagonal matrices.

At each time, the fractional attainment of equilibrium isrgmuted as post-processing. To do this,
the integral of the solution taking place in the expressigh@fractional attainment of equilibrium
(see Eq.|£|2)) is performed using a Simpson quadrature thilehvis exact for polynomials of third
order or less. An even number of constant subintervals isired|to apply this formula.

The root mean square error (or deviation) on the fractiottalranent of equilibrium is performed

through the following expression:

nbpts 1/2

; (F (ta) — Fa)°
=1
nbpts

e = (37)

whereer denotes root mean square error on the fractional attainafesguilibriumF calculated
from nbptsexperimental data. The indekrefers to the data. Then(ty) is the discrete fractional
attainment of equilibrium evaluated at the experimentaktiy while Fy is the experimental frac-
tional attainment of equilibrium at the same time. The egigen by Eq.1(37) is a good measure

of the fitting precision.
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The stop criterion of the optimization procedure is reactvd@n the relative difference on the
fractional attainment error is less than 1% between twaitens of refinement. This optimization

process typically converges within 3 or 4 iterations. Theimal number of iterations is set to 20.

5.2 Validation of the semi-implicit approach
5.2.1 Precision and calculation times

First, the semi-implicit approach has been validated waedpect to the results obtained with the
explicit time discretization of Helfferick?23 We consider a monovalent/monovalention exchange
with individual diffusion coefficients in a ratio of/10. The initial condition ig/2 = 1 while the
boundary condition at the surface of the resin is sgtyat- 0. In this caseA designs the only
ion initially present in the resin and that is rejected in séution. On Figurel2, we compare the
fractional attainment of equilibrium (cf. Erl]lZ)) calatéd from the solution obtained using the
explicit scheme (we return to the results presented in|R3ftdlthe one obtained from the solution
of the semi-implicit scheme described In}(18).

For a fixed space stefyo = 1/20, the stability condition used for the explicit schemedketo a

time stepAt = 1/10000. As the semi-implicit scheme is unconditionally &dbee SectioEA),
the time step can be chosen arbitrarily. In this example wiopaed the semi-implicit scheme
with At = 1/200 andAt = 1/500. Consequently the resulting calculation times areaedwvith

the semi-implicit scheme. The main conclusions drawn frd:gmlreB are the classical ones:
e the semi-implicit solution converges when the time stepekeses,

¢ the main difference between the solutions obtained witheimicit or the implicit scheme

are located at the beginning of the unsteady state (begjmiithe ion exchange),
e the permanent solutiortr & tmay is the same whatever the time-marching scheme and the
time step (it depends on the space step only).

In the sequel, the semi-implicit scheme will be performedrder to fit experimental data which

are given within a relative precision about 7% and at expenital times leading to > 10~2. The
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comparison presented on Figue 2 enables us to concludththaemi-implicit solution obtained
with N, = 500 is precise enough. In this case, the CPU time is improyeddye than 60% with a
semi-implicit approach instead of an explicit approach.

This confirms that for an optimization procedure, for whicany resolutions are performed, the
semi-implicit approach will reach the optimal solution kit less computational time than the

explicit approach.

5.2.2 Optimization procedure

The optimization method based on a refinement procedure @&sdt on experimental results
from literature. The data was taken from Boyd and co-worlstuslies? on the kinetics of al-
cali metal cations exchange between chloride solutionstla@donic exchanger Amberlite IR-1
bearing methylene sulfonic acid groéfsit concerned the experiment R-3 describing the ion up-
take of sodium used as a radioactive tracer (8°1d) from 0.111 M potassium chloride solutions
at room temperature (3@). The resin, initially in its potassium form, exchangescbunter ions
for sodium. If R denotes the resin, the reaction wriRsé+ Na® = RNa+ K™. The evolution of

the fractional attainment of equilibrium with time is givenTablel 8.

