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Summary. This study deals with the mathematical and numerical solu-
tion of time-harmonic Maxwell equation in axisymmetric geometry. Using
Fourier decomposition, we define weighted Sobolev spaces of solution and
we prove expected regularity results. A practical contribution of this paper
is the construction of a class of finite element conforming with theH(rot)
space equipped with the weighted measurerdrdz. It appears as an exten-
sion of the well-known cartesian mixed finite element of Raviart-Thomas-
Néd́elec [11]–[15]. These elements are built from classical lagrangian and
mixed finite element, therefore no special approximations functions are
needed. Finally, following works of Mercier and Raugel [10], we perform
an interpolation error estimate for the simplest proposed element.

Mathematics Subject Classification (1991):65N30

1. Introduction

We consider Maxwell equation in a bounded open domainO of R
3, with

a regular frontier∂O and supposed througout the paper,axisymmetric, i.e.
with a symmetry of revolution. Let ε0 andµ0, positive constants, that are
electrical properties of domainO. We suppose that the problem has a time-
harmonic dependance likeexp(iωt). We pose the Maxwell problem at sec-
ond order in space variable, that is in electric field formulation, with homo-
geneous Dirichlet conditions. If(x, y, z) ∈ O related to a basis(ex, ey, ez),
we write indifferently the electric complex fieldE = (Ex, Ey, Ez), or
E(x, y, z), and the magnetic fluxB = (Bx, By, Bz),orB(x, y, z). We need
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578 P. Lacoste

rotational operator, notedrot as well inC
2 as inC

3 and defined inC3 by:
rotE = (∂Ez

∂y − ∂Ey

∂z , ∂Ex
∂z − ∂Ez

∂x ,
∂Ey

∂x − ∂Ex
∂y ). Then the problem is to

determine the electromagnetic field(E, B) solution of:




−ω2ε0E + rot(µ−1
0 rotE) = −iωJ in O

iωB + rotE = 0 in O
divB = 0 in O
divε0E = 0 in O
E∧nO = 0 on∂O

(1)

wherenO is the outward unit vector to∂O and where the current densityJ
is given in(L2(O))3, and verifying the compatibility conditiondivJ = 0.
Using the classical functional spaces,

H(rot, O) =
{

E,

∫
O

|E|2dxdydz < ∞;
∫

O
|rotE|2dxdydz < ∞

}
,

H0(rot, O) =
{
E ∈ H(rot, O), E∧nO|∂O = 0

}
,

H(div0, O) =
{

B,

∫
O

|B|2dxdydz < ∞; divB = 0
}

.

It is well know that problem (1) has one and only one solution(E, B) ∈
H0(rot, O)×H(div0, O), provided thatε0ω

2 is not an eigenvalue of the op-
eratorrotµ0

−1rot for the inside problem inO (see [5]). We are interested in
discretizising and approximating this system of equations to take advantage
of the particular case of axisymmetric geometry. For this we take as model
problem the following:for J, given function of(L2(O))3inH0(rot, O), find
E ∈ H0(rot, O), solution of

{−ω2ε0E + rot(µ−1
0 rotE) = −iωJ in O

E∧nO = 0 on∂O
(2)

for this, a variational formulation is:findE ∈ H0(rot, O), solution of

−ω2
∫

O
ε0E · F dxdydz +

∫
O

µ−1
0 rotE · rotF dxdydz

= −iω
∫

O
J · F dxdydz,(3)

∀F ∈ H0(rot, O).
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2. Use of cylindrical coordinate and Fourier series decomposition

2.1. Change from cartesian to cylindrical coordinates

Let be S1 the unit circle inR
2 : T1 = [0, 2π[→S1 defined byθ →

(cos θ, sin θ).
We defineΩ ⊂ R

2 as the meridian ofO, and called axisymmetric, (that is
a section ofR2

+ generatingO) and we posed:O′ = Ω × T1 andΓ such that
∂O′ = Γ × T1 ∪ (Ω × {0}) ∪ (Ω × {2π}), as shown below in Fig. 1.

O

y

z

x

z

r

Ω

Γ

θ r

0

Fig. 1.

At each fieldE defined inO, we can associate a function

u(r, θ, z) =


ur(r, θ, z)

uθ(r, θ, z)
uz(r, θ, z)


 defined inO’ and related to an orthonormalised

basis(er, eθ, ez), so that:


Ex(r, θ, z)

Ey(r, θ, z)
Ez(r, θ, z)


 =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1




ur(r, θ, z)

uθ(r, θ, z)
uz(r, θ, z)


(4)

We recall that implies the following relation

rotE =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 rotru

if rotr denotes the rotational operator in cylindrical coordinates:

rotr


ur

uθ

uz


 =




1
r

(
∂uz

∂θ
− ∂(ruθ)

∂z

)
∂ur

∂z
− ∂uz

∂r
1
r

(
∂(ruθ)

∂r
− ∂ur

∂θ

)


(5)



580 P. Lacoste

Then if we give us second right membersj(r, θ, z) =


 jr(r, θ, z)

jθ(r, θ, z)
jz(r, θ, z)


, corre-

sponding toJ by equation (4), the model problem becomes the following:
for j, given vector inO’, find u solution of



−ω2ε0µ0ur + (uθ−ur)
r2 + ∂2uz

∂r∂z − ∂2ur
∂z2 + 1

r
∂uθ
r

= −iωµ0jr

−ω2ε0µ0uθ − 1
r

∂uz
∂z − ∂2uθ

∂z2 − 1
r

∂uθ
∂r + (uθ+ur)

r2 − 1
r

∂ur
∂r − ∂2uθ

∂r2

= −iωµ0jθ

−ω2ε0µ0uz + 1
r

∂ur
∂z − 1

r
∂uz
∂r − 1

r2 uz + 1
r

∂uθ
∂z + ∂2ur

∂r∂z − ∂2uz
∂r2

= −iωµ0jz

(6)

and verifying a Dirichlet homogeneous condition onΓ × T1 and periodic
conditionsu|θ=0 = u|θ=2π on Ω. The associated variational formulation is
then

−ω2ε0µ0

∫
O′

u · v rdrdzdθ +
∫

O′
rotru · rotrv rdrdzdθ

= −iωµ0

∫
O′

j · v rdrdzdθ(7)

2.2. Fourier series decomposition

For a givenE in H(rot, O), we decompose classically the unknown fieldu,
given by (4), in Fourier series, according to the variableθ [5]. But observing
that the rotational of asymmetric field- with respect to the plane{r = 0} -
is antisymmetric, (and conversely), we rewriteu as the sum of its symmetric
partus and of its antisymmetric partua:

u(r, θ, z) = us(r, θ, z) + ua(r, θ, z)(8)

and we posed, omiting the variables:

us =


u0

r

0
u0

z


+

∑
n≥1


un

r cos nθ
un

θ sinnθ
un

z cos nθ


(9)

and:

ua =


 0

u0
θ
0


+

∑
n≥1


 u−n

r sinnθ
u−n

θ cos nθ
u−n

z sinnθ


(10)
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whereun
r , un

θ , un
z , for n ∈ Z, are complex scalar functions of the variables

r and z. In the same manner the rotational is written, as the sum of its
symmetric part:

rotru
s =




0
∂u0

r

∂z
− ∂u0

z

∂r
0


+

∑
n≥1




−
(

n

r
un

z +
∂un

θ

∂z

)
sinnθ(

∂un
r

∂z
− ∂un

z

∂r

)
cos nθ(

∂un
θ

∂r
+

1
r
(un

θ + nun
r )
)

sinnθ




(11)
and the rotational of its antisymmetric part:

rotru
a =




−∂u0
θ

∂z
0

∂u0
θ

∂r
+

1
r
u0

θ


+

∑
n≥1




(
n

r
u−n

z − ∂u−n
θ

∂z

)
cos nθ(

∂u−n
r

∂z
− ∂u−n

z

∂r

)
sinnθ(

∂u−n
θ

∂r
+

1
r
(u−n

θ − nu−n
r )
)

cos nθ




(12)
We define and use indifferently the notation(., .) for the inner product of
L2 as well forE as for its equivalentu from (4), and we note

(E, F ) =
∫

O
E · F dxdydz = (u, v) =

∫
O′

u · v rdrdzdθ

=
∫ 2π

0

∫
Ω

u · v rdrdzdθ(13)

then we have:

(rotE, rotF ) = (rotru, rotrv) =
∫ 2π

0

∫
Ω

rotru · rotrv rdrdzdθ(14)

