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Summary. This study deals with the mathematical and numerical solu-
tion of time-harmonic Maxwell equation in axisymmetric geometry. Using
Fourier decomposition, we define weighted Sobolev spaces of solution and
we prove expected regularity results. A practical contribution of this paper
is the construction of a class of finite element conforming withAt{eot)
space equipped with the weighted measuteadz. It appears as an exten-
sion of the well-known cartesian mixed finite element of Raviart-Thomas-
Nécklec [11]-[15]. These elements are built from classical lagrangian and
mixed finite element, therefore no special approximations functions are
needed. Finally, following works of Mercier and Raugel [10], we perform
an interpolation error estimate for the simplest proposed element.

Mathematics Subject Classification (199&5N30

1. Introduction

We consider Maxwell equation in a bounded open dondaiof R3, with

a regular frontie®O and supposed througout the pagisymmetrici.e.
with a symmetry of revolutianLet g and g, positive constants, that are
electrical properties of domaifl. We suppose that the problem has a time-
harmonic dependance likep(iwt). We pose the Maxwell problem at sec-
ond order in space variable, that is in electric field formulation, with homo-
geneous Dirichlet conditions. {f;, y, z) € O related to a basi&,, ey, e. ),

we write indifferently the electric complex field = (E,, E,, E.), or
E(z,y, z), and the magnetic flu = (B,, B,, B.),or B(z, y, z). We need

* Work supported under Cisi contract by the Commisszﬁrila?_nergie Atomique
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rotational operator, notedot as well inC? as inC? and defined irC? by:
determine the electromagnetic fidl#, B) solution of:

—~w2eoE + 1ot (g 'rot E) = —iwJ in O
iwB+rotE=0in0O
1) divB=0in0O
divegE =0in O
EAn® =00nd0

wheren? is the outward unit vector tdO and where the current densify

is given in(L2(0))3, and verifying the compatibility conditiodiv.J = 0.
Using the classical functional spaces,

H(rot,O) = {E,/ |E|2dxdydz < oo;/ rot B|*dzdydz < oo} ,
@] O

Hy(rot, O) = {E S H(rot,O),E/\nO\aO = O} ,

H(div®,0) = {B,/ |B|2dxdydz < oo;divB = o} :
o

It is well know that problem (1) has one and only one solutiéh B) €
Hy(rot, O)x H(div®, O), provided thatqw? is not an eigenvalue of the op-
eratorrot o~ 'rot for the inside problem i) (see [5]). We are interested in
discretizising and approximating this system of equations to take advantage
of the particular case of axisymmetric geometry. For this we take as model
problem the followingfor J, given function of L2(0))3inHg(rot, O), find

E € Hy(rot, O), solution of

{ —w?eoE + 1ot (g 'rot E) = —iwJ in O

@) EAn® =00ndo

for this, a variational formulation idind £ € Hy(rot, O), solution of

—w? / eoF - Fdxdydz + / uglrotE -rotF dxdydz
0 0

3) = —iw/ J - Fdzxdydz,
o

VF' € Hy(rot, O).
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2. Use of cylindrical coordinate and Fourier series decomposition
2.1. Change from cartesian to cylindrical coordinates

Let be S; the unit circle inR? : T3 = [0,27[—S; defined byd —
(cosf,sinb).

We definef? ¢ R? as the meridian of), and called axisymmetric, (that is
a section oIRi generating?) and we posedd’ = 2 x Ty andI” such that
00" =T x Ty U (2 x{0}) U (£2 x {27}), as shown below in Fig. 1.

Fig. 1.

At each fieldE defined inO, we can associate a function
up(r, 0, 2)
u(r,0,z) = |ug(r,0,z) | defined inO’ and related to an orthonormalised
uy(r,0,z2)
basis(e,, ey, e ), S0 that:

E,(r,0,z) cos —sin@ 0| [u,(r,0,z)
Ey(r,0,z) | = |sin€ cos® 0| [wup(r,0,z)
)

0 0 1| |uy(r6,z

(4)

We recall that implies the following relation
cosf —sin6 0
rotF = | sinf cosf 0| rot,u
0 0 1
if rot,- denotes the rotational operator in cylindrical coordinates:

1 <auz - a(me)> ]

Uy g@ 882
5 t, = U U
©) ro 4o 0z or

Uz 1 (0(rug)  Ouy
r or 08 ) |
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]T(T‘, 0, Z)
Then if we give us second right membe(s, 0, z) = | jo(r,0, 2) |, corre-
Jz(r,0,2)
sponding toJ by equation (4), the model problem becomes the following:
for j, given vector in0D’, find u solution of

Ug—Ur 92u, Pur | 10
—Ww 50u0u +(0 )+8r‘gz— 8zu2 + u9
= —iwpojy
1 Ou 02ug 1 Jug (U9+U1) 1 du A?ug
(6) —w? EoHoUe — Bzz T 922 r or + - Fairr T or2
= _1WM0]9
) 10u, _ 10u, 1 1 Ougy Pur _ uy
w 80/.,L0uz + r Oz r Or 72Uz + r Oz + ordz ~ or?
= —WH ]z

and verifying a Dirichlet homogeneous condition Bnx 77 and periodic
conditionsujg—g = u|9—a, ON §2. The associated variational formulation is
then

—wzaouo/ u-vrdrdzdf + / rot,u - rot,.v rdrdzdf

(7 = —iwuo/ j-vrdrdzdf
O/

2.2. Fourier series decomposition

For a givenE in H(rot, O), we decompose classically the unknown fie)d
given by (4), in Fourier series, according to the varighlg]. But observing
that the rotational of aymmetric field with respect to the plang- = 0} -
is antisymmetric(and conversely), we rewriteas the sum of its symmetric
partu® and of its antisymmetric patt®:

(8) u(r,0,z) =u(r,0,z) + u*(r,0, z)

and we posed, omiting the variables:

ul uy cosnb
(9) w= 10|+ Z uy sinnd

ul n>1 | ul cosnf
and:

0 u,. " sinnf
(10) ut = | uy | + Z u, " cosnl

0 n>1 | u; " sinnf
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whereu;, ug, u?, for n € Z, are complex scalar functions of the variables
r and z. In the same manner the rotational is written, as the sum of its

symmetric part:

0
; U
rot,u® Ou,

0z
0

(11)

0
ouY

z

or

2

n>1

and the rotational of its antisymmetric part:

8u2
0z
rot,u® = 0 +
aug 1,
ar TR
(12)