Table 3: Exchange of sodium ion from 0.1 M chloride solutions Amberlite IR1 phenol-
formaldehyde ionic exchanger; ro = 0.0177 cmy T = 30°C ; composition of solution
8 10> mol/L NaCl, 0.111mol/L KCI; experiment R-3 from Ref. h4

t(ins) | F(t) (in %)
1.3 37.2
2.5 46.2
50 60.4
7.5 69.7
10.0 76.4
15 926
30 983
60 100

As the concentration in Nais much smaller than the concentration iff Khe interdiffusion

coefficient assumes the individual diffusion coefficientNs#", cf. Eqg. [8) and Refl_20. The
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optimization process will then yield to the optimal indivial diffusion coefficient of N& only.
The analytical expression of the fractional attainmentopfiébrium proposed by Boyd i# for an
isotopic exchange can be used in this particular case dieceterdiffusion coefficient returns to

the diffusion coefficient of one counter ion only. Then, weda

_DNa+ n'znzt) (38)

62 1
Fit)=1-——=) —ex
0=1-25 p( S

As the counter ion of interest Nds adsorbed by the resin, the interdiffusion equafidon (4plsed

with A= ad. Then,)R = 0 andyy = Ayz. The dimensionless concentration of N solution is

: 810>
obtained byyy = 01118105

equal to 1 since no selectivity of the resin is supposed s and K" . Thenyy =7.210 4,

~ 7.2 10°4. The distribution ratio of the resin is considered to be

With an initial variation interva[10~6, 10-°] divided into 10 subintervals fdda, the optimization
procedure converges within 3 iterations. The optimal gifia coefficient of the sodium in the
resin then obtained By = 3.31 10°° cn?/swhich is in good agreement with Boyd’s value of
3.5 107 cn?/s. The root mean square error on the fractional attainmentjoflibrium is then
0.0234. The analytical fractional attainment of equilibrigmen in Eq. ) applied to the dif-
fusion coefficient obtained by Boyd ;- = 3.5 107 cn?/s) yields for the same experimental
data to an error of 0253 which is superior to the error obtained with the optatian process.
FigureD% enables us to appreciate the accuracy of the solokitained with the optimization pro-
cedure. Furthermore, as in this case only one parameteo lhesdetermined from 8 experimental
data, a classical optimization procedure can be applied.LEienberg-Marquardt algorithm leads
to Dygr = 3.34 10°° cn?/s which confirms the result obtained by our approach with rsiver
refinements.

This example confirms the validity and the accuracy of thénaipation procedure by refinement

introduced in this article.
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6 Characterization of cation exchange in a carboxylic resin

6.1 Determination of individual diffusion coefficients

Using the experimental data given in section Secmon 3 sfdhtiicle, the self diffusion coefficients
of H*, NH; andNd*" in the IMAC HP333 carboxylic resin were determined thankght® op-
timization procedure. Knowing the diffusion rate of eachiarg it was then possible to plot the
radial concentration profile in the resin during the excleaiog both examples.

In all the following optimizationsl\; + 2 = 21 discretization points are used in space WN{e-1 =
501 discretization points are used in time. The variatiaarirals will consist of 11 discretization

points (10 subintervals).

6.1.1 Proton/Ammonium exchange

For this first exchange, as the concentration of the rejeote#i ~ is measured, the optimization
process is performed witB = ad. We havey2 =1, y§ ~ 0 (negligible presence of proton in
solution) and hencgl = 1—A. The distribution ratio of the resin is determined thankshdata
at equilibrium:A = 0.164. With initial variation intervals ofL0~8,10-°] for D+ and Dy » the
optimal values oD+~ = 1.58 10~/ cns 1 and Dy = 1.01 107 crPs~ ! were obtained. They
are typical values for monovalent cation diffusion enceued for example in cross-linked strong-
acid cation exchangé?. Figurel]l shows the good agreement between the fracticaat@aent of
equilibrium obtained with this coefficient and the expennta¢ data from Tablg 1. The root mean
square error is around 3 18

The optimization process performed with= ad and hencefl =0, y3 = 1 andyy = A yields
exactly the same optimal coefficients. It confirms that thénoigation process is independent to
the choice of the counter ion used for the dimensionlessutation (see Secti A).

If we consider the diffusion coefficients at infinite diluti@f the ammonium and the proton in
aqueous solution,.26 10°° cn?s~! and 931 10°° cnes ™1 respectively?, the diffusion rate of the

proton was expected to be five times greater than the diffusite of the ammonium in the resin.
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Figure 4: Fit of the fractional attainment of equilibriunr fine proton/ammonium exchange. Ex-
perimental data given in Tatllb 1.