Because vanishes the integral over the interval]0, 2π[, of the real functions:
cos nθ. cos mθ, sinnθ. sinmθ, for integersm 6= n, andcos nθ. sinmθ, for
m = n, we can write the above scalar products:

(E, F ) = (u, v) =
∑
n∈Z

∫ 2π

0

∫
Ω

un · vn rdrdzdθ,

(rotE, rotF ) = (rotru, rotrv) =
∑
n∈Z

∫ 2π

0

∫
Ω

rotru
n · rotrv

n rdrdzdθ
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If we introduce the classical decomposition forj:

j(r, θ, z) =
∑
n∈Z

jn(r, z)einθ =
∑
n∈Z


 jn

r (r, z)
jn
θ (r, z)

jn
z (r, z)


 einθ

the problem associated to (7) can be split into independent problems for
each Fourier term, namely for eachn ∈ Z:

−ω2ε0µ0

∫
O′

un · vn rdrdzdθ +
∫

O′
rotru

n · rotrv
n rdrdzdθ

= −iωµ0

∫
O′

jn · vn rdrdzdθ

If we suppress in (7) the term equal toπ from the integration in theθ
variable, we deduce the variational formulation of Maxwell equation for the
nth-Fourier term for eachn ∈ Z:

−ω2ε0µ0

∫
Ω

(un
r · vn

r + un
θ · vn

θ + un
z · vn

z ) rdrdz

+
∫

Ω

(
∂un

θ

∂r
+

1
r
(un

θ + nun
r )
)(

∂vn
θ

∂r
+

1
r
(vn

θ + nvn
r )
)

rdrdz

+
∫

Ω

(
∂un

r

∂z
− ∂un

z

∂r

)(
∂vn

r

∂z
− ∂vn

z

∂r

)
rdrdz

+
∫

Ω

(
n

r
un

z +
∂un

θ

∂z

)(
n

r
vn
z +

∂vn
θ

∂z

)
rdrdz

= −iωµ0

∫
Ω

(jn
r · vn

r + jn
θ · vn

θ + jn
z · vn

z ) rdrdz

(15)

We call the problem associated to (15) theMaxwell-Fourier problemfor the
nth-mode.

3. Definitions of the space of solutions

3.1. Definitions and recalls

We noteD(Ω), the linear space ofC∞ functions with compact support on
Ω, D′(Ω) the space of distributions overΩ andL2(Ω) the Hilbert space
of square integrable functions onΩ with respect to the Lebesguedrdz-
measure, equipped with the norm:

|u| = |u|L2(Ω) =
(∫

Ω
u2(r, z) drdz

)1/2

We define the weighted Sobolev space of distributions onΩ,[1]:

L2
1(Ω) =

{
u ∈ L2(Ω),

√
ru ∈ L2(Ω)

}
(16)
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equipped with the following norm:

|u |1=
(∫

Ω
u2(r, z) rdrdz

)1/2

(17)

Remark 1.We shall write this norm, depending on the context:|u |1=
|u |L2

1(Ω)= |u |L2
1

and if necessary:|u |(L2
1(Ω))k= |u |(L2

1)k the corre-
sponding vectorial norms, fork = 2 or 3.

L2
1(Ω) is an Hilbert space for the scalar product associated to| |1. The

continuity of the functionr in therdrdz-measure implies the

Lemma 1. D(Ω) is dense inL2
1(Ω) for the norm| |1.

We use also the space:
L∞(Ω) = {u, drdz−measurable with|u| ≤ C a.e.,C constant} with the
norm: | |∞= inf{C, |u| ≤ C a.e. onΩ }. We shall need some classical
functional Sobolev space:

Definition 1. Let α ∈ R andk, β1, β2 ∈ N, with β = (β1, β2) and|β| =
β1 + β2. We define:

W k
α(Ω) = {u ∈ D′(Ω) : rαDβu ∈ L2(Ω), |β| ≤ k}

equipped with the semi-norm:

|u|W k
α(Ω) =


∑

|β|≤k

|rαDβu|2L2(Ω)




1/2

This is an Hilbert space with the norm:

‖ u ‖W k
α(Ω)=


∑

|β|≤k

|rαDβu|2L2(Ω)




1/2

We have the following density result.

Lemma 2. Letk ∈ N, α ∈ R, then
(i) if k ≥ 1, the setD(Ω̄) of the restrictions toΩ of functions ofD(R2

+) is
dense inW k

α(Ω), for α ≤ −1
2 or k ≤ α + 1

2 .
(ii) if α + 1

2 > 0,D(Ω̄) is dense inW k
α(Ω)

Proof. See [2][8]. 2

Theorem 1. Letk ∈ N,k ≥ 2, we have the following continuous imbedding

W k
1/2(Ω) ⊂> L2(Ω))
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Proof. See [10]. 2

DefiningPk(Ω), as the set of polynomials in ther, z variables of order less
or equal tok, we have a result analogous to the classic case, but here for the
weighted measurerdrdz:

Theorem 2. Let k = 2 or 3, andX a Banach space so that we have the
continuous imbedding

W k
1/2(Ω) ⊂> X

let Π be a linear continuous operator fromW k
1/2(Ω) into X such that

(I − Π)p = 0, for all p ∈ Pk−1(Ω),

then there exists a constantC > 0 such that for allu ∈ W k
1/2(Ω), we have

|u − Πu |X≤ C|u |W k
1/2(Ω)

Proof. See [10]. 2

3.2. Study of a weighted Sobolev space

We only consider the Maxwell-Fourier problem for the moden = 1, because
we shall deduce naturally the properties of the solutions for the others modes
n ≥ 1, and in the same way for the modesn ≤ −1 andn = 0. We consider
an axisymmetric domainΩ, that encounters thez axis{r = 0}, and whose
regular boundary is constituted byΓ0, its intersection with{r = 0} and by
Γ in the half-plane{r ≥ 0}, itself with a part in{z = z1} and a part in
{z = z2}, a shown in Fig. 2.

Here we introduce some weighted Sobolev space which provides the
right framework of these study. We seek for solutions of (15), withn = 1,
in the space denoted byH(Ω) or H:

H(Ω) = {(ur, uθ, uz) ∈ (L2
1(Ω)

)3
, such that(

uz

r
+

∂uθ

∂z
,
∂ur

∂z
− ∂uz

∂r
,
ur + uθ

r
+

∂uθ

∂r

)
∈ (L2

1(Ω)
)3}(18)

We can define differently the space of solution. To this end we introduce

U =
[

Ur

Uz

]
=




ur + uθ

r
+

∂uθ

∂r
uz

r
+

∂uθ

∂z


 andum =

[
ur

uz

]
(19)
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Ω

z

z

r

z

Γ

1

2

0

Γ0

Fig. 2.

from this we deduce certain relations like:grad(ruθ) = rU − um, or
rot(rU) = rotum = ∂uz

∂r − ∂ur
∂z . (grad and rot considered here in carte-

sian coordinates in therz-plane). Then we have also:

H(Ω) =
{

(ur, uθ, uz) ∈ (L2
1(Ω)

)3}
, U ∈ (L2

1(Ω)
)2

, rotum ∈ L2
1(Ω)}

Remark 2.When the closure of the open setΩ is strictly contained inR2
+,

we have:

H(Ω) = {(ur, uθ, uz) ∈ (L2(Ω))3}, uθ

∈ H1(Ω), (ur, uz) ∈ H(rot, Ω)}
or also formally (interchanging the first and second component ofu)

H(Ω) = H1(Ω) × H(rot, Ω)

That means that in the case of a toroidal axisymmetric domain, the Hilbert
spaceH will separate into a product of classical Sobolev spaces.

Remark 3.We can also imagine to take as principle unknows:(U, uθ) or
(Ur, uθ, Uz), and work with the space

H1(Ω) = {(Ur, uθ, Uz) ∈ (L2
1(Ω))3, grad(ruθ)

∈ (L2
1(Ω))2, rot(rU) ∈ L2

1(Ω)}
If we defineH1

1 relative toH1, asL2
1 relative toL2 and:

H1(rotr, Ω) = {(ur, uz) ∈ (L2
1(Ω))2, rotr(ur, uz) ∈ L2

1(Ω)}
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we even can consider the following space of solutions:

H1(Ω) = {(Ur, uθ, Uz) ∈ (L2
1(Ω))3, ruθ ∈ H1

1 (Ω), rU ∈ H1(rotr, Ω)}
Such a change of unknowns, relieve clearly the notations and transforms the
bilinear form of the initial problem in:

−ω2ε0µ0

∫
Ω

(U · U ′ + uθ · u′
θ) rdrdz +

∫
Ω

(rot(rU) · rot(rU ′)

+grad(ruθ) · grad(ru′
θ)) rdrdz

We shall use this change of unknowns to determine basis functions of ap-
proximation ofH and linear form of interpolation.