M
r Z
0

0z

Ouy "
or

0

I

1
;(Ug + nuy)

sin nd

Ouy "
0z

cos nb

) sin nd

— nu;")) cosnf

r

We define and use indifferently the notation.) for the inner product of
L? as well forE as for its equivalent from (4), and we note

(E,F)-/E-Fdxdydz-(u,v)—/ u - vrdrdzdf
O /

(13)

then we have:

27
:/ / u - vrdrdzdf
0 2

2m
(14) (rotE,rotF') = (rot,u,rot,v) = / / rot,u - rot,v rdrdzdf
Q

Because vanishes the integral over the intefyar|, of the real functions:
cosnf. cosm#, sin nf. sin mé, for integeran # n, andcos nf. sin mé, for
m = n, We can write the above scalar products:

2
/ / " rdrdzdf,
nez

(B, F) =

(rotE,rotF) =

(rot,u, rot,v)

[

neZ

Fut - rot, 0" rdrdzdf
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If we introduce the classical decomposition for

gr(riz)|
(r,0,z) Z] T, z)e eln? Z Jp(r, 2) !
nez nez | j2(r, z)

the problem associated to (7) can be split into independent problems for
each Fourier term, namely for eaghe Z:

—w250M0/ u” - " rdrdzdf + / rot,u” - rot,v" rdrdzdf

= —iwuo/ i" - u" rdrdzdf

If we suppress in (7) the term equal tofrom the integration in the
variable, we deduce the variational formulation of Maxwell equation for the
nth-Fourier term for each ¢ Z:

—wzz—:o,uo/ (uy - v 4+ ug - vy +ul -vl)rdrdz

+/ Oug + 1(u3 + nuy') 9 b + 1(@3 +nvy) | rdrdz
o\ or or

ou” 8u§ ov) OV
(15) +/Q<8z - 87“)(82 - ar)rdrdz
—I-/ <n +8u9> <nv§—|—av9> rdrdz

o \r 0z r 0z

— gty [ (G 4 g - vf 4 50w rdrdz
k0]

We call the problem associated to (15) Maxwell-Fourier problenfor the
nth-mode.

3. Definitions of the space of solutions
3.1. Definitions and recalls

We noteD((?2), the linear space af'* functions with compact support on
2, D'(12) the space of distributions oveé? and L?(£2) the Hilbert space
of square integrable functions dn with respect to the Lebesgug-dz:-
measure, equipped with the norm:

1/2
lu| = |u]Lz(Q) = </ u?(r, 2) drdz)
(0]

We define the weighted Sobolev space of distribution§2dd]:
(16) L3(02) = {u e L*(2),\/ru e L*(2)}
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equipped with the following norm:

(17) |y = < /Q W2(r, 2) rdrdz) v

Remark 1.We shall write this norm, depending on the context:|;=
[u |p2()= |u |2 and if necessaryiu [2(q)k= |u [2)x the corre-
sponding vectorial norms, fdr = 2 or 3.

L3(£2) is an Hilbert space for the scalar product associatgd t¢,. The
continuity of the function- in therdrdz-measure implies the

Lemma 1. D(£2) is dense in2(2) for the norm| |;.

We use also the space:

L>(02) = {u, drdz—measurable withu| < C a.e.,C constant} with the
norm:| |.= inf{C,|u| < C a.e. onf? }. We shall need some classical
functional Sobolev space:

Definition 1. Let € R andk, 51,32 € N, with 8 = (1, 32) and|3| =
81 + B2. We define:
WE(2) = {ueD(2):r*Duc L?(1),|8) < k}

equipped with the semi-norm:

1/2
|U\W§(Q) = (Z TQD’GU%%Q))

|BI<k
This is an Hilbert space with the norm:
1/2
lullwsy= | D 1r*D%ulfz g
1BI<k

We have the following density result.

Lemma 2. Letk € N, a € R, then

(i) if & > 1, the setD(£2) of the restrictions ta? of functions ofD(R?% ) is
dense inVE(12),fora < —1ork <o+ 3.

(i) if a+ % > 0,D(£2) is dense iVE(12)

Proof. See [2][8]. O

Theorem 1. Letk € N,k > 2, we have the following continuous imbedding

Why(2) ¢ L2(2))
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Proof. See [10]. O

Defining P (£2), as the set of polynomials in thez variables of order less
or equal tok, we have a result analogous to the classic case, but here for the
weighted measuredrdz:

Theorem 2. Letk = 2 or 3, and X a Banach space so that we have the
continuous imbedding

W1k/2(9) c X

let IT be a linear continuous operator frofi

1/2(£2) into X such that

(I —Ip=0,forallp € Pr_1(£2),

then there exists a constafit> 0 such that for alku € Wl’f/Q(Q), we have

fu= Iu|x< Clu g o)

Proof. See [10]. O

3.2. Study of a weighted Sobolev space

We only consider the Maxwell-Fourier problem for the made 1, because
we shall deduce naturally the properties of the solutions for the others modes
n > 1, and in the same way for the modes< —1 andn = 0. We consider
an axisymmetric domaif, that encounters theaxis{r = 0}, and whose
regular boundary is constituted By, its intersection with{r» = 0} and by
I' in the half-plane{r > 0}, itself with a part in{z = 2;} and a part in
{z = 22}, ashown in Fig. 2.

Here we introduce some weighted Sobolev space which provides the
right framework of these study. We seek for solutions of (15), wita 1,
in the space denoted I3y ((2) or H:

H(2) = {(ur, ug, uz) € (L3(2)) ,such that
(18) uy Oug Ou, Ouy ur+uyg Oug 9 3
7"‘@75—?7 . +W € (L3(2)"}

We can define differently the space of solution. To this end we introduce

Uy + Ug L Qug
(19) U= [U’”] = r or | andu,, = {UT}
U, Uy Oug m U

z

T 0z
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Fig. 2.

from this we deduce certain relations likecad(rug) = U — up, OF

rot(rU) = rotu,, = %= — %% (grad and rot considered here in carte-

sian coordinates in thez-plane). Then we have also:

H(2) = { (ur, wg,u2) € (L3(2))*} U € (13(92))” rotun, € L3(2)}

Remark 2.When the closure of the open setis strictly contained ifR2,
we have:

H(2) = {(ur, ug, us) € (LP(£2))°},ug
c HY(2), (ur,u,) € H(rot, 2)}
or also formally (interchanging the first and second componen} of
H(0) = H(2) x H(rot, )

That means that in the case of a toroidal axisymmetric domain, the Hilbert
spaceH will separate into a product of classical Sobolev spaces.

