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This study deals with the mathematical and numerical solution of time-harmonic Maxwell equation in axisymmetric geometry. Using Fourier decomposition, we define weighted Sobolev spaces of solution and we prove expected regularity results. A practical contribution of this paper is the construction of a class of finite element conforming with the H(rot) space equipped with the weighted measure rdrdz. It appears as an extension of the well-known cartesian mixed finite element of Raviart-Thomas-Nédélec [11]- [15]. These elements are built from classical lagrangian and mixed finite element, therefore no special approximations functions are needed. Finally, following works of Mercier and Raugel [10], we perform an interpolation error estimate for the simplest proposed element.

Introduction

We consider Maxwell equation in a bounded open domain O of R 3 , with a regular frontier ∂O and supposed througout the paper, axisymmetric, i.e. with a symmetry of revolution. Let ε 0 and µ 0 , positive constants, that are electrical properties of domain O. We suppose that the problem has a timeharmonic dependance like exp(i ωt). We pose the Maxwell problem at second order in space variable, that is in electric field formulation, with homogeneous Dirichlet conditions. If (x, y, z) ∈ O related to a basis (e x , e y , e z ), we write indifferently the electric complex field E = (E x , E y , E z ), or E(x, y, z), and the magnetic flux B = (B x , B y , B z ),or B(x, y, z). We need Work supported under Cisi contract by the Commissariat à l' Énergie Atomique rotational operator, noted rot as well in C 2 as in C 3 and defined in C 3 by: rotE = ( ∂Ez ∂y -∂Ey ∂z , ∂Ex ∂z -∂Ez ∂x , ∂Ey ∂x -∂Ex ∂y ). Then the problem is to determine the electromagnetic field (E, B) solution of:

           -ω 2 ε 0 E + rot(µ -1 0 rotE) = -iωJ in O iωB + rotE = 0 in O divB = 0 in O divε 0 E = 0 in O E∧n O = 0 on ∂O (1)
where n O is the outward unit vector to ∂O and where the current density J is given in (L 2 (O)) 3 , and verifying the compatibility condition divJ = 0. Using the classical functional spaces,

H(rot, O) = E, O |E| 2 dxdydz < ∞; O |rotE| 2 dxdydz < ∞ , H 0 (rot, O) = E ∈ H(rot, O), E∧n O | ∂O = 0 , H(div 0 , O) = B, O |B| 2 dxdydz < ∞; divB = 0 .
It is well know that problem [START_REF] Bendali | Approximation of a generalised elliptic boundary value problem by a finite element method[END_REF] has one and only one solution (E, B) ∈ H 0 (rot, O)×H(div 0 , O), provided that ε 0 ω 2 is not an eigenvalue of the operator rotµ 0 -1 rot for the inside problem in O (see [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF]). We are interested in discretizising and approximating this system of equations to take advantage of the particular case of axisymmetric geometry. For this we take as model problem the following: for J, given function of (L 2 (O)) 3 inH 0 (rot, O), find E ∈ H 0 (rot, O), solution of

-ω 2 ε 0 E + rot(µ -1 0 rotE) = -iωJ in O E∧n O = 0 on ∂O (2)
for this, a variational formulation is: find E ∈ H 0 (rot, O), solution of -ω 2

Use of cylindrical coordinate and Fourier series decomposition

Change from cartesian to cylindrical coordinates

Let be S 1 the unit circle in R 2 : T 1 = [0, 2π[→S 1 defined by θ → (cos θ, sin θ). We define Ω ⊂ R 2 as the meridian of O, and called axisymmetric, (that is a section of R 2 + generating O) and we posed: O = Ω × T 1 and Γ such that ∂O = Γ × T 1 ∪ (Ω × {0}) ∪ (Ω × {2π}), as shown below in Fig. 1. if rot r denotes the rotational operator in cylindrical coordinates:

rot r   u r u θ u z   =        1 r ∂u z ∂θ - ∂(ru θ ) ∂z ∂u r ∂z - ∂u z ∂r 1 r ∂(ru θ ) ∂r - ∂u r ∂θ        (5) 
Then if we give us second right members j(r, θ, z) =   j r (r, θ, z) j θ (r, θ, z) j z (r, θ, z)   , corresponding to J by equation ( 4), the model problem becomes the following: for j, given vector in O', find u solution of

                 -ω 2 ε 0 µ 0 u r + (u θ -ur) r 2 + ∂ 2 uz ∂r∂z -∂ 2 ur ∂z 2 + 1 r ∂u θ r = -iωµ 0 j r -ω 2 ε 0 µ 0 u θ -1 r ∂uz ∂z -∂ 2 u θ ∂z 2 -1 r ∂u θ ∂r + (u θ +ur) r 2 -1 r ∂ur ∂r -∂ 2 u θ ∂r 2 = -iωµ 0 j θ -ω 2 ε 0 µ 0 u z + 1 r ∂ur ∂z -1 r ∂uz ∂r -1 r 2 u z + 1 r ∂u θ ∂z + ∂ 2 ur ∂r∂z -∂ 2 uz ∂r 2
= -iωµ 0 j z [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF] and verifying a Dirichlet homogeneous condition on Γ × T 1 and periodic conditions u |θ=0 = u |θ=2π on Ω. The associated variational formulation is then

-ω 2 ε 0 µ 0 O u • v rdrdzdθ + O rot r u • rot r v rdrdzdθ = -iωµ 0 O j • v rdrdzdθ (7)