We provideH with the following norm:

‖ u ‖2
H= |ur |21 +|uθ |21 +|uz |21(20)

+
∣∣∣∣ur + uθ

r
+

∂uθ

∂r

∣∣∣∣
2

1
+
∣∣∣∣uz

r
+

∂uθ

∂z

∣∣∣∣
2

1
+
∣∣∣∣∂ur

∂z
− ∂uz

∂r

∣∣∣∣
2

1

It is clear that we have

Proposition 1. H is an Hilbert space for the norm‖ ‖H.

We have the following density result:

Proposition 2. the sub-space of functions of(D(Ω̄))3 vanishing near{r =
0} is dense inH equipped with the norm‖ ‖H.

Proof. It is a consequence of the two following lemmas:

Lemma 3. the functions of(L∞(Ω))3 ∩ H that vanish near{r = 0}, form
a sub-spaceE dense inH, equipped with the topology ofH.

Proof. The technique of the proof is the same than in Proposition 2.4 of
[9]. First we show that the functions of(L∞(Ω))3 ∩ H are dense inH. Let
u ∈ (L∞(Ω))3 ∩ H. We define:Ωrk = {(r, z), |ur(r, z)| ≤ k}, and in the
same mannerΩθk andΩzk, and the following functions:

uk(r, z) =


urk(r, z)

uθk(r, z)
uzk(r, z)


 whereurk(r, z) =

ur(r, z) if (r, z) ∈ Ωrk

k if ur(r, z) ≥ k
−k if ur(r, z) ≤ −k

and in the same wayuθk(r, z) anduzk(r, z). We see thatuk ∈ H and by
construction:

‖ uk ‖H≤‖ u ‖H
since on the other hand we have:

|urk(r, z) − ur(r, z) |2≤ 4|ur(r, z) |2
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and that(urk(r, z) − ur(r, z)) → 0 a.e. , we see by Lebesgue theorem that
(urk − ur) → 0 in norm| |1. And for the same reasons:(uθk − uθ) → 0,
(uzk − uz) → 0 in L2

1 as well as the sequences:
1
r (urk + uθk + r ∂uθk

∂r − ur − uθ − r ∂uθ
∂r ) → 0 in norm| |1 whenk → ∞

1
r (uzk + r ∂uθk

∂z − uz − r ∂uθ
∂z ) → 0 in norm| |1 whenk → ∞

∂urk
∂z − ∂uzk

∂r − ∂ur
∂z + ∂uz

∂r ) → 0 in norm| |1 whenk → ∞
Finally (uk − u) → 0 in norm ‖ ‖H. Now we show the density for the
functions belonging toE . We give usε > 0. Let Ψε(r) be the function
equal to zero forr < ε, equal to 1 forr > 2ε, and equal to( r

ε − 1) if
ε ≤ r ≤ 2ε. Foru ∈ (L∞(Ω))3 ∩H, we pose:uε = Ψεu = (urε, uθε, uzε).
Thenuε ∈ (L2

1)
3 and also the three component of the rotationnal:

1
r (urε + uθε + r ∂uθε

∂r ), 1
r (uzε + r ∂uθε

∂z ) and ∂urε
∂z − ∂uzε

∂r .
It is clear that we have|(urε − ur) |1→ 0, |(uθε − uθ) |1→ 0 and|(uzε −
uz) |1→ 0 whenε → 0 as well as the following limits:

∣∣∣∣urε + uθε

r
+

∂uθε

∂r
− ur + uθ

r
− ∂uθ

∂r

∣∣∣∣
1

→ 0

∣∣∣∣uzε

r
+

∂uθε

∂z
− uz

r
− ∂uθ

∂z

∣∣∣∣
1

→ 0

∣∣∣∣∂urε

∂z
− ∂uzε

∂r
− ∂ur

∂z
+

∂uz

∂r

∣∣∣∣
1

→ 0

We must establish that:|uθ
∂Ψε
∂r

|1→ 0 and|uz
∂Ψε
∂r

|1→ 0. It is sufficient to
prove the result for the first of the two latter integrals. Now we have:

∫
Ω

(
∂Ψε

∂r

)2

u2
θ rdrdz =

∫ z1

z2

∫ 2ε

ε

u2
θ

ε2 rdrdz ≤ 3(z2 − z1)
2

|uθ |2∞

That proves that the sequenceuθ
∂Ψε
∂r

is bounded inL2
1(Ω). Therefore there

exists a sub-sequence, also noteduθ
∂Ψε
∂r

, which weakly converges to a func-
tion w ∈ L2

1(Ω) whenε tend to 0. This sequence converges to 0 inD′(Ω).
We have for allΦ in D(Ω):

∣∣∣∣< uθ
∂Ψε

∂r
, Φ >

∣∣∣∣ =
∣∣∣∣
∫

Ω
uθ

∂Ψε

∂r
Φ drdz

∣∣∣∣≤ |uθ |∞
ε

∣∣∣∣
∫ z2

z1

∫ 2ε

ε
Φ drdz

∣∣∣∣
and since forr ∈]0, 2π[, we have:

|Φ(r, z) |= |Φ(r, z) − Φ(0, z)| ≤ r sup
r,z

∣∣∣∣∂Φ(r, z)
∂r

∣∣∣∣
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that implies:| < uθ
∂Ψε
∂r , Φ > | ≤ |uθ |∞ (z2 − z1) sup

r,z

∣∣∣∣∂Φ(r, z)
∂r

∣∣∣∣ 3ε

2
Then|uθ

∂Ψε
∂r |1→ 0 and in the same manner|uz

∂Ψε
∂r |1→ 0

Thereforeuε tends weakly tou in H, whenε tend to 0. And finally the space
E is dense inH, because it is weakly dense, by vertue of Mazur theorem
[3]. 2

Lemma 4. The space(D(Ω̄))3 ∩ E is dense inE for the norm‖ ‖H.

Proof. According to Remark 2, a function of(D(Ω̄))3 ∩ E is in H1(Ω) ×
H(rot, Ω), if we permute two variables. Therefore the density result is
classical [6]. 2

3.3. Green formula

To characteriseH we have to employ Green formula. We denoted by(nΓ
r , 0,

nΓ
z ) the unit outward normal to the boundary∂O in the plane{θ = 0} of

the initial open setO. We can show that foru andv ∈ (D(Ω̄))3 ∩ H, we
have the integral by parts formula:

∫
Ω


ur

uθ

uz


 ·




−vz

r
− ∂vθ

∂z
∂vr

∂z
− ∂vz

∂r
∂vθ

∂r
+

vθ + vr

r


 rdrdz

=
∫

Ω




−uz

r
− ∂uθ

∂z
∂ur

∂z
− ∂uz

∂r
∂uθ

∂r
+

uθ + ur

r


 ·

 vr

vθ

vz


 rdrdz

+
∫

Γ


r


ur

uθ

uz


 ∧


nΓ

r

0
nΓ

z




 ·


 vr

vθ

vz


 dΓ(21)

in which disappears the integral term alongΓ0, because of the weightr.

3.4. Trace theorem

We consider an open subsetΩ of the R
2
+ plane, which boundaryΓ0 ∪ Γ

as in Sect. 3.2 and for which we give us a realr0 > 0 so that{r = r0},
{z = z1} and{z = z2}, determine the five pieces of frontier that formΓ .
So we define:Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5, with Γ2 ∪ Γ3 ∪ Γ4 ⊂ {r > r0}
as in Fig. 3.
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Ω

z

z
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z

Γ

1

2

0

Γ0
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Γ4

3

Γ21Γ

5Γ

Ω0

Fig. 3.

Theorem 3. If u is a function ofH, if we notenΓ = (nΓ
r , nΓ

z ), we can
define the trace of the componentr(ur, uz) ∧ nΓ

|Γ in L2(Γ ) and the trace

of the componentruθ |Γ in L2(Γ ).