Remark 3.We can also imagine to take as principle unknos;uy) or
(Ur,ug,U,), and work with the space

H1(2) ={(Uy,up,U,) € (L%(Q))?’,grad(rue)
€ (L{(£2))% rot(rU) € L(£2)}

If we defineH{ relative toH!, asL? relative toL? and:

Hy(rot,, 2) = {(uy,u,) € (L%(Q))zar()tr(urauz) S L%(Q)}
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we even can consider the following space of solutions:
H1(2) = {(Uy,up,U,) € (L3(2))3,1ug € H{ (2),rU € Hy(rot,, 2)}

Such a change of unknowns, relieve clearly the notations and transforms the
bilinear form of the initial problem in:

—wQeo,uo/ (U - U+ ug - up) rdrdz —|—/ (rot(rU) - rot(rU")
9 [0
+grad(rug) - grad(rup)) rdrdz

We shall use this change of unknowns to determine basis functions of ap-
proximation ofH and linear form of interpolation.
We provideH with the following norm:

20) [l wllF=lur [F +lug [§ +lus |7
+uT+U9+%2+%+%2 8u7«_8uz2
r or |y T 0z |4 0z ar |y

It is clear that we have
Proposition 1. # is an Hilbert space for the normf || .
We have the following density result:

Proposition 2. the sub-space of functions(@(2))3 vanishing neafr =
0} is dense ir{ equipped with the norr ||5.

Proof. It is a consequence of the two following lemmas:

Lemma 3. the functions of L>°(£2))3 N H that vanish neafr = 0}, form
a sub-spac€ dense irnt{, equipped with the topology @f.

Proof. The technique of the proof is the same than in Proposition 2.4 of
[9]. First we show that the functions ¢£.°°(12))? N #H are dense if. Let

u € (L>®(£2))® N H. We definex2,,, = {(r, 2), |u.(r, 2)| <k}, and in the
same mannefy;, and(?2,,, and the following functions:

Uk (7, 2) up(r,2) if (r,2) € 2
ug(r, z) = | upr(r, z) | whereu,(r,z) =| kif u.(r,z) >k
Uy (T, 2) —kifu.(r,2z) < —k

and in the same wayyy(r, z) andu,x(r, z). We see thaty, € H and by
construction:

| uk [l2<Il w [
since on the other hand we have:

[wrn(r, 2) = ur(r, 2) < 4lup(r, 2) |7
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and that(u,(r, z) — ur(r, 2)) — 0 a.e., we see by Lebesgue theorem that
(urk —ur) — 0innorm| |;. And for the same reason@iy, — ug) — 0,
(uzk u,) — 01in L? as well as the sequences:
(Urk ~+ ugk +r8“9k — Uy — Uy — ra(;w) — 0innorm| |; whenk — oo
Mgy + r28oe —y, — %y 5 0innorm| |; whenk — oo
8;; e Jur 1 Quz) 5 0innorm| |; whenk — oo
Finally (ux — w) — 0innorm || ||%. Now we show the density for the
functions belonging t&€. We give uss > 0. Let ¥.(r) be the function
equal to zero for < e, equal to 1 forr > 2¢, and equal tZ — 1) if
e <r < 2e Foru € (L*°(02))>NH, we poseu, = V.u = (urg,u%,uzg)
Thenu. € (L?)3 and also the three component of the rotationnal:
1 = (Ure + uge + rau"f), (Uze + 1"8“95) and agga - 8525.
It is clear that we hav#a(u,ﬂE Ur) |1H 0, |(uge — ug) 1— 0 and|(uze —
uz) |1— 0 whene — 0 as well as the following limits:

Ure + Upe + Oug. _ Ur + ug Oug

T or T - or 1 0
Uze | Ouge vz Dug)
r 0z T 0z |4
OUpe B Ouze B % Ou, 0
0z or 0 or |y

We must establish thaltug %= [1— 0 and|u, %= |;— 0. Itis sufficient to
prove the result for the flrst of the two latter mtegrals Now we have:

aw 2 z1 r2€ ,,2 3 —
/ ( 8r5> ug rdrdz :/ / grdrdz < (22221)|U6 |Zo
.Q ) €

That proves that the sequenm,‘% is bounded inL.3(§2). Therefore there
exists a sub-sequence, also not@éa%—é, which weakly converges to a func-
tionw € L2(£2) whene tend to 0. This sequence converges to ®If?).

We have for alb in D(£2):
zo r2e
Z'S [ue |OO‘// @ drdz
€ z1Je

0D(r, z)
or

oY,
‘< ug 8:’@ >‘ =

and since for €]0, 27|, we have:

|D(r, 2) |= |P(r,2) — P(0, 2)| < rsup

Y4
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99(r, z)
or
Then|ug %% |;— 0 and in the same manngr, %% |;— 0
Thereforeu, tends weakly ta: in , whene tend to 0. And finally the space

£ is dense inH, because it is weakly dense, by vertue of Mazur theorem
[3]. O

3¢

2

that implies} < ue%ff,sﬁ > | < |ug |oo (22 — 21) sup
T,z

Lemma 4. The spacéD((2))3 N & is dense ir€ for the norm|| ||3.

Proof. According to Remark 2, a function ¢D(£2))3 N € is in H'(2) x
H(rot, £2), if we permute two variables. Therefore the density result is
classical [6]. O

3.3. Green formula

To characterisg{ we have to employ Green formula. We denotediby, 0,
nl") the unit outward normal to the boundady in the plane{# = 0} of
the initial open seO. We can show that for andv € (D(£2))3 N H, we
have the integral by parts formula:

v O
Uy r z
/ ug | - %UT - ;Z rdrdz
2w %Z vy —|T Uy
or r
us _ Oug
r z Uy
= / (98“’” — auz vy | rdrdz
@ Bugz Uy —IT . Uz
- _.l_ P
or r
Uy nf Uy
(21) + / riug| A| O vy | dI
r Uy nl U,

in which disappears the integral term alahig because of the weiglht

3.4. Trace theorem

We consider an open subs@tof the Ri plane, which boundaryy, U I
as in Sect. 3.2 and for which we give us a real> 0 so that{r = ry},
{z = z1} and{z = 2}, determine the five pieces of frontier that fordm
Sowedefinel"' =ITUILyUI3UlyUly, withlhUl3Uly C {T’ > ’f’o}
asin Fig. 3.
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\ Z

' [s T4

Z2
o
| r
Or ””””””””””””””” -
Z1 3 I N
| r1 rz
Fig. 3.