Fourier series decomposition

For a given E in H(rot, O), we decompose classically the unknown field u, given by (4), in Fourier series, according to the variable θ [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF]. But observing that the rotational of a symmetric field -with respect to the plane {r = 0}is antisymmetric, (and conversely), we rewrite u as the sum of its symmetric part u s and of its antisymmetric part u a :

u(r, θ, z) = u s (r, θ, z) + u a (r, θ, z) (8)
and we posed, omiting the variables:

u s =   u 0 r 0 u 0 z   + n≥1   u n r cos nθ u n θ sin nθ u n z cos nθ   (9)
and:

u a =   0 u 0 θ 0   + n≥1   u -n r sin nθ u -n θ cos nθ u -n z sin nθ   (10)
where u n r , u n θ , u n z , for n ∈ Z, are complex scalar functions of the variables r and z. In the same manner the rotational is written, as the sum of its symmetric part: [START_REF] Nédélec | Mixed finite elements in R 3[END_REF] and the rotational of its antisymmetric part:

rot r u s =    0 ∂u 0 r ∂z - ∂u 0 z ∂r 0    + n≥1         - n r u n z + ∂u n θ ∂z sin nθ ∂u n r ∂z - ∂u n z ∂r cos nθ ∂u n θ ∂r + 1 r (u n θ + nu n r ) sin nθ         ( 
rot r u a =      - ∂u 0 θ ∂z 0 ∂u 0 θ ∂r + 1 r u 0 θ      + n≥1         n r u -n z - ∂u -n θ ∂z cos nθ ∂u -n r ∂z - ∂u -n z ∂r sin nθ ∂u -n θ ∂r + 1 r (u -n θ -nu -n r ) cos nθ         (12) 
We define and use indifferently the notation (., .) for the inner product of L 2 as well for E as for its equivalent u from (4), and we note

(E, F ) = O E • F dxdydz = (u, v) = O u • v rdrdzdθ = 2π 0 Ω u • v rdrdzdθ (13)
then we have:

(rotE, rotF ) = (rot r u, rot r v) = 2π 0 Ω rot r u • rot r v rdrdzdθ (14)
Because vanishes the integral over the interval ]0, 2π[, of the real functions: cos nθ. cos mθ, sin nθ. sin mθ, for integers m = n, and cos nθ. sin mθ, for m = n, we can write the above scalar products:

(E, F ) = (u, v) = n∈Z 2π 0 Ω u n • v n rdrdzdθ, (rotE, rotF ) = (rot r u, rot r v) = n∈Z 2π 0 Ω rot r u n • rot r v n rdrdzdθ
If we introduce the classical decomposition for j:

j(r, θ, z) = n∈Z j n (r, z)e inθ = n∈Z   j n r (r, z) j n θ (r, z) j n z (r, z)   e inθ
the problem associated to [START_REF] Gay | A new family of finite element for the Maxwell-Fourier equations[END_REF] can be split into independent problems for each Fourier term, namely for each n ∈ Z:

-ω 2 ε 0 µ 0 O u n • v n rdrdzdθ + O rot r u n • rot r v n rdrdzdθ = -iωµ 0 O j n • v n rdrdzdθ
If we suppress in [START_REF] Gay | A new family of finite element for the Maxwell-Fourier equations[END_REF] the term equal to π from the integration in the θ variable, we deduce the variational formulation of Maxwell equation for the nth-Fourier term for each n ∈ Z:

-ω 2 ε 0 µ 0 Ω (u n r • v n r + u n θ • v n θ + u n z • v n z ) rdrdz + Ω ∂u n θ ∂r + 1 r (u n θ + nu n r ) ∂v n θ ∂r + 1 r (v n θ + nv n r ) rdrdz + Ω ∂u n r ∂z - ∂u n z ∂r ∂v n r ∂z - ∂v n z ∂r rdrdz + Ω n r u n z + ∂u n θ ∂z n r v n z + ∂v n θ ∂z rdrdz = -iωµ 0 Ω (j n r • v n r + j n θ • v n θ + j n z • v n z ) rdrdz (15)
We call the problem associated to (15) the Maxwell-Fourier problem for the nth-mode.

Definitions of the space of solutions

Definitions and recalls

We note D(Ω), the linear space of C ∞ functions with compact support on Ω, D (Ω) the space of distributions over Ω and L 2 (Ω) the Hilbert space of square integrable functions on Ω with respect to the Lebesgue drdzmeasure, equipped with the norm:

|u| = |u| L 2 (Ω) = Ω u 2 (r, z) drdz 1/2
We define the weighted Sobolev space of distributions on Ω, [START_REF] Bendali | Approximation of a generalised elliptic boundary value problem by a finite element method[END_REF]:

L 2 1 (Ω) = u ∈ L 2 (Ω), √ ru ∈ L 2 (Ω) (16)
equipped with the following norm:

|u | 1 = Ω u 2 (r, z) rdrdz 1/2 (17)
Remark 1. We shall write this norm, depending on the context:

|u | 1 = |u | L 2 1 (Ω) = |u | L 2 1 and if necessary: |u | (L 2 1 (Ω)) k = |u | (L 2 1
) k the corresponding vectorial norms, for k = 2 or 3. 