It is in fact only almost two times bigger because of the laaffaity that the proton possesses
for the carboxylate group. Its specific chemical interatsarely diminishes its diffusivity in the
resin in spite of its small size compared to ammonium. Theradtion between ammonium and

carboxylate groups is indeed essentially of an electricgtature which is less energetic.

6.1.2 Ammonium/Neodymium exchange

For this second case, the optimization scheme is perform@dexiously with a distribution ratio
A =1 and initial variation intervals dfLo~8,107] for Dy and[107°,10~7] for Dy g+. The dif-
fusion coefficients oNH, andNd®" were estimated at.86 108 cn?s ™! and 782 10°° cnés 1
respectively. A graphical representation of the data §tfior the fractional attainment of equi-
librium is given in FigurtﬂS. The fitting error is better thasr the proton/ammonium exchange

(around 10?2). The mobility of neodymium is less important than in saativhere the diffusion
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coefficient is equal to .86 10 cn?s~! (Ref. IZL).
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Figure 5: Fit of the fractional attainment of equilibriunr the ammonium/neodymium exchange.
Experimental data given in Tadlk 2.

The value OfDNH; found here coincides with the one determined for the praetfmmionium ex-
change: the average of the two values, ie 11€r?s ™1, is then taken as the optimal value for the
individual diffusion coefficient of the ammonium. Moreoyéme diffusion rate foNd®* is less
than forNH4+ and is comparable to values obtained by Solédror Y3* in a 5 % cross-linked
sulfonated polystyrene exchanger. The effect of charge dliftusion rate is naturally strong be-
cause the electrostatic force fields exert a great influende@movement of cations in the resin.
In Tablel4 are shown the values of self diffusion coefficienthe three different cations studied
in the carboxylic resin. These results confirm that the fatersion time deeply depends on the
orders of magnitude of both diffusion coefficients. The oowf interdiffusion coefficients is then
of primary importance and rules the kinetic of the exchamgeur examples, a full attainment of

equilibrium will take 7500s for theH* /NH, conversion D ~ 10~/ cn?s~1) and 10006 for the
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Table 4: Self diffusion coefficients of cations in the IMAC-HP333 carboxylic resin; T = 20°C

ion D
(107 crrPs™)
HT 1.6
NH; 10
Nd3+ 0.08

NH; /Nd® conversionD ~ 10-8 — 10~ 7 cn?s 1) for beads of radius of 35amat 20°C.

RemarkThe criterion for the rate-determining step mentioned int'ﬁe'.ﬁ.—._l and proposed by

Helfferich2 for complete conversion experiments is based on the ratio

CFESD re55

A
CsolDsoll0 (5+2ag) (39)

whereCes is the concentration of fixed ionic groups in the re$dys is the interdiffusion coeffi-
cient in the ion exchanged, is the film thicknessCg is the concentration in solution in equiva-
lents,Dso is the interdiffusion coefficient in the filng is the bead radius anaf is the separation
factor (A represents here the rejected ion). If this ratio is lowentbhathe exchange is controlled
by particle diffusion. Otherwise, we have a film diffusiomtml.

This ratio can only be estimated in the case of the ammonieatlymium exchange because only
this exchange is complete. In details, a batch experimestpsaiminary performed to estimate
the separation factans which consisted in contacting a257 mol/L Nd(NOs)3 solution with
1.16 g of ammonium form resin and measuring the concentrabbhsth cations in solution and
in the resin at equilibrium (after a 4 hours contact). Thelfomncentrations of ammonium and
neodymium in solution were respectively281 and 0181 mol/L and the resin was converted up

to 914%. The separation factor was expressed as follow:

Cres,NH4 X CsoI,Nd _ 8.6 y 3x0.181
CresNd X Cso|’N|—|4 914 0.231
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Mean values are used for interdiffusion coefficient eitimethie resin or in solution:

D = DaDg(za+25)/(2aDa+28Ds)

which gives for the resin Dyes = 2.5 10 8cnfs~1 and for solutiorDgo = 1.3 10 °cns™ L. The
concentration of fixed ionic grouf&es was measured to be&meg/cn. The film thickness is
considered to be close to 1®cmwhich is characteristics of a well-stirred solution. Actioig to

(Eq. EL)), the criterion becomes:

58x25108x 103
ratio = 2%0.221) ~610°3
alio = o 0 131050035 < (0 T2x022)~610°

This value is greatly inferior to 1 which confirms that theerat effectively controlled by particle
diffusion in this particular case. The concentration ramdrch corresponds to the particle dif-
fusion control can also be roughly determined: the critezicentration is Z 102 eg/L which
corresponds to 6 @ mol/L for neodynium. Below this concentration, the exchange nhify t®

film transfer.