Theorem 3. If u is a function ofH, if we noten! = (nl,nl’), we can
define the trace of the componettts,., u,) A nF|F in L2(I") and the trace

of the componentug - in L*(I").

Proof. The result is obvious for the frontieis,, I's and I'; by vertue of
Remark 2, of the Green formula of Sect. 3.3 and the classical results of trace
theorem about scalar functions with reguladfy and vectorial functions

with regularityH (rot, 2); thenthese traces belongs respectivelﬁ;!lté2 (I")

andH_l/Q(F) [6]. Let show the result for frontie or for the similar case

loc

of frontier I'5. For frontierI’, we prove the following result:

Lemmab. If u is a function ofH, we can define the traceup r,, as an
element of 2(17).

Proof.Letu € (D(£2))3 N H. We define first the following domain2, =
10, ro[X]21, 22]. Let z €]z1, 2], we notef2y, =|0, ro[x]z1, z[. We have:

Qug(r, ()

2
9% r=d¢

P23 (r, 21) = rPud(r, ) — 2 / Cug(r,0)

21

and then:

(o) = ()~ 2 [ T O3 (rua(n ) + (0, 0)) de

21

42 / g (r, O (r, ) de

Z1
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thus by integrating with respect to thevariable from 0 to-g, it comes:

/ pPug(p, Zl)dpz/ prug(p, 2) dp+2/ puo(p, C)uz(p, C) dpd(
0 0

o2

0
—9 /QOZ pus(p; Q) 5~ (puo(p, C) + uz(p, C)) dpd¢

We still integrate the previous expression with respect ta thariable from
z1 10 z9, and we use the following estimates, assuming, that is not a restric-
tion, that we have? < p < rg < 1:

/Q prug(p, €) dﬂdf‘ < Jugli

0
/ pug(p, C)af(pue(p, ¢) +u(p, C))dpdC’ < |ugl}
QOZ z

9 2

@(TUQ) + u,
r

1

/Q pug(p, )us(p, €) dpdC’ < ug |7 +|u:|?
0z

then we assert that there exists a constaahly dependant oYy and such

that:
2)
1

0
Indeed we can define a tracerafy on{z = z; } as an element df?(]0, 7).
O

%(rue) + u,

T
/ p*ug(p,z1)dp < C (Ue T +Hu. [T+
0

T0
that is we have/ p*ud(p,z1)dp < C || u |3

Lemma 6. If u is a function ofH, we can define the trace, -, that is
these of r(u,, u.) An') |, as an element af?(17).

Proof. Let u andv in the spacéD(£2))% N H. Forr in |0, ro], in the same
way as in Lemma 5, in addition to domafp., we introduce the domain:
Qo =]0,7[X]21, 22[. Let(r, z) € £2y. We have first for al(p, () € £2:

sl Ol €)= [ . o2uled)y,

+ [ o 05 o, ) o
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and also:

au”‘(p7 C)

0z dc

pPur(p, 21)vg(p, 21) = pPur(p, 2)ve(p, 2) — / p*ve(p, C)

21

[l Pl )

21

we integrate the last but one equation, with respect tq tragiable fromz;

to z, and we integrate the last equation with respect topthiariable from

0 tor. Then making the sum and integrating the result, successively with
respect to the variable fromz; to z5, and to the- variable from 0 tor, it
happens the equality:

iz =20) [ PPl z)(p ) do

_ / 72/ 2y (p, O)vg(p, ¢) dpd(dr
_ / 71 / 1 s (p, Ove(p, €) dpd(d
-/ //QQ e (p.C) (P, ) dpdcira
- //QQ (0, ) 5 (000, ) dpdCr
~ / TTZZWQOZ v, Orotu(p, ¢) dpdCdrdz

we write now estimates of each term of the above equality, using Cauchy-
Schwarz inequality and using agaih < p < ry < 1. On one hand for the
first:

ro [z fT
/ / / pour(p, C)vo(p, ¢) dpdCdr| < Chluy [7 |vgl}

and the same for second term:

ro 22
/ / / P2us(p, O)va(p, ) dpdCdz| < Calus 2 Jugl?
z1J 21

for the third term we can write:

o 22 o
/ / / ur(p,C) o (7P p, ) dpdGards
QOerOz

70 z2 6 v,
pur(p; C) ( g i +vz> (p, €) dpd(drdz

‘QO’I‘Q‘QOZ
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To [Z2

pur(p, Q)vz(p, ¢) dpd¢drdz

20-N202

dpug 2
+v
< Csluy |% |UZ|% 0z %

1

and for the same arguments, the estimates of the fourth term:

To [Zz2

(P C) (p vp(ps ) dpd(drdz

QOerOz

2
6/)’[)9 T+,

< Cylu, ‘% |vr ‘% +|ve ‘%

1
finally for the firth term:

o 2o
< Cs|vg |% |rotuﬁ

p*vg(p, )rotu(p, ¢) dpd(drdz
QO’I’mQOZ

WhereCl, Cs, C3, Cy, Cy are constants only dependant@n Finally there
exists a constar®’ = C(ro, 21, z2) only dependant oty such that:

SCllullullvolln. B

/ pPur(p, 21)ve(p, 21) dp
0

Remark 4.1t is well know that we cannot define traces of functiongf
(see Remark 3) on the axig. Similarly here, we can'’t define traces oh
of functions of#. Indeed, the following functions &{, (v, —v, rw), where
v andw are regular functions, possesses non identically null tradg, pif
v hav not. That contradict the density result of Proposition 2.