Definition 1. Let α ∈ R and k, β 1 , β 2 ∈ N, with β = (β 1 , β 2 ) and |β| = β 1 + β 2 . We define: W k α (Ω) = {u ∈ D (Ω) : r α D β u ∈ L 2 (Ω), |β| ≤ k} equipped with the semi-norm: |u| W k α (Ω) =   |β|≤k |r α D β u| 2 L 2 (Ω)   1/2
This is an Hilbert space with the norm:

u W k α (Ω) =   |β|≤k |r α D β u| 2 L 2 (Ω)   1/2
We have the following density result.

Lemma 2. Let k ∈ N, α ∈ R, then (i) if k ≥ 1, the set D( Ω) of the restrictions to Ω of functions of D(R 2 + ) is dense in W k α (Ω), for α ≤ -1 2 or k ≤ α + 1 2 . (ii) if α + 1 2 > 0, D( Ω) is dense in W k α (Ω) Proof. See [2][8]. 2 Theorem 1. Let k ∈ N, k ≥ 2, we have the following continuous imbedding W k 1/2 (Ω) ⊂ > L 2 (Ω))
Proof. See [START_REF] Mercier | Résolution d'un problème aux limites dans un ouvert axisymétrique par élément finis en r, z et séries de Fourier en θ[END_REF]. 2

Defining P k (Ω), as the set of polynomials in the r, z variables of order less or equal to k, we have a result analogous to the classic case, but here for the weighted measure rdrdz:

Theorem 2. Let k = 2 or 3, and X a Banach space so that we have the continuous imbedding

W k 1/2 (Ω) ⊂ > X let Π be a linear continuous operator from W k 1/2 (Ω) into X such that (I -Π)p = 0, for all p ∈ P k-1 (Ω),
then there exists a constant C > 0 such that for all u ∈ W k 1/2 (Ω), we have

|u -Πu | X ≤ C|u | W k 1/2 (Ω)
Proof. See [START_REF] Mercier | Résolution d'un problème aux limites dans un ouvert axisymétrique par élément finis en r, z et séries de Fourier en θ[END_REF]. 2

Study of a weighted Sobolev space

We only consider the Maxwell-Fourier problem for the mode n = 1, because we shall deduce naturally the properties of the solutions for the others modes n ≥ 1, and in the same way for the modes n ≤ -1 and n = 0. We consider an axisymmetric domain Ω, that encounters the z axis {r = 0}, and whose regular boundary is constituted by Γ 0 , its intersection with {r = 0} and by Γ in the half-plane {r ≥ 0}, itself with a part in {z = z 1 } and a part in {z = z 2 }, a shown in Fig. 2.

Here we introduce some weighted Sobolev space which provides the right framework of these study. We seek for solutions of (15), with n = 1, in the space denoted by H(Ω) or H:

H(Ω) = {(u r , u θ , u z ) ∈ L 2 1 (Ω) 3 , such that u z r + ∂u θ ∂z , ∂u r ∂z - ∂u z ∂r , u r + u θ r + ∂u θ ∂r ∈ L 2 1 (Ω) 3 } (18)
We can define differently the space of solution. To this end we introduce

U = U r U z =    u r + u θ r + ∂u θ ∂r u z r + ∂u θ ∂z    and u m = u r u z (19) Ω z z r z Γ 1 2 0 Γ 0 Fig. 2.
from this we deduce certain relations like: grad(ru θ ) = rU -u m , or rot(rU ) = rotu m = ∂uz ∂r -∂ur ∂z . (grad and rot considered here in cartesian coordinates in the rz-plane). Then we have also:

H(Ω) = (u r , u θ , u z ) ∈ L 2 1 (Ω) 3 , U ∈ L 2 1 (Ω) 2 , rotu m ∈ L 2 1 (Ω)} Remark 2.
When the closure of the open set Ω is strictly contained in R 2 + , we have:

H(Ω) = {(u r , u θ , u z ) ∈ (L 2 (Ω)) 3 }, u θ ∈ H 1 (Ω), (u r , u z ) ∈ H(rot, Ω)}
or also formally (interchanging the first and second component of u)

H(Ω) = H 1 (Ω) × H(rot, Ω)
That means that in the case of a toroidal axisymmetric domain, the Hilbert space H will separate into a product of classical Sobolev spaces.

Remark 3. We can also imagine to take as principle unknows: (U, u θ ) or (U r , u θ , U z ), and work with the space

H 1 (Ω) = {(U r , u θ , U z ) ∈ (L 2 1 (Ω)) 3 , grad(ru θ ) ∈ (L 2 1 (Ω)) 2 , rot(rU ) ∈ L 2 1 (Ω)}
If we define H 1 1 relative to H 1 , as L 2 1 relative to L 2 and:

H 1 (rot r , Ω) = {(u r , u z ) ∈ (L 2 1 (Ω)) 2 , rot r (u r , u z ) ∈ L 2 1 (Ω)}
we even can consider the following space of solutions:

H 1 (Ω) = {(U r , u θ , U z ) ∈ (L 2 1 (Ω)) 3 , ru θ ∈ H 1 1 (Ω), rU ∈ H 1 (rot r , Ω)}
Such a change of unknowns, relieve clearly the notations and transforms the bilinear form of the initial problem in:

-ω 2 ε 0 µ 0 Ω (U • U + u θ • u θ ) rdrdz + Ω (rot(rU ) • rot(rU ) +grad(ru θ ) • grad(ru θ )) rdrdz
We shall use this change of unknowns to determine basis functions of approximation of H and linear form of interpolation.