Proof. The result is obvious for the frontiersΓ2, Γ3 andΓ4 by vertue of
Remark 2, of the Green formula of Sect. 3.3 and the classical results of trace
theorem about scalar functions with regularityH1 and vectorial functions
with regularityH(rot, Ω); then these traces belongs respectively toH

1/2
loc (Γ )

andH
−1/2
loc (Γ ) [6]. Let show the result for frontierΓ1 or for the similar case

of frontierΓ5. For frontierΓ1 we prove the following result:

Lemma 5. If u is a function ofH, we can define the traceruθ |Γ1 , as an
element ofL2(Γ1).

Proof. Let u ∈ (D(Ω̄))3 ∩ H. We define first the following domain:Ω0 =
]0, r0[×]z1, z2[. Let z ∈]z1, z2[, we noteΩ0z =]0, r0[×]z1, z[. We have:

r2u2
θ(r, z1) = r2u2

θ(r, z) − 2
∫ z

z1

uθ(r, ζ)
∂uθ(r, ζ)

∂z
r2 dζ

and then:

r2u2
θ(r, z1) = r2u2

θ(r, z) − 2
∫ z

z1

ruθ(r, ζ)
∂

∂z
(ruθ(r, ζ) + uz(r, ζ)) dζ

+2
∫ z

z1

ruθ(r, ζ)uz(r, ζ) dζ
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thus by integrating with respect to ther variable from 0 tor0, it comes:∫ r0

0
ρ2u2

θ(ρ, z1) dρ =
∫ r0

0
ρ2u2

θ(ρ, z) dρ + 2
∫

Ω0z

ρuθ(ρ, ζ)uz(ρ, ζ) dρdζ

−2
∫

Ω0z

ρuθ(ρ, ζ)
∂

∂z
(ρuθ(ρ, ζ) + uz(ρ, ζ)) dρdζ

We still integrate the previous expression with respect to thez variable from
z1 to z2, and we use the following estimates, assuming, that is not a restric-
tion, that we haveρ2 ≤ ρ ≤ r0 ≤ 1:

∣∣∣∣
∫

Ω0

ρ2u2
θ(ρ, ζ) dρdζ

∣∣∣∣ ≤ |uθ|21∣∣∣∣
∫

Ω0z

ρuθ(ρ, ζ)
∂

∂z
(ρuθ(ρ, ζ) + uz(ρ, ζ)) dρdζ

∣∣∣∣ ≤ |uθ|21

+

∣∣∣∣∣
∂
∂z (ruθ) + uz

r

∣∣∣∣∣
2

1∣∣∣∣
∫

Ω0z

ρuθ(ρ, ζ)uz(ρ, ζ) dρdζ

∣∣∣∣ ≤ |uθ |21 +|uz|21

then we assert that there exists a constantC only dependant onΩ0 and such
that: ∫ r0

0
ρ2u2

θ(ρ, z1) dρ ≤ C


|uθ |21 +|uz |21 +

∣∣∣∣∣
∂
∂z (ruθ) + uz

r

∣∣∣∣∣
2

1




that is we have:
∫ r0

0
ρ2u2

θ(ρ, z1) dρ ≤ C ‖ u ‖2
H.

Indeed we can define a trace ofruθ on{z = z1} as an element ofL2(]0, r0[).
ut

Lemma 6. If u is a function ofH, we can define the traceur |Γ1 , that is
these of(r(ur, uz) ∧ nΓ ) |Γ1 , as an element ofL2(Γ1).

Proof. Let u andv in the space(D(Ω̄))3 ∩ H. For r in ]0, r0[, in the same
way as in Lemma 5, in addition to domainΩ0z, we introduce the domain:
Ω0r =]0, r[×]z1, z2[. Let (r, z) ∈ Ω0. We have first for all(ρ, ζ) ∈ Ω0:

r2uz(r, ζ)vθ(r, ζ) =
∫ r

0
ρ2vθ(ρ, ζ)

∂uz(ρ, ζ)
∂r

dρ

+
∫ r

0
uz(ρ, ζ)

∂

∂r
(ρ2vθ(ρ, ζ)) dρ
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and also:

ρ2ur(ρ, z1)vθ(ρ, z1) = ρ2ur(ρ, z)vθ(ρ, z) −
∫ z

z1

ρ2vθ(ρ, ζ)
∂ur(ρ, ζ)

∂z
dζ

−
∫ z

z1

ur(ρ, ζ)
∂

∂z
(ρ2vθ(ρ, ζ)) dζ

we integrate the last but one equation, with respect to theζ variable fromz1
to z, and we integrate the last equation with respect to theρ variable from
0 to r. Then making the sum and integrating the result, successively with
respect to thez variable fromz1 to z2, and to ther variable from 0 tor0, it
happens the equality:

r0(z2 − z1)
∫ r

0
ρ2ur(ρ, z1)vθ(ρ, z1) dρ

=
∫ r0

0

∫ z2

z1

∫ r

0
ρ2ur(ρ, ζ)vθ(ρ, ζ) dρdζdr

−
∫ r0

0

∫ z2

z1

∫ z

z1

ρ2uz(ρ, ζ)vθ(ρ, ζ) dρdζdz

−
∫ r0

0

∫ z2

z1

∫
Ω0r∩Ω0z

ur(ρ, ζ)
∂

∂z
(ρ2vθ(ρ, ζ)) dρdζdrdz

+
∫ r0

0

∫ z2

z1

∫
Ω0r∩Ω0z

uz(ρ, ζ)
∂

∂r
(ρ2vθ(ρ, ζ)) dρdζdrdz

−
∫ r0

0

∫ z2

z1

∫
Ω0r∩Ω0z

ρ2vθ(ρ, ζ)rotu(ρ, ζ) dρdζdrdz

we write now estimates of each term of the above equality, using Cauchy-
Schwarz inequality and using againρ2 ≤ ρ ≤ r0 ≤ 1. On one hand for the
first: ∣∣∣∣

∫ r0

0

∫ z2

z1

∫ r

0
ρ2ur(ρ, ζ)vθ(ρ, ζ) dρdζdr

∣∣∣∣ ≤ C1|ur |21 |vθ|21
and the same for second term:∣∣∣∣

∫ r0

0

∫ z2

z1

∫ z

z1

ρ2uz(ρ, ζ)vθ(ρ, ζ) dρdζdz

∣∣∣∣ ≤ C2|uz |21 |vθ|21
for the third term we can write:∣∣∣∣

∫ r0

0

∫ z2

z1

∫
Ω0r∩Ω0z

ur(ρ, ζ)
∂

∂z
(ρ2vθ(ρ, ζ)) dρdζdrdz

∣∣∣∣
≤
∣∣∣∣
∫ r0

0

∫ z2

z1

∫
Ω0r∩Ω0z

ρur(ρ, ζ)
(

∂ρvθ

∂z
+ vz

)
(ρ, ζ) dρdζdrdz

∣∣∣∣
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+
∣∣∣∣
∫ r0

0

∫ z2

z1

∫
Ω0r∩Ω0z

ρur(ρ, ζ)vz(ρ, ζ) dρdζdrdz

∣∣∣∣
≤ C3|ur |21


|vz|21 +

∣∣∣∣∣
∂ρvθ
∂z + vz

r

∣∣∣∣∣
2

1




and for the same arguments, the estimates of the fourth term:∣∣∣∣
∫ r0

0

∫ z2

z1

∫
Ω0r∩Ω0z

uz(ρ, ζ)
∂

∂r
(ρ2vθ(ρ, ζ)) dρdζdrdz

∣∣∣∣
≤ C4|uz |21


|vr |21 +|vθ |21 +

∣∣∣∣∣
∂ρvθ
∂r + vr

r

∣∣∣∣∣
2

1




finally for the firth term:∣∣∣∣
∫ r0

0

∫ z2

z1

∫
Ω0r∩Ω0z

ρ2vθ(ρ, ζ)rotu(ρ, ζ) dρdζdrdz

∣∣∣∣ ≤ C5|vθ |21 |rotu|21
whereC1, C2, C3, C4, C5 are constants only dependant onΩ0. Finally there
exists a constantC = C(r0, z1, z2) only dependant onΩ0 such that:∣∣∣∣

∫ r

0
ρ2ur(ρ, z1)vθ(ρ, z1) dρ

∣∣∣∣ ≤ C ‖ u ‖H‖ v ‖H . 2

Remark 4.It is well know that we cannot define traces of functions ofH1
1

(see Remark 3) on the axisΓ0. Similarly here, we can’t define traces onΓ0
of functions ofH. Indeed, the following functions ofH, (v,−v, rw), where
v andw are regular functions, possesses non identically null trace onΓ0, if
v hav not. That contradict the density result of Proposition 2.