3.5. Characterisation of? functions off (rot) in axisymmetric geometry

We establish in this paragraph the conditions of equivalenced@reector
function to belong to the Sobolev spaliérot, O) and for its associated by
(4), to belong to spacH in axisymmetric geometry. We study the non-zero
Fourier mode. We give before the

Definition 2. We note#" (2) the weighted Sobolev space of solution of
Maxwell-Fourier problem for the mode € Z, as in (18), by the following

H"(N2) = {(uT,ug,uZ) € (L3(£2))*such that:

nu, Oug Ouy, Our nuy + ug dug 2 3
< : +8z’82_8z’r+5r> = )
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We have the following

Proposition 3. A field E is in H(rot, O) N (C%(0))? if and only if, for all
n € Z* u" = (u},uy,u?) define by (9),(10) is ir{"(£2) and moreover
verify the following properties:

22) (1) (nul + ug )i, =0

)
Proof.Let E € H(rot, 0)N(C?(0))3. To simplify we make the assumption
that £’ is symmetric and let associated t@’, according to relation (9). Let
F € D(0)? andv € D(£2)? corresponding td@ by (9). We have:

/ rotF - rotF dxdydz = / rot rotE - Fdxdydz
O O

O .
+/ao(rotE/\n ) - Fd(00)

The same expression can be written:

2
/ rot,u - rot,v rdrdzdf = Z/ /rotﬁu-rotrv” rdrdzdd
/ 7 0 JNn

Lete > 0. We suppose tha® is a limit of measurable imbedded opéh,
with boundaryl"n {r > ¢} and bounded on the left by a fronti&r parallel
to thez-axis. Then, following (21) in the case &f" all the above equalities
becomes in the opef2 of therz-plane:

/ rot,u" - rot,v rdrdz
2

= / rot,rot,u™ - vrdrdz
o)

nu?  Ouy r
Todh olf r Ur
+ / r u; — 5‘; Al O | ve | Al
r Quy | ugtnut nt v,
or r
oul -
;Tze N 1 Ur
+lin"(1) € 8;; — 65‘; A0 v | dI:
£ Fg 8ug} O rUZ
or -
—nul 1 Uy
+ lirr(l) 0 ANO0]): |ve| dI%
e=0/n uy + nuy! 0 | Uz
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Then it occurs, for alh > 1 and for allv:

—nuy 1 Uy
/ 0 A0 “|vg| dlo=0
To \ [ uy + nuy 0 Vs

and so we get the two relations (221

4. The finite elements of Maxwell-Fourier’'s equation

We are concerned in this paragraph to construct finite element unisolvent
and conforming in the spa@¢”™ for thenth-Fourier mode [7]. To determine
such elements, we choose as geometrical elementary domain a tréngle
of therz-plane. We search for approximating space a polynomial space

of dimensionm, and a set ofn linear form (or degrees of freedom) and
verifying the unisolvence property. Two cases are discussed: the general
casen > 1 and its immediately equivalemt < —1, and the case = 0
corresponding to the fundamental Fourier mode. #br= (u}, uy,u?),

initial unknown of problem (6), we introduce the two vectors (see (19) and
remark 3),

uy +ug  Ouy

. [UR] T no_ [ul
3) U_{Uz"]_ w ouf a”d“m‘[uz}
r 0z

We have obviously the propositon, resulting from the definitiof{6f

Proposition 4. A necessary an sufficient condition fof to belongs to
H"(£2), for an axisymmetric opefd, is that the functions; and( 6;; - 85; )
lie in spacel?(2), and that the fields”, andU™ lie in the vectorial space

(L1(2))*.

As a consequence on the Fourier series, we have the fact that for a function
or a field to belong td.?, is expressed on the family of coefficient of its
Fourier series by the two following conditions: each coefficient of the series
belongs toL?, and the numerical series of the square normg4ncon-
verge. Therefore the approximation error consists in two imbedded errors.
At an upper level the error resulting from the truncature of Fourier series.
This estimate is relative to the series that describe bbtAndrot,.u™, and
whom coefficients (exacts) belongs to sp@de We don’t consider this in

this study. And a lower level of error, those of finite elements. The estimates
to be obtain, in the sense of tliié norm, concern the respective coefficient
of u™ androt,.u", that are 6 functions by mode, or also 3 coefficientafor

and 3 forrot,u™. As an assumption we attend to define an approximation
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of the unknowns witlpolynomialin ther and in thez variables. To this end
we introduce the notion girincipal unknowns

Definition 3. The unknowns supposed polynomial in thendz variables,
are saidprincipal, when the others functions which requires to belong to
L2, are also polynomial because of their own expression in the unknowns.

It is not the case for the initial unknowits;’, uy, u?) because of the pres-
ence of the- variable at the denominator oft, u.

4.1. Modes of rank other than zero

We choose as principal unknowns for theses modes, the functigfisu;
U?).Forn > 1, we have

U} = ! nu, + orus) or u, = 1 rU;" — o(rug)
r or n or

U} = ! nuy + Oru;) or u = E rU} — Olrug)
r 0z n 0z

In addition we have 3 conditions of belonging&§ and relative tau?, u?

Jup  Ou}
and (- — 57)-
Foru™,u?, theses conditions reduce to the belongind fof the gradient

of (ruy). “And for the last condition we have

ou}  ouy 1
— = —rot(rU"
( or 0z > ne ™)

Theses expressions are polynomial as soaifas;*, U themselves are. It
is an analogous situation for the coefficients of rank 1, for antisymmetric
part. It is of course still the same far< —1.

4.2. Modes of rank zero

Symmetric part ofU°. For this mode the number of initial unknowns is
two (u!, u?). There are principals since the only square integrable condition

Ty Uz

(with weightr) affects the scalar functlo(“ﬁ . Here the practical
situation is the same than in classical one dlmen5|onal cartesian problem,
therefore we shall use standart finite element.

Antisymmetric part of/°. The unique unknown of the problem is the func-

tion v sinceu? = u? = 0, and the plane field° reduce tazrad(u). This
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unknown is not principal because we have the té;gmhat appears i/°.
The natural unknown is then
o_1o
=l
sinceu) = rn® andU® = Lgrad(r?n°) are polynomial ag’ is polynomial.
It is clear that the previous results provide a general way to construct fi-
nite elements in the principal unknowt$' andu;;. For every one we use

respectively standart finite elements for the initial unknasitn only with
polynomials of order less or equal than 2.

4.3. Construction of finite elements for Maxwell-Fourier problem

Its follows from the previous paragraphs that, in a sense, we have separated
the variables of the problem, into a real unknawrand a vectorial unknown

U. Therefore a study of finite elements adapted to the problem, results in the
approximation of. using finite elements of clagé! and the approximation

of U using finite elements of clagé(rot). This is what we propose now by
producing finite elements with polynomials in the-variables of degrees

two, but which can be generalized to any degree.