We provide H with the following norm:

u 2 H = |u r | 2 1 +|u θ | 2 1 +|u z | 2 1 ( 20 
)
+ u r + u θ r + ∂u θ ∂r 2 1 + u z r + ∂u θ ∂z 2 1 + ∂u r ∂z - ∂u z ∂r 2 1
It is clear that we have Proposition 1. H is an Hilbert space for the norm H . We have the following density result: Proposition 2. the sub-space of functions of (D( Ω)) 3 vanishing near {r = 0} is dense in H equipped with the norm H . Proof. It is a consequence of the two following lemmas: Lemma 3. the functions of (L ∞ (Ω)) 3 ∩ H that vanish near {r = 0}, form a sub-space E dense in H, equipped with the topology of H.

Proof. The technique of the proof is the same than in Proposition 2.4 of [9]. First we show that the functions of

(L ∞ (Ω)) 3 ∩ H are dense in H. Let u ∈ (L ∞ (Ω)) 3 ∩ H. We define: Ω rk = {(r, z), |u r (r, z)| ≤ k},
and in the same manner Ω θk and Ω zk , and the following functions:

u k (r, z) =   u rk (r, z) u θk (r, z) u zk (r, z)   where u rk (r, z) = u r (r, z) if (r, z) ∈ Ω rk k if u r (r, z) ≥ k -k if u r (r, z) ≤ -k
and in the same way u θk (r, z) and u zk (r, z). We see that u k ∈ H and by construction:

u k H ≤ u H
since on the other hand we have:

|u rk (r, z) -u r (r, z) | 2 ≤ 4|u r (r, z) | 2
and that (u rk (r, z) -u r (r, z)) → 0 a.e. , we see by Lebesgue theorem that

(u rk -u r ) → 0 in norm | | 1 .
And for the same reasons:

(u θk -u θ ) → 0, (u zk -u z ) → 0 in L 2 1
as well as the sequences:

1 r (u rk + u θk + r ∂u θk ∂r -u r -u θ -r ∂u θ ∂r ) → 0 in norm | | 1 when k → ∞ 1 r (u zk + r ∂u θk ∂z -u z -r ∂u θ ∂z ) → 0 in norm | | 1 when k → ∞ ∂u rk ∂z -∂u zk ∂r -∂ur ∂z + ∂uz ∂r ) → 0 in norm | | 1 when k → ∞ Finally (u k -u) → 0 in norm
H . Now we show the density for the functions belonging to E. We give us ε > 0. Let Ψ ε (r) be the function equal to zero for r < ε, equal to 1 for r > 2ε, and equal to

( r ε -1) if ε ≤ r ≤ 2ε. For u ∈ (L ∞ (Ω)) 3 ∩ H, we pose: u ε = Ψ ε u = (u rε , u θε , u zε ). Then u ε ∈ (L 2 
1 ) 3 and also the three component of the rotationnal:

1 r (u rε + u θε + r ∂u θε ∂r ), 1 r (u zε + r ∂u θε ∂z ) and ∂urε ∂z -∂uzε ∂r . It is clear that we have |(u rε -u r ) | 1 → 0, |(u θε -u θ ) | 1 → 0 and |(u zε - u z ) | 1 →
0 when ε → 0 as well as the following limits:

u rε + u θε r + ∂u θε ∂r - u r + u θ r - ∂u θ ∂r 1 → 0 u zε r + ∂u θε ∂z - u z r - ∂u θ ∂z 1 → 0 ∂u rε ∂z - ∂u zε ∂r - ∂u r ∂z + ∂u z ∂r 1 → 0
We must establish that:

|u θ ∂Ψε ∂r | 1 → 0 and |u z ∂Ψε ∂r | 1 → 0.
It is sufficient to prove the result for the first of the two latter integrals. Now we have:

Ω ∂Ψ ε ∂r 2 u 2 θ rdrdz = z 1 z 2 2ε ε u 2 θ ε 2 rdrdz ≤ 3(z 2 -z 1 ) 2 |u θ | 2 ∞ That proves that the sequence u θ ∂Ψε ∂r is bounded in L 2 1 (Ω).
Therefore there exists a sub-sequence, also noted u θ ∂Ψε ∂r , which weakly converges to a function w ∈ L 2 1 (Ω) when ε tend to 0. This sequence converges to 0 in D (Ω). We have for all Φ in D(Ω):

< u θ ∂Ψ ε ∂r , Φ > = Ω u θ ∂Ψ ε ∂r Φ drdz ≤ |u θ | ∞ ε z 2 z 1 2ε ε Φ drdz
and since for r ∈]0, 2π[, we have: 

|Φ(r, z) |= |Φ(r, z) -Φ(0, z)| ≤ r sup r,z ∂Φ(r, z) ∂r that implies:| < u θ ∂Ψε ∂r , Φ > | ≤ |u θ | ∞ (z 2 -z 1 ) sup
(D( Ω)) 3 ∩ E is in H 1 (Ω) × H(rot, Ω
), if we permute two variables. Therefore the density result is classical [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF]. 2

Green formula

To characterise H we have to employ Green formula. We denoted by (n Γ r , 0, n Γ z ) the unit outward normal to the boundary ∂O in the plane {θ = 0} of the initial open set O. We can show that for u and v ∈ (D( Ω)) 3 ∩ H, we have the integral by parts formula:

Ω   u r u θ u z   •       - v z r - ∂v θ ∂z ∂v r ∂z - ∂v z ∂r ∂v θ ∂r + v θ + v r r       rdrdz = Ω       - u z r - ∂u θ ∂z ∂u r ∂z - ∂u z ∂r ∂u θ ∂r + u θ + u r r       •   v r v θ v z   rdrdz + Γ   r   u r u θ u z   ∧   n Γ r 0 n Γ z     •   v r v θ v z   dΓ (21)
in which disappears the integral term along Γ 0 , because of the weight r.