3.5. Characterisation ofC2 functions ofH(rot) in axisymmetric geometry

We establish in this paragraph the conditions of equivalence for aC2-vector
function to belong to the Sobolev spaceH(rot, O) and for its associated by
(4), to belong to spaceH in axisymmetric geometry. We study the non-zero
Fourier mode. We give before the

Definition 2. We noteHn(Ω) the weighted Sobolev space of solution of
Maxwell-Fourier problem for the moden ∈ Z, as in (18), by the following

Hn(Ω) =
{

(ur, uθ, uz) ∈ (L2
1(Ω))3such that:(

nuz

r
+

∂uθ

∂z
,
∂ur

∂z
− ∂ur

∂z
,
nur + uθ

r
+

∂uθ

∂r

)
∈ (L2

1(Ω))3
}
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We have the following

Proposition 3. A fieldE is in H(rot, O) ∩ (C2(O))3 if and only if, for all
n ∈ Z

∗, un = (un
r , un

θ , un
z ) define by (9),(10) is inHn(Ω) and moreover

verify the following properties:

(i) (nun
r + un

θ )|Γ0 = 0
(ii) un

z |Γ0
= 0(22)

Proof.LetE ∈ H(rot, O)∩(C2(O))3. To simplify we make the assumption
thatE is symmetric and letu associated toE, according to relation (9). Let
F ∈ D(Ō)3 andv ∈ D(Ω̄)3 corresponding toF by (9). We have:∫

O
rotE · rotF dxdydz =

∫
O

rot rotE · Fdxdydz

+
∫

∂O
(rotE ∧ nO) · Fd(∂O)

The same expression can be written:

∫
O′

rotru · rotrv rdrdzdθ =
∑
n∈Z

∫ 2π

0

∫
Ω

rotn
r u · rotrv

n rdrdzdθ

Let ε > 0. We suppose thatΩ is a limit of measurable imbedded openΩε,
with boundaryΓ ∩{r > ε} and bounded on the left by a frontierΓε parallel
to thez-axis. Then, following (21) in the case ofHn all the above equalities
becomes in the openΩ of therz-plane:∫

Ω
rotru

n · rotrv rdrdz

=
∫

Ω
rotrrotru

n · v rdrdz

+
∫

Γ


r


 −nun

z
r − ∂un

θ
∂z

∂un
r

∂z − ∂un
z

∂r
∂un

θ
∂r + un

θ +nun
r

r


 ∧


nΓ

r

0
nΓ

z




 .


 vr

vθ

vz


 dΓ

+ lim
ε→0

∫
Γε


ε


 −∂un

θ
∂z

∂un
r

∂z − ∂un
z

∂r
∂un

θ
∂r


 ∧


1

0
0




 ·


 vr

vθ

vz


 dΓε

+ lim
ε→0

∫
Γε


 −nun

z

0
un

θ + nun
r


 ∧


1

0
0


) ·


 vr

vθ

vz


 dΓε
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Then it occurs, for alln ≥ 1 and for allv:

∫
Γ0




 −nun

z

0
un

θ + nun
r


 ∧


1

0
0




 ·


 vr

vθ

vz


 dΓ0 = 0

and so we get the two relations (22).2

4. The finite elements of Maxwell-Fourier’s equation

We are concerned in this paragraph to construct finite element unisolvent
and conforming in the spaceHn for thenth-Fourier mode [7]. To determine
such elements, we choose as geometrical elementary domain a triangleK
of therz-plane. We search for approximating space a polynomial spaceP
of dimensionm, and a set ofm linear form (or degrees of freedom) and
verifying the unisolvence property. Two cases are discussed: the general
casen ≥ 1 and its immediately equivalentn ≤ −1, and the casen = 0
corresponding to the fundamental Fourier mode. Forun = (un

r , un
θ , un

z ),
initial unknown of problem (6), we introduce the two vectors (see (19) and
remark 3),

Un =
[
Un

r

Un
z

]
=




un
r + un

θ

r
+

∂un
θ

∂r
un

z

r
+

∂un
θ

∂z


 andun

m =
[
un

r

un
z

]
(23)

We have obviously the propositon, resulting from the definition ofHn

Proposition 4. A necessary an sufficient condition forun to belongs to
Hn(Ω), for an axisymmetric openΩ, is that the functionsun

θ and(∂un
r

∂z −∂un
z

∂r )
lie in spaceL2

1(Ω), and that the fieldsun
m andUn lie in the vectorial space

(L2
1(Ω))2.

As a consequence on the Fourier series, we have the fact that for a function
or a field to belong toL2

1, is expressed on the family of coefficient of its
Fourier series by the two following conditions: each coefficient of the series
belongs toL2

1, and the numerical series of the square norms inL2 con-
verge. Therefore the approximation error consists in two imbedded errors.
At an upper level the error resulting from the truncature of Fourier series.
This estimate is relative to the series that describe bothun androtru

n, and
whom coefficients (exacts) belongs to spaceL2

1. We don’t consider this in
this study. And a lower level of error, those of finite elements. The estimates
to be obtain, in the sense of theL2

1 norm, concern the respective coefficient
of un androtru

n, that are 6 functions by mode, or also 3 coefficients forun

and 3 forrotru
n. As an assumption we attend to define an approximation
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of the unknowns withpolynomialin ther and in thez variables. To this end
we introduce the notion ofprincipal unknowns.

Definition 3. The unknowns supposed polynomial in ther andz variables,
are saidprincipal, when the others functions which requires to belong to
L2

1, are also polynomial because of their own expression in the unknowns.

It is not the case for the initial unknowns(un
r , un

θ , un
z ) because of the pres-

ence of ther variable at the denominator ofrotru.

4.1. Modes of rank other than zero

We choose as principal unknowns for theses modes, the functions:(Un
r , un

θ ,
Un

z ). Forn ≥ 1, we have

Un
r =

1
r

(
nun

r +
∂(run

θ )
∂r

)
or un

r =
1
n

(
rUn

r − ∂(run
θ )

∂r

)

Un
z =

1
r

(
nun

z +
∂(run

θ )
∂z

)
or un

z =
1
n

(
rUn

z − ∂(run
θ )

∂z

)

In addition we have 3 conditions of belonging toL2
1 and relative toun

r , un
z

and(∂un
r

∂z − ∂un
z

∂r ).
For un

r , un
z , theses conditions reduce to the belonging toL2

1 of the gradient
of (run

θ ). And for the last condition we have(
∂un

z

∂r
− ∂un

r

∂z

)
=

1
n

rot(rUn)

Theses expressions are polynomial as soon asun
θ , Un

r , Un
z themselves are. It

is an analogous situation for the coefficients of rankn ≥ 1, for antisymmetric
part. It is of course still the same forn ≤ −1.

4.2. Modes of rank zero

Symmetric part ofU0. For this mode the number of initial unknowns is
two (u0

r , u
0
z). There are principals since the only square integrable condition

(with weightr) affects the scalar function(∂u0
r

∂z − ∂u0
z

∂r ). Here the practical
situation is the same than in classical one dimensional cartesian problem,
therefore we shall use standart finite element.
Antisymmetric part ofU0. The unique unknown of the problem is the func-
tion u0

θ sinceu0
r = u0

z = 0, and the plane fieldU0 reduce tograd(u0
θ). This
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unknown is not principal because we have the term
u0

θ
r that appears inU0.

The natural unknown is then

η0 =
1
r
u0

θ

sinceu0
θ = rη0 andU0 = 1

rgrad(r2η0) are polynomial asη0 is polynomial.
It is clear that the previous results provide a general way to construct fi-
nite elements in the principal unknownsUn andun

θ . For every one we use
respectively standart finite elements for the initial unknownun, only with
polynomials of order less or equal than 2.