We consider first the cage| > 1. Let K be a triangle of the-z-plane.
According to the preeceding statement, we are entitled to consider as set
of degrees of freedom, acting on functions of componeptsy, v, of an

u € H™(£2), the following (we omit for convenience in the sequel the index

n for ™ andU™):

(24) og:u— ug(a)

if a is a vertex of the triangl&’, associated with
(25) interpolation polynomiaP, of order < 2

On the other hand if" is an edge of K and an unit vector tal", we are
able to consider circulation @f along/". That is we can take as degrees of
freedom the set of the following linear form:

nuy + ug 8ua
(26) or i u— / i au(?r 7dl
T 82

In fact it appears more convenient (and equivalent) to use instead of the
above circulation the following:

nuy + Ug

(27) or:u— / nhi, ~Tdl
r

r
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Moreover we select as space of polynomial the following second order poly-
nomial set of clas$/ (rot, 2), defined byNédélec [11]:

e=s{[]- (-G 0] GG L2 ()

(28)

which is a vectorial space of polynomials of dimension 8.

We suppose that, with components,., ug, u., andU like above (23) are
polynomials of degree 2 and accordingly defined by 18 coefficients. We
prescribe that:

(29) [g} eR

So such a polynomial is then defined by 14 coefficients. Finally using Propo-
sition 3 and taking into account conditions (22.i) and (22.ii), that furnished
five others relations on the coefficients, we are led to consider as set of poly-
nomial for Maxwell-Fourier equation, vectotsdefined by 9 coefficients
and of the form:

ay + aur + agz + agz? — agrz
(30) u= | —nay + aor — nasz + arr? — noagz® + agrz
asr + agr? — agrz

where then; are constants.
Now, we are in a position to introduce the finite element:

Proposition 5. (finite element with 9 d.o.f., for |n| > 1)
The following finite elemer{ ", K, P™) is unisolvent and conforming in
H™(£2):

— K: triangle with verticess;, with medium point to the edgésand with
edgesl; with tangent vector;, for1 <¢ <3

— P": space of polynomials defined £30)

— Y ": setof 9 linear form, forl <4 < 3:

op, : u — up(ai)
ap, : u — ug(bi)

(31) nuy + Ug
Upi:u—>fpi nh, -1 dI}

r
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Proof.We have nothing to prove, because of the construction, except to refer
to[4] and [11]. O

If we impose in the set of polynomials of Proposition 5, the relations
a7 = ag = ag = 0, we obtainthe more simplestfinite elements of Maxwell-
Fourier for|n| > 1:

Proposition 6. (finite element with 6 d.o.f., for|n| > 1)
The following finite elemer{ ", K, P™) is unisolvent and conforming in
H™(£2):

— K: triangle with verticesa;, with edges denoteff; with tangent vector
i, for1 <i<3
— P™: space of polynomials defined by

a1+ oyr + a3z — agrz
(32) U= —noq + agr — nogz
asT + a6r2

— > ": set of 6 linear form, forl <i < 3:

ap, = u — up(ai)
nuy + Up

api:u—>fpi nh, -1 dl}

r

(33)

We define now finite element for the fundamental Fourier mode0. This
case, corresponding to a purely axisymmetric problem, led to the following
relations:

Uy
u = | ug | isthe unknown and,., ug, u, are only functions of the andz
Uz

variable. Here we can see that the unknevallows us to separate Maxwell

equation (1), or more precisely our model problem (2), into two distinct
problems:

— ug is a scalar solution of the wave equation with variablesd >

— (ur,u) is a vector solution of the following system:
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9 0 (Ou, Ou, . .
—WIEQUOUr — & Oz - Or = —lWpo]r

9 10 ou, Ou, . .
—w7EQ ol + ;ET 0 o )T —lwpo)z

-+boundary conditions
The finite element is easily derived for the case: 0. We have the

Proposition 7. (finite element with 6 d.o.f., forn = 0)
The following finite elemer®.°, K, P°) is unisolvent and conforming in
HO(92):

— K: triangle with edged’;} and unit tangent vector;, for1 <i <3
— PY: space of polynomials defined by

a1r — Qa3rz
(34) u= | (a4 + asr+ asz)r
as + agr?

— Y% set of 6 linear form, fol <i < 3:

gg;, U — ’U,g

35
( ) ory: u—>/|: :|-Tid[1i

5. Interpolation error estimate for finite elements with 6 d.o.f.
forn=1

We are going to define explicitly the basis functions and the interpolation
operator of finite elements given by Proposition 6. Let us consider a tri-
angular domaink included inf2. We denote by\;, fori = 1 to 3, the
three barycentric coordinates associatetand we form the 3 functions
v = [Z;} = \jgrad\;, — Apgrad);, for (i, j, k) circular permutation of

i
(1,2,3).
According to proposition 6, it is straightforward to see that we have the
following

Property 1. for n = 1, and for the finite element of Proposition 6, we have
Ai

— the 3 functions associated to d.o.f. (33), ared; = | —\;
0
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r
ry;

— the 3 functions associated to d.o.f. (33), areN; = | 0

rY;

and!I the interpolate operator ovét, defined for all vector field € #H(12),
by

3 3
ITu = Zagi(u)/li + ngi (uw)N; . O
i=1 i=1

We need also some notations and recalls. We fbitethe interpolate op-
erator of the first order finite element é¢f' in bidimensional cartesian
coordinates [4]. For all scalar function ofin H*, we have

3

IRy = Z u(ai) i

i=1

We note /7N the interpolate operator of the first order finite element of
H(rot, K) in bidimensional cartesian coordinates [11]. Foruallector of
H(rot, K), we have

mamr ] =5 ([, i) ) o

k=1

In the sequel, to simplify notations, gragand rotu,., u.) are respectively
81@ aUQ 8uz 8ur

therz-plane operator6——, —) and
or’ 0z

0z
We shall use after the following lemma, also use in [12],

Lemma 7. If u is a scalar function of£(K) N (C*(K))3, we have
3

3
(36) Z </ gradug - 1y dfi) = Zaei(u)grad)\i
: i=1

=1 1
or equivalently,
(37) 1IN (gradu) = grad(I1%u)
Proof. We have
3

Z (/ gradug - 7 dﬂ) i
I

i=1
= Z (09, (u) — 00, (u))(AjgradA; — Aigrad ;)

1<i<j<3

= Z oo, (w) (M + Aj)gradA, — Ag(gradA; + grad);))
permutation(,j,k)
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and then the result because Bf;,_, grad); = 0. O

We begin by rewriting the distande — I7u) and(rot,u — rot, [Tu) with

the norm ofL.? with understanding notations as indicated in Remark 1. We
have the

Proposition 8. We suppose that € H(K) N (C}(K))3. We have the fol-
lowing relations

|lu — ITu |%L%)3§ 2|ug — TRy |%% +|rgrad(ug — HRug) |%%
(38) +Hr(U = IINU) 22

and using notation (19)