6.2 Description of concentration profiles

The calculated concentration profiles in the resin and g@tution with time are plotted in Fig-
ure@ for the proton/ammonium exchange and in Figu‘re 7 foratmenonium/neodymium ex-
change. Asremarked by Helfferi€} the shape of the profile depends on the ratio of the diffusion
coefficients between the ion rejected by the resin and thadsorbed. In both cases the faster ion
is initially found in the resin but the ratio of diffusion dfieients are different. In the first case,
the ratioDH+/DNH4+ is close to 16 while the ratioDNHI/DNd3+ is close to 13 in the second case.
The concentration of the faster ion will stay large in therregsd become smaller near the surface.
The interdiffusion then decreases towards the center. Tdre important is the ratio between the
diffusion coefficients, the quicker the outer shells is &gl compared to the rest of the resin. In

the second case a sharper boundary is then formed.
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We introduce the notion of inhomogeneity factor defined by

MO.0)— "
R (1)

This inhomogeneity factor will evolve differently accondi to the ratio of mobilities of the ex-

changing cations, see Figuie 8.
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Figure 8: Representation of the homogeneity factor vetsaifractional attainment of equilibrium
for the two exchanges studied in a carboxylic resin.

For example, for a fractional attainment of equilibrium &£8, an inhomogeneity factor of 16% is
found for the first exchange while 26% is obtained for the sdaaxchange. The more important
is the ratio of diffusion coefficients between the ion regecby the resin and the ion adsorbed,

the more important is the inhomogeneity factor for a sametifvaal attainment of equilibrium.
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However, in order to reach a full homogeneity in the resisglthan 5% inhomogeneity factor),
a 100% achievement is necessary: the time required willriepa the mobilities of both cations

and on the direction of the exchange (forward or backward).

Conclusion and perspectives

This preliminary work shows that it is possible to extradt défusion coefficients of two counter
ions in an ionic exchange resin by fitting the exchange kisdtirough a semi-implicit numeri-
cal resolution of the Nersnt-Planck equation and an op#tion procedure. This modelling was
applied to monovalent-monovalent cations exchange battalsnonovalent-trivalent cations ex-
change and allowed to determine the self diffusion coefiisiefH*, NH; andNd*" in a car-
boxylic resin. Those parameters are fundamental for mode#ind describing the evolution of
the fractional attainment of equilibrium with time for anatvange implying trivalent lanthanide
with microspheres of carboxylic resin. Above all, it allomwsdetermine the concentration profile
in the resin and to check the full achievement of the reacimhthe homogeneity of a lanthanide
distribution inside the kernel for a given time of contact.

In further works, more experimental data has to be meastedce classical efficient optimiza-
tion methods could be used, which would even more decrehsesatculation time required for
the optimization. Moreover, the rate of convergence andehalts reliability of the optimization
process could be improved by giving weight factors for eagteemental data. These weight fac-
tors should be linked to the measurement uncertainties andidvbe taken into account through
the error calculation. Eventually, this approach couldnaiad to the treatment of ionic exchange
with resin in finite solution volume conditions which can beeuntered in batch experiments.
In this case, the time variation of concentrations in soluthas to be taken into account. The

distribution ratio will play an important role in the detemation of self diffusion coefficients.
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List of symbols

Real Dimensionless Signification

ro radius of the resin,
r p radial coordinate,
t T time,
RH resin in its proton form,
n number of equivalent,
Q q amount of specie,
Qmax full exchange capacity,
F f fractional attainment of equilibrium,
C y concentration,
Cmax total equivalent concentration,
D individual diffusion coefficient,
z electrochemical valence,
A distribution ratio.

The subscripté& andB refer to the counter ion species. The superscript O (reporresponds to

an evaluation of the variable at initial time (resp. equilin time).
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Experimental and modelized fractional attainment of equilibrium in a carboxylic
resin during an ammonium/neodymium exchange.
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