Trace theorem

We consider an open subset Ω of the R 2 + plane, which boundary Γ 0 ∪ Γ as in Sect. 3.2 and for which we give us a real r 0 > 0 so that {r = r 0 }, {z = z 1 } and {z = z 2 }, determine the five pieces of frontier that form Γ . So we define:

Γ = Γ 1 ∪ Γ 2 ∪ Γ 3 ∪ Γ 4 ∪ Γ 5 , with Γ 2 ∪ Γ 3 ∪ Γ 4 ⊂ {r > r 0 } as in Fig. 3. Ω z z r z Γ 1 2 0 Γ 0 r 0 Γ4 3 Γ 2 1 Γ 5 Γ Ω 0 Fig. 3. Theorem 3. If u is a function of H, if we note n Γ = (n Γ r , n Γ z ), we can define the trace of the component r(u r , u z ) ∧ n Γ |Γ in L 2 (Γ ) and the trace of the component ru θ|Γ in L 2 (Γ ).
Proof. The result is obvious for the frontiers Γ 2 , Γ 3 and Γ 4 by vertue of Remark 2, of the Green formula of Sect. 3.3 and the classical results of trace theorem about scalar functions with regularity H 1 and vectorial functions with regularity H(rot, Ω); then these traces belongs respectively to H 1/2 loc (Γ ) and H -1/2 loc (Γ ) [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF]. Let show the result for frontier Γ 1 or for the similar case of frontier Γ 5 . For frontier Γ 1 we prove the following result: Lemma 5. If u is a function of H, we can define the trace ru θ|Γ 1 , as an element of L 2 (Γ 1 ).

Proof. Let u ∈ (D( Ω)) 3 ∩ H. We define first the following domain:

Ω 0 = ]0, r 0 [×]z 1 , z 2 [. Let z ∈]z 1 , z 2 [, we note Ω 0z =]0, r 0 [×]z 1 , z[. We have: r 2 u 2 θ (r, z 1 ) = r 2 u 2 θ (r, z) -2 z z 1 u θ (r, ζ) ∂u θ (r, ζ) ∂z r 2 dζ
and then:

r 2 u 2 θ (r, z 1 ) = r 2 u 2 θ (r, z) -2 z z 1 ru θ (r, ζ) ∂ ∂z (ru θ (r, ζ) + u z (r, ζ)) dζ +2 z z 1 ru θ (r, ζ)u z (r, ζ) dζ
thus by integrating with respect to the r variable from 0 to r 0 , it comes:

r 0 0 ρ 2 u 2 θ (ρ, z 1 ) dρ = r 0 0 ρ 2 u 2 θ (ρ, z) dρ + 2 Ω 0z ρu θ (ρ, ζ)u z (ρ, ζ) dρdζ -2 Ω 0z ρu θ (ρ, ζ) ∂ ∂z (ρu θ (ρ, ζ) + u z (ρ, ζ)) dρdζ
We still integrate the previous expression with respect to the z variable from z 1 to z 2 , and we use the following estimates, assuming, that is not a restriction, that we have ρ 2 ≤ ρ ≤ r 0 ≤ 1:

Ω 0 ρ 2 u 2 θ (ρ, ζ) dρdζ ≤ |u θ | 2 1 Ω 0z ρu θ (ρ, ζ) ∂ ∂z (ρu θ (ρ, ζ) + u z (ρ, ζ)) dρdζ ≤ |u θ | 2 1 + ∂ ∂z (ru θ ) + u z r 2 1 Ω 0z ρu θ (ρ, ζ)u z (ρ, ζ) dρdζ ≤ |u θ | 2 1 +|u z | 2 1
then we assert that there exists a constant C only dependant on Ω 0 and such that:

r 0 0 ρ 2 u 2 θ (ρ, z 1 ) dρ ≤ C   |u θ | 2 1 +|u z | 2 1 + ∂ ∂z (ru θ ) + u z r 2 1  
that is we have:

r 0 0 ρ 2 u 2 θ (ρ, z 1 ) dρ ≤ C u 2 H . Indeed we can define a trace of ru θ on {z = z 1 } as an element of L 2 (]0, r 0 [). Lemma 6. If u is a function of H, we can define the trace u r|Γ 1 , that is these of (r(u r , u z ) ∧ n Γ ) | Γ 1 , as an element of L 2 (Γ 1 ).
Proof. Let u and v in the space (D( Ω)) 3 ∩ H. For r in ]0, r 0 [, in the same way as in Lemma 5, in addition to domain Ω 0z , we introduce the domain:

Ω 0r =]0, r[×]z 1 , z 2 [. Let (r, z) ∈ Ω 0 . We have first for all (ρ, ζ) ∈ Ω 0 : r 2 u z (r, ζ)v θ (r, ζ) = r 0 ρ 2 v θ (ρ, ζ) ∂u z (ρ, ζ) ∂r dρ + r 0 u z (ρ, ζ) ∂ ∂r (ρ 2 v θ (ρ, ζ)) dρ
and also:

ρ 2 u r (ρ, z 1 )v θ (ρ, z 1 ) = ρ 2 u r (ρ, z)v θ (ρ, z) - z z 1 ρ 2 v θ (ρ, ζ) ∂u r (ρ, ζ) ∂z dζ - z z 1 u r (ρ, ζ) ∂ ∂z (ρ 2 v θ (ρ, ζ)) dζ
we integrate the last but one equation, with respect to the ζ variable from z 1 to z, and we integrate the last equation with respect to the ρ variable from 0 to r. Then making the sum and integrating the result, successively with respect to the z variable from z 1 to z 2 , and to the r variable from 0 to r 0 , it happens the equality:

r 0 (z 2 -z 1 ) r 0 ρ 2 u r (ρ, z 1 )v θ (ρ, z 1 ) dρ = r 0 0 z 2 z 1 r 0 ρ 2 u r (ρ, ζ)v θ (ρ, ζ) dρdζdr - r 0 0 z 2 z 1 z z 1 ρ 2 u z (ρ, ζ)v θ (ρ, ζ) dρdζdz - r 0 0 z 2 z 1 Ω 0r ∩Ω 0z u r (ρ, ζ) ∂ ∂z (ρ 2 v θ (ρ, ζ)) dρdζdrdz + r 0 0 z 2 z 1 Ω 0r ∩Ω 0z u z (ρ, ζ) ∂ ∂r (ρ 2 v θ (ρ, ζ)) dρdζdrdz - r 0 0 z 2 z 1 Ω 0r ∩Ω 0z ρ 2 v θ (ρ, ζ)rotu(ρ, ζ) dρdζdrdz
we write now estimates of each term of the above equality, using Cauchy-Schwarz inequality and using again ρ 2 ≤ ρ ≤ r 0 ≤ 1. On one hand for the first:

r 0 0 z 2 z 1 r 0 ρ 2 u r (ρ, ζ)v θ (ρ, ζ) dρdζdr ≤ C 1 |u r | 2 1 |v θ | 2 1
and the same for second term:

r 0 0 z 2 z 1 z z 1 ρ 2 u z (ρ, ζ)v θ (ρ, ζ) dρdζdz ≤ C 2 |u z | 2 1 |v θ | 2 1
for the third term we can write:

r 0 0 z 2 z 1 Ω 0r ∩Ω 0z u r (ρ, ζ) ∂ ∂z (ρ 2 v θ (ρ, ζ)) dρdζdrdz ≤ r 0 0 z 2 z 1 Ω 0r ∩Ω 0z ρu r (ρ, ζ) ∂ρv θ ∂z + v z (ρ, ζ) dρdζdrdz + r 0 0 z 2 z 1 Ω 0r ∩Ω 0z ρu r (ρ, ζ)v z (ρ, ζ) dρdζdrdz ≤ C 3 |u r | 2 1   |v z | 2 1 + ∂ρv θ ∂z + v z r 2 1  
and for the same arguments, the estimates of the fourth term:

r 0 0 z 2 z 1 Ω 0r ∩Ω 0z u z (ρ, ζ) ∂ ∂r (ρ 2 v θ (ρ, ζ)) dρdζdrdz ≤ C 4 |u z | 2 1   |v r | 2 1 +|v θ | 2 1 + ∂ρv θ ∂r + v r r 2 1  
finally for the firth term:

r 0 0 z 2 z 1 Ω 0r ∩Ω 0z ρ 2 v θ (ρ, ζ)rotu(ρ, ζ) dρdζdrdz ≤ C 5 |v θ | 2 1 |rotu| 2 1
where C 1 , C 2 , C 3 , C 4 , C 5 are constants only dependant on Ω 0 . Finally there exists a constant C = C(r 0 , z 1 , z 2 ) only dependant on Ω 0 such that:

r 0 ρ 2 u r (ρ, z 1 )v θ (ρ, z 1 ) dρ ≤ C u H v H . 2
Remark 4. It is well know that we cannot define traces of functions of H 1 1

(see Remark 3) on the axis Γ 0 . Similarly here, we can't define traces on Γ 0 of functions of H. Indeed, the following functions of H, (v, -v, rw), where v and w are regular functions, possesses non identically null trace on Γ 0 , if v hav not. That contradict the density result of Proposition 2.

Characterisation of C 2 functions of H(rot) in axisymmetric geometry

We establish in this paragraph the conditions of equivalence for a C 2 -vector function to belong to the Sobolev space H(rot, O) and for its associated by [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF], to belong to space H in axisymmetric geometry. We study the non-zero Fourier mode. We give before the Definition 2. We note H n (Ω) the weighted Sobolev space of solution of Maxwell-Fourier problem for the mode n ∈ Z, as in (18), by the following

H n (Ω) = (u r , u θ , u z ) ∈ (L 2 1 (Ω)) 3 such that: nu z r + ∂u θ ∂z , ∂u r ∂z - ∂u r ∂z , nu r + u θ r + ∂u θ ∂r ∈ (L 2 1 (Ω)) 3
We have the following

Proposition 3. A field E is in H(rot, O) ∩ (C 2 (O)) 3 if

and only if, for all

n ∈ Z * , u n = (u n r , u n θ , u n z ) define by ( 9), [START_REF] Mercier | Résolution d'un problème aux limites dans un ouvert axisymétrique par élément finis en r, z et séries de Fourier en θ[END_REF] is in H n (Ω) and moreover verify the following properties:

(i) (nu n r + u n θ ) |Γ 0 = 0 (ii) u n z |Γ 0 = 0 (22) Proof. Let E ∈ H(rot, O)∩(C 2 (O)) 3 .
To simplify we make the assumption that E is symmetric and let u associated to E, according to relation (9). Let F ∈ D( Ō) 3 and v ∈ D( Ω) 3 corresponding to F by (9). We have:

O rotE • rotF dxdydz = O rot rotE • F dxdydz + ∂O (rotE ∧ n O ) • F d(∂O)
The same expression can be written:

O rot r u • rot r v rdrdzdθ = n∈Z 2π 0 Ω rot n r u • rot r v n rdrdzdθ
Let ε > 0. We suppose that Ω is a limit of measurable imbedded open Ω ε , with boundary Γ ∩ {r > ε} and bounded on the left by a frontier Γ ε parallel to the z-axis. Then, following (21) in the case of H n all the above equalities becomes in the open Ω of the rz-plane:

Ω rot r u n • rot r v rdrdz = Ω rot r rot r u n • v rdrdz + Γ   r    -nu n z r - ∂u n θ ∂z ∂u n r ∂z -∂u n z ∂r ∂u n θ ∂r + u n θ +nu n r r    ∧   n Γ r 0 n Γ z      .   v r v θ v z   dΓ + lim ε→0 Γε   ε    - ∂u n θ ∂z ∂u n r ∂z -∂u n z ∂r ∂u n θ ∂r    ∧   1 0 0      •   v r v θ v z   dΓ ε + lim ε→0 Γε   -nu n z 0 u n θ + nu n r   ∧   1 0 0   ) •   v r v θ v z   dΓ ε
Then it occurs, for all n ≥ 1 and for all v:

Γ 0     -nu n z 0 u n θ + nu n r   ∧   1 0 0     •   v r v θ v z   dΓ 0 = 0
and so we get the two relations (22). 2

The finite elements of Maxwell-Fourier's equation

We are concerned in this paragraph to construct finite element unisolvent and conforming in the space H n for the nth-Fourier mode [START_REF] Gay | A new family of finite element for the Maxwell-Fourier equations[END_REF]. To determine such elements, we choose as geometrical elementary domain a triangle K of the rz-plane. We search for approximating space a polynomial space P of dimension m, and a set of m linear form (or degrees of freedom) and verifying the unisolvence property. Two cases are discussed: the general case n ≥ 1 and its immediately equivalent n ≤ -1, and the case n = 0 corresponding to the fundamental Fourier mode. For u n = (u n r , u n θ , u n z ), initial unknown of problem (6), we introduce the two vectors (see (19) and remark 3),

U n = U n r U n z =    u n r + u n θ r + ∂u n θ ∂r u n z r + ∂u n θ ∂z    and u n m = u n r u n z ( 23 
)
We have obviously the propositon, resulting from the definition of H n Proposition 4. A necessary an sufficient condition for u n to belongs to H n (Ω), for an axisymmetric open Ω, is that the functions u n θ and ( ∂u n r ∂z -∂u n z ∂r ) lie in space L 2 1 (Ω), and that the fields u n m and U n lie in the vectorial space (L 2 1 (Ω)) 2 . As a consequence on the Fourier series, we have the fact that for a function or a field to belong to L 2 1 , is expressed on the family of coefficient of its Fourier series by the two following conditions: each coefficient of the series belongs to L 2 1 , and the numerical series of the square norms in L 2 converge. Therefore the approximation error consists in two imbedded errors. At an upper level the error resulting from the truncature of Fourier series. This estimate is relative to the series that describe both u n and rot r u n , and whom coefficients (exacts) belongs to space L 2 1 . We don't consider this in this study. And a lower level of error, those of finite elements. The estimates to be obtain, in the sense of the L 2 1 norm, concern the respective coefficient of u n and rot r u n , that are 6 functions by mode, or also 3 coefficients for u n and 3 for rot r u n . As an assumption we attend to define an approximation of the unknowns with polynomial in the r and in the z variables. To this end we introduce the notion of principal unknowns. Definition 3. The unknowns supposed polynomial in the r and z variables, are said principal, when the others functions which requires to belong to L 2 1 , are also polynomial because of their own expression in the unknowns. It is not the case for the initial unknowns (u n r , u n θ , u n z ) because of the presence of the r variable at the denominator of rot r u.

Modes of rank other than zero

We choose as principal unknowns for theses modes, the functions:

(U n r , u n θ , U n z ).
For n ≥ 1, we have

U n r = 1 r nu n r + ∂(ru n θ ) ∂r or u n r = 1 n rU n r - ∂(ru n θ ) ∂r U n z = 1 r nu n z + ∂(ru n θ ) ∂z or u n z = 1 n rU n z -

∂(ru n θ ) ∂z

In addition we have 3 conditions of belonging to L . For u n r , u n z , theses conditions reduce to the belonging to L 2 1 of the gradient of (ru n θ ). And for the last condition we have

∂u n z ∂r - ∂u n r ∂z = 1 n rot(rU n )
Theses expressions are polynomial as soon as u n θ , U n r , U n z themselves are. It is an analogous situation for the coefficients of rank n ≥ 1, for antisymmetric part. It is of course still the same for n ≤ -1.