[rot,u — rot, [Tu |?L§)3: U — mNu |%L§)2

(39) +rot(r(U — IINU)) yf@
Proof. Evaluation ofju — ITu |? (L2 We have:

3 2

|lu— u ](QL%);,»: ug — Zagi(u) A

and then:

|lu — ITu ‘?L%)S <2

ug — Z op, (u) - A\

=1

L3

I:ur + U@:l Z UF s
(L3)?

with some substitutions and using Lemma 7, the last norm of the previous
inequality is also written:

8u9 3 u7~+u9 dug
Ur +Ug + 757 | T % | AL .
|: ” n 7’8 u :| Z (/Fl |: Uz + 8u€ Ti i ] TV

=1

3
— rgrad (ue — Z o (u))\i>

i=1

2
(40) +

2

(£3)?
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then we report this last expression in (40), and using (19) and the definition
of 1IN, we obtain inequality (38).
Now we look at the distance of the rotationaist, u — rot, [Tu |?L2)3. We

1

have:

N AR —Ow = Ar)
rot,. ITu = oo, ( ——i
Z 87
ar
Using Lemma 7, we have the equality:

3
X . O O
> on(u )()\k Y ak> + 00, (u) 5

i=1
3

O\, O\ O\

S o) (M - M ) + oG
3 ur +ug  Oug

= Z r or | . mndl | v

Uz L Oue Oug

0z

then we can write:

[rot,u — rot, [Tu ‘?L§)3: U — IINU ](LQ

N 8ur B 8uz ZUF (81"1/ orv? > 206

The last term of the above relation is also equal to

L?

3

3 .
=rot(rU) — Z (/Fl (U — graduyg) - 1 dFi> rot(rv;) + Z;agi (u)%/:l

i=1

and using Lemma 7 for the-component, and becaui@le(fp gradug -
7 dI5)roty; = 0, this term is still equal to

3

rot(rU — Z(/ U-ndl)ry

i=1 V1

and therefore we have (391
Then as a result, it appears, that for the interpolation error, we have to con-
sider the following distances:

on one handtug — ITRuy | x) and|r(U — IINU) 2 L2(K))?!
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on the other hantkgrad(ug — ITuy) |?L2(K))
1
lrot(r(U —IINU)) |2 12(K)" To this end we recall some standart interpolation

error estimate. We denote by the real numbéne diameter of the triangle
K. First for the 1st order finite element of clas§ ! (K).

, and

Lemma 8. Let K be atriangle of thez-plane. Then there exists a constant
C > 0 such that, for all function, of H*(K), we have:

(41) ”U, - HRU |L2(K)§ Chk|u |Hk(K)
(42) lgrad(u — ITRw) L2(K) < ChFu | (k)
(43) | w— I || 1 gy < CRF | g

Proof. See [4]. O

Lemma 9. let K be a triangle of thez-plane. Then there exists a constant
C > 0 such that, for all functionu of H (rot, K) N (H*(K))?, we have:

(45) rot(u — 1T w) ’L2 )< Ch*u ]Hk
and then,
(46) I w = TN | o, 500 < CRE e

Proof. See [11]. O

In the sequely is the part of/” on the axis{r = 0} (see figure of Sect. 3.4).
We need finally the interpolation error estimate for finite elements approxi-
mating 1/2((2). This technical result is the following:

Proposition 9. Let K be a triangle with a vertex or an edge diy. Then
there exists a constarf > 0 such that, for all function u OW{%(K),
wherek = 2 in t he case of finite elements of degreé¢ % 3 in the case of
finite elements of degree 2, we have:

(47) lu— M ’Wll 2(K)§ Chk*1|u |y (K)

1/2
(48) lu — T |1 gy < CR*~ 3/2|u\
and if in addition,u vanishes oy,
(49) P2 (= IT%) | 20y < CRF M u lw ) -
Proof.Itis the Lemma 6.1 of [10]. O
We use Proposition 9, to prove the next
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Proposition 10. Let K be a triangle with a vertex or an edge dig. Then
there exists a constaidit > 0 such that, for all function u o(fo/Q(K))Q,

wherek = 2 in the case of finite elements of degreé % 3 in the case of
finite elements of degree 2, we have:

(50) [rot(u — ITNu) |2y < Ch* M w102
and if in addition,u vanishes oy,

(51) 72 (w = TN |22 < CRF M w2 -

-

-

Proof.We adapt with few modification the Lemma 6.1 of [10]. Assuming that
K is a triangle of the z-plane, with at least a vertex on the afis= 0},

like on Fig. 4, triangleK; or K. We denote byF the linear mapping
that transformsk into K, if K is the reference triangle of the:-plane,
constituted by pointg0,0), (0,1), (1,0). We denote by(, z)i=13, the
coordinates of the vertices &, with (r1, z1) such thatz; is less than the
ordinate of the eventual second point on the axis. We Bdtee2 x 2 square

matrix associated tbx . SOF g, is define by the matri% "2 "3 ] ,
29 — 21 23 — 21

Fk, by the matrix[ 2 T_Q o 23 g ZJ .

We suppose that the triangle is regular in the sense wheris ithe radius
of the inscribed circle td(, there exists a constagtsuch that:/p < .

Let (7, 2) be the coordinates of a point & and(r, z) the corresponding
coordinates by'i in K. Then we haver = rof + r3z for K1, r = rof for
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K>, and there exists a constarif independant ok, such that we have the
inequalities:

1
(52) apfgrngf
Let v and@ be two functions such thati(Fx (7, 2)) =B~ 1a(#, 2). We

definelI™ on K by )
mNu ="B7 NG

We recall thatrot@ = detB rotu, whererot is the rotational operator in
the (7, 2) variables.
Letu € (Wll/z( ))2. We estimate with (52) and using notations of [4], the
following distance

C’p detB

]rot(u - H U) |L2 K)— H B ||2 | ( ) ’L%(]A()

and then, since the triangle is regular, we have for another constant still
notedC'

(53) [rot(u — ITNu) | 12y < Cplrot(a — ITNa) |27
According to Theorem 1 abové/ 1/2( ()¢ CO(K), theniIN is an operator
defined on spao( 75 (K))*and( — I1N) is continuous fronf I, (K))>
into (W}, (K ()2 for k = 2 or 3:

ot — 1N [ 3y < © 11 g iy
Now we have(I — ITN)p = 0, for all p € Py_1(K), then IIN verify

hypothesis of Theorem 2, and we can replace the norm in the preeceding
inequality by the corresponding semi-norm, for another constant

ot (i — ITVq) |20y S Cla |y

by (K))?