4.3. Construction of finite elements for Maxwell-Fourier problem

Its follows from the previous paragraphs that, in a sense, we have separated
the variables of the problem, into a real unknownuθ and a vectorial unknown
U . Therefore a study of finite elements adapted to the problem, results in the
approximation ofuθ using finite elements of classH1 and the approximation
of U using finite elements of classH(rot). This is what we propose now by
producing finite elements with polynomials in therz-variables of degrees
two, but which can be generalized to any degree.
We consider first the case|n| ≥ 1. Let K be a triangle of therz-plane.
According to the preeceding statement, we are entitled to consider as set
of degrees of freedom, acting on functions of componentsur, uθ, uz of an
u ∈ Hn(Ω), the following (we omit for convenience in the sequel the index
n for un andUn):

σθ : u → uθ(a)(24)

if a is a vertex of the triangleK, associated with

interpolation polynomialP2 of order ≤ 2(25)

On the other hand ifΓ is an edge of K andτ an unit vector toΓ , we are
able to consider circulation ofU alongΓ . That is we can take as degrees of
freedom the set of the following linear form:

σΓ : u →
∫

Γ




nur + uθ

r
+

∂uθ

∂r
nuz

r
+

∂uθ

∂z


 · τ dΓ(26)

In fact it appears more convenient (and equivalent) to use instead of the
above circulation the following:

σΓ : u →
∫

Γ


 nur + uθ

rnuz

r


 · τ dΓ(27)
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Moreover we select as space of polynomial the following second order poly-
nomial set of classH(rot, Ω), defined byNédélec [11]:

R = span
{[

1
0

]
,

[
0
1

]
,

[
r
0

]
,

[
0
r

]
,

[
z
0

]
,

[
0
z

]
,

[
z2

−rz

]
,

[−rz
r2

]}
(28)

which is a vectorial space of polynomials of dimension 8.
We suppose thatu, with componentsur, uθ, uz, andU like above (23) are
polynomials of degree 2 and accordingly defined by 18 coefficients. We
prescribe that: [

Ur

Uz

]
∈ R(29)

So such a polynomial is then defined by 14 coefficients. Finally using Propo-
sition 3 and taking into account conditions (22.i) and (22.ii), that furnished
five others relations on the coefficients, we are led to consider as set of poly-
nomial for Maxwell-Fourier equation, vectorsu defined by 9 coefficients
and of the form:

u =


 α1 + α4r + α3z + α8z

2 − α6rz
−nα1 + α2r − nα3z + α7r

2 − nα8z
2 + α9rz

α5r + α6r
2 − α8rz


(30)

where theαi are constants.
Now, we are in a position to introduce the finite element:

Proposition 5. (finite element with 9 d.o.f., for |n| ≥ 1)
The following finite element(

∑n, K,Pn) is unisolvent and conforming in
Hn(Ω):

– K: triangle with verticesai, with medium point to the edgesbi and with
edgesΓi with tangent vectorτi, for 1 ≤ i ≤ 3

– Pn: space of polynomials defined by(30)
–
∑n: set of 9 linear form, for1 ≤ i ≤ 3 :

σθi : u → uθ(ai)
σ̄θi : u → uθ(bi)

σΓi : u → ∫
Γi


 nur + uθ

rnuz

r


 · τi dΓi

(31)
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Proof.We have nothing to prove, because of the construction, except to refer
to [4] and [11]. 2

If we impose in the set of polynomials of Proposition 5, the relations
α7 = α8 = α9 = 0, we obtain the more simplest finite elements of Maxwell-
Fourier for|n| ≥ 1:

Proposition 6. (finite element with 6 d.o.f., for |n| ≥ 1)
The following finite element(

∑n, K,Pn) is unisolvent and conforming in
Hn(Ω):

– K: triangle with verticesai, with edges denotedΓi with tangent vector
τi, for 1 ≤ i ≤ 3

– Pn: space of polynomials defined by

u =


α1 + α4r + α3z − α6rz

−nα1 + α2r − nα3z
α5r + α6r

2


(32)

–
∑n: set of 6 linear form, for1 ≤ i ≤ 3 :

σθi : u → uθ(ai)

σΓi : u → ∫
Γi


 nur + uθ

rnuz

r


 · τi dΓi

(33)

We define now finite element for the fundamental Fourier moden = 0. This
case, corresponding to a purely axisymmetric problem, led to the following
relations:

u =


ur

uθ

uz


 is the unknown andur, uθ, uz are only functions of ther andz

variable. Here we can see that the unknownu allows us to separate Maxwell
equation (1), or more precisely our model problem (2), into two distinct
problems:

– uθ is a scalar solution of the wave equation with variablesr andz

– (ur, uz) is a vector solution of the following system:
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


−ω2ε0µ0ur − ∂

∂z

(
∂ur

∂z
− ∂uz

∂r

)
= −iωµ0jr

−ω2ε0µ0uz +
1
r

∂

∂r
r

(
∂ur

∂z
− ∂uz

∂r

)
= −iωµ0jz

+boundary conditions

The finite element is easily derived for the casen = 0. We have the

Proposition 7. (finite element with 6 d.o.f., forn = 0)
The following finite element(

∑0, K,P0) is unisolvent and conforming in
H0(Ω):

– K: triangle with edgesΓi and unit tangent vectorτi, for 1 ≤ i ≤ 3
– P0: space of polynomials defined by

u =


 α1r − α3rz

(α4 + α5r + α6z)r
α2 + α3r

2


(34)

–
∑0: set of 6 linear form, for1 ≤ i ≤ 3 :

σθi : u → 1
r
uθ(ai)

σΓi : u →
∫

Γi

[
ur

uz

]
· τi dΓi

(35)

5. Interpolation error estimate for finite elements with 6 d.o.f.
for n = 1

We are going to define explicitly the basis functions and the interpolation
operator of finite elements given by Proposition 6. Let us consider a tri-
angular domainK included inΩ. We denote byλi, for i = 1 to 3, the
three barycentric coordinates associated toK, and we form the 3 functions

νi =
[

νr
i

νz
i

]
= λjgradλk − λkgradλj , for (i, j, k) circular permutation of

(1, 2, 3).
According to proposition 6, it is straightforward to see that we have the
following

Property 1. for n = 1, and for the finite element of Proposition 6, we have

– the 3 functions associated to d.o.f. (33)σθi , areΛi =


 λi

−λi

0



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– the 3 functions associated to d.o.f. (33)σΓi , areNi =


 rνr

i
0

rνz
i




andΠ the interpolate operator overK, defined for all vector fieldu ∈ H(Ω),
by

Πu =
3∑

i=1

σθi(u)Λi +
3∑

i=1

σΓi(u)Ni . 2

We need also some notations and recalls. We noteΠR the interpolate op-
erator of the first order finite element ofH1 in bidimensional cartesian
coordinates [4]. For all scalar function ofu in H1, we have

ΠRu =
3∑

i=1

u(ai)λi

We noteΠN the interpolate operator of the first order finite element of
H(rot, K) in bidimensional cartesian coordinates [11]. For allu vector of
H(rot, K), we have

ΠNu = ΠN
[

ur

uz

]
=

3∑
k=1

(∫
Γk

[
ur

uz

]
· τk dΓk

)
νk

In the sequel, to simplify notations, graduθ and rot(ur, uz) are respectively

therz-plane operators(
∂uθ

∂r
,
∂uθ

∂z
) and

∂uz

∂r
− ∂ur

∂z
.

We shall use after the following lemma, also use in [12],

Lemma 7. If u is a scalar function ofH(K) ∩ (C1(K))3, we have

3∑
i=1

(∫
Γi

graduθ · τi dΓi

)
· νi =

3∑
i=1

σθi(u)gradλi(36)

or equivalently,
ΠN(gradu) = grad(ΠRu)(37)

Proof.We have

3∑
i=1

(∫
Γi

graduθ · τi dΓi

)
· νi

=
∑

1≤i<j≤3

(σθi(u) − σθj
(u))(λjgradλi − λigradλj)

=
∑

permutation(i,j,k)

σθk
(u)((λi + λj)gradλk − λk(gradλi + gradλj))
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and then the result because of:
∑3

i=1 gradλi = 0. 2

We begin by rewriting the distance(u − Πu) and(rotru − rotrΠu) with
the norm ofL2

1 with understanding notations as indicated in Remark 1. We
have the

Proposition 8. We suppose thatu ∈ H(K) ∩ (C1(K))3. We have the fol-
lowing relations

|u − Πu |2(L2
1)3≤ 2|uθ − ΠRuθ |2L2

1
+|rgrad(uθ − ΠRuθ) |2L2

1

+|r(U − ΠNU) |2(L2
1)2(38)

and using notation (19)

|rotru − rotrΠu |2(L2
1)3= |U − ΠNU |2(L2

1)2

+|rot(r(U − ΠNU)) |2(L2
1)(39)