then using the first inequality of (52), we obtain the multi-index derivation

) C|B|*
2 _
(54) ja ’(wfmmf— p detB o Wi)a(K))?

and then because of the regular hypothesis on the triangle

C 2k—2
o (K))2= ph o [ (Wh ,(K))?

la [,
finally by collecting the last inequalities, we have for a constant

(55) [rot(u — IT ) |2k <Chk lu |(Wk (K))?2
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We show now the second statement of Proposition 10.
We recall a not very obvious result from [10] (Theorem 4.4 and Remark 4.1
of [10]),

Wlk/Q(K)C; HY(K)
and we recall the following result, immediate forc H} (K),

Lemma 10. There exists a constadt > 0 such that for all function: €
H'(K) and verifyingu,,, = 0, we have

2
u
(56) /K g drdz < Clu | x0)
Proof. It is the Corollary 4.1 of [10]. O

~ 2
We use again Theorem 2, wifi = (Hl(K)> , that allow us to obtain

lu — ITNw (1 (r))2 < Cli — n~a |(Hl(f())2S Cla |(Wl’“/2(f<))2

and we deduce as for the first inequality

[ = I a0y < CR 2l L, ey
If we suppose that vanishes oy, (v — ITNu) also vanishes oy and
since its belongs to the spadé* (K)Q), according to Lemma 10y —ITNu)
belongs to the spadé.? | (K))?, of square integrable vectorial functions of

order 2 for the(drdz/r) measure.
Therefore we can consider the following inequality

C X
—1/2¢, _ 7N, \ |2 v A—1/205 _ NSy (2
GNr™"(u— I u) [{12(g))2 < pdetB|T (u— IT"u) ](LQ(R))Q

then applying Lemma 10, there exists a consént 0, such that
(58) P20 — N6 2 o< 0 — 1N

from inequalities (54),(57),(58) it ensues that, for a cerjn

C

~1/2 N,y |2 2k |, 12
r / (u—1II"u) |(L2(K))2§ 2 | B 17 |u ‘(Wf/Q(K))Q
then finally, since the triangle is regular,

e 2 = ) (a2 < O gws ez - O
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Proposition 11. Let K be a triangle with a vertex or an edge dﬁa. Then
there exists a constadt > 0 such that, for all function u N (W2, (K))3,

we have the following interpolation error estimate

1/2

(59) |l w—Hu < ChY(ug [z ) +IU [z 1)

Proof. We are going to estimate successively each encountered term
lug — ITRuyg |2, [rgrad(ug — ITRuy) l(£2)20 [7(U = Nv) |(£2)> and
lrot(r(U — IINU)) |z2-

We considen = (u,, ug, u.) € (D(£2))3.

Estimate of the termuy — IT%uy |22(k)- We have:

lug — Mg ’L%(K)S lug — My ‘Wll/Z(K)
then according to (47), it results the inequality:
(60) g — 1T ug | 1250y < Chlug w2, k)
Estimate of the termirgrad(us — IT%uy) |(£2(K))2- We can write:
[rgrad(ug — IT™ug) l(L2(K))2 < hlgrad(ug — ITRug) |(L2(x))2
< hlug — IT"ug ’Wll/z(K)

then by vertue of the first inequality of Proposition 9, there exists a constant
C' such that:

(61) Irgrad(ug — ITRup) l(L2(r))2 < Ch®|ug |w12/2(1<)

We suppose for the two following estimates, thatanishes in an neigh-
bourhood of{r = 0} and in addition, we assume that is included in
{r < 1}.
Estimate of the termjr (U — IINU) | (2 (k2. We have:

r(U = 1INU) l(L2(5))2 < P 2U — INU) |2 (s)2

then according to the second inequality of Proposition 10, there exists a
constanC'

Estimate of the termfrot(r(U — IINU)) |22(x)- We have the obvious
inequality:

[rot(r(U—1INU)) 7250y < 1ot (U —=TINU) [T g0y +HU =TTV [Epa )
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then by Proposition 10, there exists a constarsuch that:
ot (U — ITNU) |20 < Ch|U w2, 02

and finally such that, according to the preeceding estimates,

(63) rot(r(U — ITNU)) |2y < Ch|U |(W12/2(K))2

Then inequality (64) is a consequence of, on one hand inequalities (38) an
(39), and on the other hand inequalities (60),(61),(62) and (63).

Inequality (64) true for functions i®(£2)? vanishing in a neighbourhood

of {r = 0}, is also true for functions of{, by vitue of Lemma 2(ii) and
Proposition 2. O

6. Use of Maxwell-Fourier finite elements with 6 d.o.f.

Let2be anopenaR? = {(r,z),r > 0}. Letr, = UlN;’lKl be a triangula-
tion of {2 in N, triangles. We explain how to determine the basis functions
in the case of Fourier modes+# 0. We rewrite the set of d.o.f. define by
(33), > = {0y suchthat; = oy, ando; 3 = o, fori = 1,3}, and we
look for functionsp; solutions of the following lineaé x 6 system:

(64) oi(pj) = 6;5, (Kronecker symbol), foi <i,5 <6

Let p; be a function defined by (32) and for which we search 6 real coef-
ficientsaq, od, o, o, ol , o, such that this function verify explicitly the
system (64). We notér, z;) and I, fori = 1, 3 respectively the three ver-
tices and the three edges of triangle K. We note ajse )‘% , the unit

1

vector to the edgé; of K. We define the three following x 3 matrices:
the first one corresponding to the d.o.f. relative to the vertices:

-1 T —Z21
M=|-1 ro—2|,
-1 r3 —=z3

the second one corresponding to the d.o.f. linked to the circulation:

/l //l
2

my 0 m77
M; = my 0 mf
mj3 0 mj/3

wherem’ = \; [, dIiandm]’ = \; [, zdI},
and the third one:



Maxwell equation in axisymmetric geometry 609

/1 //1 ///1

By "y iy

=N, n.;

‘23 ‘7/3 ‘7//3

i

Wlthn =\ fprdﬂ,n —ujfprdl“l,n —fF wir? — Ajrz) dI.
Then We resolve for each element of numpe]he6 x 6 systems below:

M 0 ;
(65) [ ] al) = i
Mj A/’J ( ) J
which solutions provide the six basis functions whose support encounter the
triangle K.
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