Proof.Evaluation of|u − Πu |2(L2
1)3 . We have:

|u − Πu |2(L2
1)3=

∣∣∣∣∣uθ −
3∑

i=1

σθi(u) · λi

∣∣∣∣∣
2

L2
1

+

∣∣∣∣∣∣

ur +

3∑
i=1

σθi(u) · λi

uz


−

3∑
i=1

σΓi(u).rνi

∣∣∣∣∣∣
2

(L2
1)2

and then:

|u − Πu |2(L2
1)3 ≤ 2

∣∣∣∣∣uθ −
3∑

i=1

σθi(u) · λi

∣∣∣∣∣
2

L2
1

+

∣∣∣∣∣
[
ur + uθ

uz

]
−

3∑
i=1

σΓi(u) · rνi

∣∣∣∣∣
2

(L2
1)2

(40)

with some substitutions and using Lemma 7, the last norm of the previous
inequality is also written:∣∣∣∣∣

[
ur + uθ + r ∂uθ

∂r

uz + r ∂uθ
∂z

]
−

3∑
i=1

(∫
Γi

[ ur+uθ
r + ∂uθ

∂r
uz
r + ∂uθ

∂z

]
· τi dΓi

)
rνi

− rgrad

(
uθ −

3∑
i=1

σθi(u)λi

)∣∣∣∣∣
2

(L2
1)2
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then we report this last expression in (40), and using (19) and the definition
of ΠN, we obtain inequality (38).
Now we look at the distance of the rotationals:|rotru − rotrΠu |2(L2

1)3 . We

have:

rotrΠu =
3∑

i=1

σθi(u)


−∂λi

∂z

−∂λi
∂z

∂λi
∂r


+

3∑
i=1

σΓi(u)


−(λk

∂λj

∂z − λj
∂λk
∂z )

−rot(rνi)
λk

∂λj

∂r − λj
∂λk
∂r




Using Lemma 7, we have the equality:




3∑
i=1

σΓi(u)
(

λk
∂λj

∂z
− λj

∂λk

∂z

)
+ σθi(u)

∂λi

∂r
3∑

i=1

σΓi(u)
(

λk
∂λj

∂r
− λj

∂λk

∂r

)
+ σθi(u)

∂λi

∂z




=
3∑

i=1


∫

Γi




ur + uθ

r
+

∂uθ

∂r
uz

r
+

∂uθ

∂z


 · τi dΓi


 νi

then we can write:

|rotru − rotrΠu |2(L2
1)3= |U − ΠNU |2(L2

1)2

+

∣∣∣∣∣∂ur

∂z
− ∂uz

∂r
−

3∑
i=1

σΓi(u)
(

∂rνr
i

∂z
− ∂rνz

i
∂r

)
+

3∑
i=1

σθi(u)
∂λi

∂z

∣∣∣∣∣
2

L2
1

The last term of the above relation is also equal to

= rot(rU) −
3∑

i=1

(∫
Γi

(U − graduθ) · τi dΓi

)
rot(rνi) +

3∑
i=1

σθi(u)
∂λi

∂z

and using Lemma 7 for thez-component, and because
∑3

i=1(
∫
Γi

graduθ ·
τi dΓi)rotνi = 0, this term is still equal to

rot(rU −
3∑

i=1

(
∫

Γi

U · τi dΓi)rνi

and therefore we have (39).2
Then as a result, it appears, that for the interpolation error, we have to con-
sider the following distances:
on one hand:|uθ − ΠRuθ |2

L2
1(K) and|r(U − ΠNU) |2(L2

1(K))2 ,
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on the other hand:|rgrad(uθ − ΠRuθ) |2(L2
1(K))2 and

|rot(r(U −ΠNU)) |2
L2

1(K). To this end we recall some standart interpolation

error estimate. We denote by the real numberh the diameter of the triangle
K. First for the 1-st order finite element of classH1(K).

Lemma 8. LetK be a triangle of therz-plane. Then there exists a constant
C > 0 such that, for all functionu of Hk(K), we have:

|u − ΠRu |L2(K)≤ Chk|u |Hk(K)(41)

|grad(u − ΠRu) |L2(K)≤ Chk−1|u |Hk(K)(42)

‖ u − ΠRu ‖H1(K)≤ Chk−1|u |Hk(K)(43)

Proof.See [4]. 2

Lemma 9. let K be a triangle of therz-plane. Then there exists a constant
C > 0 such that, for all functionu of H(rot, K) ∩ (Hk(K))2, we have:

|u − ΠNu |L2(K)≤ Chk|u |Hk(K)(44)

|rot(u − ΠNu) |L2(K)≤ Chk−1|u |Hk(K)(45)

and then,
‖ u − ΠNu ‖H(rot,K)≤ Chk−1|u |Hk(K)(46)

Proof.See [11]. 2

In the sequelΓ0 is the part ofΓ on the axis{r = 0} (see figure of Sect. 3.4).
We need finally the interpolation error estimate for finite elements approxi-
matingW k

1/2(Ω). This technical result is the following:

Proposition 9. Let K be a triangle with a vertex or an edge onΓ0. Then
there exists a constantC > 0 such that, for all function u ofW k

1/2(K),
wherek = 2 in t he case of finite elements of degree 1,k = 3 in the case of
finite elements of degree 2, we have:

|u − ΠRu |W 1
1/2(K)≤ Chk−1|u |W k

1/2(K)(47)

|u − ΠRu |H1(K)≤ Chk−3/2|u |W k
1/2(K)(48)

and if in addition,u vanishes onΓ0,

|r−1/2(u − ΠRu) |L2(K)≤ Chk−1|u |W k
1/2(K) .(49)

Proof. It is the Lemma 6.1 of [10]. ut
We use Proposition 9, to prove the next
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Proposition 10. Let K be a triangle with a vertex or an edge onΓ0. Then
there exists a constantC > 0 such that, for all function u of(W k

1/2(K))2,
wherek = 2 in the case of finite elements of degree 1,k = 3 in the case of
finite elements of degree 2, we have:

|rot(u − ΠNu) |L2
1(K)≤ Chk−1|u |(W k

1/2(K))2(50)

and if in addition,u vanishes onΓ0,

|r−1/2(u − ΠNu) |(L2(K))2≤ Chk−1|u |(W k
1/2(K))2 .(51)

K

K
KF

z

r

z

rK

^

^^

2

1

0

Fig. 4.

Proof.We adapt with few modification the Lemma 6.1 of [10]. Assuming that
K is a triangle of therz-plane, with at least a vertex on the axis{r = 0},
like on Fig. 4, triangleK1 or K2. We denote byFK the linear mapping
that transformsK̂ into K, if K̂ is the reference triangle of therz-plane,
constituted by points(0, 0), (0, 1), (1, 0). We denote by(ri, zi)i=1,3, the
coordinates of the vertices ofK, with (r1, z1) such thatz1 is less than the
ordinate of the eventual second point on the axis. We noteB the2×2 square

matrix associated toFK . SoFK1 is define by the matrix

[
r2 r3

z2 − z1 z3 − z1

]
,

FK2 by the matrix

[
r2 0

z2 − z1 z3 − z1

]
.

We suppose that the triangle is regular in the sense where ifρ is the radius
of the inscribed circle toK, there exists a constantχ such thath/ρ ≤ χ.
Let (r̂, ẑ) be the coordinates of a point of̂K and(r, z) the corresponding
coordinates byFK in K. Then we have:r = r2r̂ + r3ẑ for K1, r = r2r̂ for
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K2, and there exists a constantC, independant ofh, such that we have the
inequalities:

1
C

ρ r̂ ≤ r ≤ Cρ r̂(52)

Let u and û be two functions such that:u(FK(r̂, ẑ)) =TB−1û(r̂, ẑ). We
defineΠ̂N on K̂ by

ΠNu =TB−1Π̂Nû

We recall that: ˆrotû = detB rotu, where ˆrot is the rotational operator in
the(r̂, ẑ) variables.
Let u ∈ (W 1

1/2(K))2. We estimate with (52) and using notations of [4], the
following distance

|rot(u − ΠNu) |L2
1(K)≤

Cρ detB
‖ B ‖2 | ˆrot(û − Π̂Nû) |L2

1(K̂)

and then, since the triangle is regular, we have for another constant still
notedC

|rot(u − ΠNu) |L2
1(K)≤ Cρ| ˆrot(û − Π̂Nû) |L2

1(K̂)(53)

According to Theorem 1 above,W 2
1/2(K̂)⊂> C0(K̂), thenΠ̂N is an operator

defined on space(W 2
1/2(K̂))2 and(I−Π̂N) is continuous from(W k

1/2(K̂))2

into (W 1
1/2(K̂))2 for k = 2 or 3:

| ˆrot(û − Π̂Nû) |L2
1(K̂)≤ C ‖ û ‖(W k

1/2(K̂))2

Now we have(I − Π̂N)p̂ = 0, for all p̂ ∈ Pk−1(K̂), then Π̂N verify
hypothesis of Theorem 2, and we can replace the norm in the preeceding
inequality by the corresponding semi-norm, for another constantC,

| ˆrot(û − Π̂Nû) |L2
1(K̂)≤ C|û |(W k

1/2(K̂))2

then using the first inequality of (52), we obtain the multi-index derivation

|û |2(W k
1/2(K̂))2≤

C

ρ

‖ B ‖2k

detB
|u |2(W k

1/2(K))2(54)

and then because of the regular hypothesis on the triangle

|û |2(W k
1/2(K̂))2≤

C

ρ
h2k−2|u |2(W k

1/2(K))2

finally by collecting the last inequalities, we have for a constantC

|rot(u − ΠNu) |L2
1(K)≤ Chk−1|u |(W k

1/2(K))2(55)
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We show now the second statement of Proposition 10.
We recall a not very obvious result from [10] (Theorem 4.4 and Remark 4.1
of [10]),

W k
1/2(K̂)⊂> H1(K̂)

and we recall the following result, immediate foru ∈ H1
0 (K),

Lemma 10. There exists a constantC > 0 such that for all functionu ∈
H1(K) and verifyingu|Γ0 = 0, we have

∫
K

u2

r2 drdz ≤ C|u |2H1(K)(56)

Proof. It is the Corollary 4.1 of [10]. ut

We use again Theorem 2, withX =
(
H1(K̂)

)2
, that allow us to obtain

|u − ΠNu |(H1(K))2≤ C|û − Π̂Nû |(H1(K̂))2≤ C|û |(W k
1/2(K̂))2

and we deduce as for the first inequality

|u − ΠNu |(H1(K))2≤ Chk−3/2|u |(W k
1/2(K))2

If we suppose thatu vanishes onΓ0, (u − ΠNu) also vanishes onΓ0 and
since its belongs to the space(H1(K)2), according to Lemma 10,(u−ΠNu)
belongs to the space(L2−1(K))2, of square integrable vectorial functions of
order 2 for the(drdz/r) measure.
Therefore we can consider the following inequality

|r−1/2(u − ΠNu) |2(L2(K))2≤
C

ρ
detB|r̂−1/2(û − Π̂Nû) |2(L2(K̂))2(57)

then applying Lemma 10, there exists a constantC > 0, such that

|r̂−1/2(û − Π̂Nû) |2(L2(K̂))2≤ |û − Π̂Nû |2(H1(K̂))2(58)

from inequalities (54),(57),(58) it ensues that, for a certainC,

|r−1/2(u − ΠNu) |2(L2(K))2≤
C

ρ2 ‖ B ‖2k |u |2(W k
1/2(K))2

then finally, since the triangle is regular,

|r−1/2(u − ΠNu) |(L2(K))2≤ Chk−1|u |(W k
1/2(K))2 . 2
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Proposition 11. Let K be a triangle with a vertex or an edge onΓ0. Then
there exists a constantC > 0 such that, for all function u ofH∩(W 2

1/2(K))3,
we have the following interpolation error estimate

‖ u − Πu ‖H≤ Ch1/2(|uθ |2W 2
1/2(K) +|U |2(W 2

1/2(K))2)
1/2(59)

Proof.We are going to estimate successively each encountered term
|uθ − ΠRuθ |L2

1
, |rgrad(uθ − ΠRuθ) |(L2

1)2 , |r(U − ΠNU) |(L2
1)2 and

|rot(r(U − ΠNU)) |L2
1
.

We consideru = (ur, uθ, uz) ∈ (D(Ω))3.
Estimate of the term:|uθ − ΠRuθ |L2

1(K). We have:

|uθ − ΠRuθ |L2
1(K)≤ |uθ − ΠRuθ |W 1

1/2(K)

then according to (47), it results the inequality:

|uθ − ΠRuθ |L2
1(K)≤ Ch|uθ |W 2

1/2(K)(60)

Estimate of the term:|rgrad(uθ − ΠRuθ) |(L2
1(K))2 . We can write:

|rgrad(uθ − ΠRuθ) |(L2
1(K))2 ≤ h|grad(uθ − ΠRuθ) |(L2

1(K))2

≤ h|uθ − ΠRuθ |W 1
1/2(K)

then by vertue of the first inequality of Proposition 9, there exists a constant
C such that:

|rgrad(uθ − ΠRuθ) |(L2
1(K))2≤ Ch2|uθ |W 2

1/2(K)(61)

We suppose for the two following estimates, thatu vanishes in an neigh-
bourhood of{r = 0} and in addition, we assume thatK is included in
{r < 1}.
Estimate of the term:|r(U − ΠNU) |(L2

1(K))2 . We have:

|r(U − ΠNU) |(L2
1(K))2≤ |r−1/2(U − ΠNU) |(L2(K))2

then according to the second inequality of Proposition 10, there exists a
constantC

|r(U − ΠNU) |(L2
1(K))2≤ Ch|U |(W 2

1/2(K))2(62)

Estimate of the term:|rot(r(U − ΠNU)) |L2
1(K). We have the obvious

inequality:

|rot(r(U −ΠNU)) |2L2
1(K)≤ |rot(U −ΠNU) |2L2

1(K) +|U −ΠNU |2(L2
1(K))2
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then by Proposition 10, there exists a constantC such that:

|rot(U − ΠNU) |L2
1(K)≤ Ch|U |(W 2

1/2(K))2

and finally such that, according to the preeceding estimates,

|rot(r(U − ΠNU)) |L2
1(K)≤ Ch|U |(W 2

1/2(K))2(63)

Then inequality (64) is a consequence of, on one hand inequalities (38) an
(39), and on the other hand inequalities (60),(61),(62) and (63).
Inequality (64) true for functions inD(Ω̄)3 vanishing in a neighbourhood
of {r = 0}, is also true for functions ofH, by vitue of Lemma 2(ii) and
Proposition 2. ut

6. Use of Maxwell-Fourier finite elements with 6 d.o.f.

LetΩ be an open ofR2
+ = {(r, z), r > 0}. Letτh = ∪Ne

l=1Kl be a triangula-
tion of Ω in Ne triangles. We explain how to determine the basis functions
in the case of Fourier modesn 6= 0. We rewrite the set of d.o.f. define by
(33),

∑
= {σi such thatσi = σθi andσi+3 = σΓi for i = 1, 3}, and we

look for functionspj solutions of the following linear6 × 6 system:

σi(pj) = δij , (Kronecker symbol), for1 ≤ i, j ≤ 6(64)

Let pj be a function defined by (32) and for which we search 6 real coef-
ficientsαj

1, α
j
2, α

j
3, α

j
4, α

j
5, α

j
6, such that this function verify explicitly the

system (64). We note(ri, zi) andΓi, for i = 1, 3 respectively the three ver-

tices and the three edges of triangle K. We note alsoτi =
[

λi
µi

]
, the unit

vector to the edgeΓi of K. We define the three following3 × 3 matrices:
the first one corresponding to the d.o.f. relative to the vertices:

M =


−1 r1 −z1

−1 r2 −z2
−1 r3 −z3


 ,

the second one corresponding to the d.o.f. linked to the circulation:

Mj =


m

′1
j 0 m

′′1
j

m
′2
j 0 m

′′2
j

m
′3
j 0 m

′′3
j




wherem
′i
j = λj

∫
Γi

dΓi andm
′′i
j = λj

∫
Γi

z dΓi,
and the third one:
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Nj =


n

′1
j n

′′1
j n

′′′1
j

n
′2
j n

′′2
j n

′′′2
j

n
′3
j n

′′3
j n

′′′3
j




with n
′i
j = λj

∫
Γi

r dΓi, n
′′i
j = µj

∫
Γi

r dΓi, n
′′′i
j =

∫
Γi

(µjr
2 − λjrz) dΓi.

Then we resolve for each element of numberj, the6 × 6 systems below:[ M 0
Mj Nj

]
(αj

i ) = δij(65)

which solutions provide the six basis functions whose support encounter the
triangle K.
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Séminaire d’analyse fonctionnelle de l’Université de Rennes
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