Modes of rank zero

Symmetric part of U 0 . For this mode the number of initial unknowns is two (u 0 r , u 0 z ). There are principals since the only square integrable condition (with weight r) affects the scalar function ( ∂u 0 r ∂z -∂u 0 z ∂r ). Here the practical situation is the same than in classical one dimensional cartesian problem, therefore we shall use standart finite element. Antisymmetric part of U 0 . The unique unknown of the problem is the function u 0 θ since u 0 r = u 0 z = 0, and the plane field U 0 reduce to grad(u 0 θ ). This unknown is not principal because we have the term u 0 θ r that appears in U 0 . The natural unknown is then

η 0 = 1 r u 0 θ
since u 0 θ = rη 0 and U 0 = 1 r grad(r 2 η 0 ) are polynomial as η 0 is polynomial. It is clear that the previous results provide a general way to construct finite elements in the principal unknowns U n and u n θ . For every one we use respectively standart finite elements for the initial unknown u n , only with polynomials of order less or equal than 2.

Construction of finite elements for Maxwell-Fourier problem

Its follows from the previous paragraphs that, in a sense, we have separated the variables of the problem, into a real unknown u θ and a vectorial unknown U . Therefore a study of finite elements adapted to the problem, results in the approximation of u θ using finite elements of class H 1 and the approximation of U using finite elements of class H(rot). This is what we propose now by producing finite elements with polynomials in the rz-variables of degrees two, but which can be generalized to any degree. We consider first the case |n| ≥ 1. Let K be a triangle of the rz-plane. According to the preeceding statement, we are entitled to consider as set of degrees of freedom, acting on functions of components u r , u θ , u z of an u ∈ H n (Ω), the following (we omit for convenience in the sequel the index n for u n and U n ):

σ θ : u → u θ (a) (24)
if a is a vertex of the triangle K, associated with interpolation polynomial P 2 of order ≤ 2 (25)

On the other hand if Γ is an edge of K and τ an unit vector to Γ , we are able to consider circulation of U along Γ . That is we can take as degrees of freedom the set of the following linear form:

σ Γ : u → Γ    nu r + u θ r + ∂u θ ∂r nu z r + ∂u θ ∂z    • τ dΓ (26)
In fact it appears more convenient (and equivalent) to use instead of the above circulation the following:

σ Γ : u → Γ   nu r + u θ r nu z r   • τ dΓ (27)
Moreover we select as space of polynomial the following second order polynomial set of class H(rot, Ω), defined by Nédélec [START_REF] Nédélec | Mixed finite elements in R 3[END_REF]:

R = span 1 0 , 0 1 , r 0 , 0 r , z 0 , 0 z , z 2 -rz , -rz r 2 (28)
which is a vectorial space of polynomials of dimension 8. We suppose that u, with components u r , u θ , u z , and U like above (23) are polynomials of degree 2 and accordingly defined by 18 coefficients. We prescribe that:

U r U z ∈ R (29)
So such a polynomial is then defined by 14 coefficients. Finally using Proposition 3 and taking into account conditions (22.i) and (22.ii), that furnished five others relations on the coefficients, we are led to consider as set of polynomial for Maxwell-Fourier equation, vectors u defined by 9 coefficients and of the form:

u =   α 1 + α 4 r + α 3 z + α 8 z 2 -α 6 rz -nα 1 + α 2 r -nα 3 z + α 7 r 2 -nα 8 z 2 + α 9 rz α 5 r + α 6 r 2 -α 8 rz   (30)
where the α i are constants. Now, we are in a position to introduce the finite element: Proposition 5. (finite element with 9 d.o.f., for |n| ≥ 1)

The following finite element ( n , K, P n ) is unisolvent and conforming in H n (Ω):

-K: triangle with vertices a i , with medium point to the edges b i and with edges Γ i with tangent vector τ i , for 1 ≤ i ≤ 3 -P n : space of polynomials defined by (30) -n : set of 9 linear form, for 1 ≤ i ≤ 3 :

σ θ i : u → u θ (a i ) σθ i : u → u θ (b i ) σ Γ i : u → Γ i   nu r + u θ r nu z r   • τ i dΓ i (31) 
Proof. We have nothing to prove, because of the construction, except to refer to [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] and [START_REF] Nédélec | Mixed finite elements in R 3[END_REF]. 2 If we impose in the set of polynomials of Proposition 5, the relations α 7 = α 8 = α 9 = 0, we obtain the more simplest finite elements of Maxwell-Fourier for |n| ≥ 1: Proposition 6. (finite element with 6 d.o.f., for |n| ≥ 1)

The following finite element ( n , K, P n ) is unisolvent and conforming in H n (Ω):

-K: triangle with vertices a i , with edges denoted Γ i with tangent vector τ i , for 1 ≤ i ≤ 3 -P n : space of polynomials defined by

u =   α 1 + α 4 r + α 3 z -α 6 rz -nα 1 + α 2 r -nα 3 z α 5 r + α 6 r 2   (32) 
n : set of 6 linear form, for 1 ≤ i ≤ 3 :

σ θ i : u → u θ (a i ) σ Γ i : u → Γ i   nu r + u θ r nu z r   • τ i dΓ i (33)
We define now finite element for the fundamental Fourier mode n = 0. This case, corresponding to a purely axisymmetric problem, led to the following relations:

u =   u r u θ u z 
 is the unknown and u r , u θ , u z are only functions of the r and z variable. Here we can see that the unknown u allows us to separate Maxwell equation [START_REF] Bendali | Approximation of a generalised elliptic boundary value problem by a finite element method[END_REF], or more precisely our model problem (2), into two distinct problems:

u θ is a scalar solution of the wave equation with variables r and z -(u r , u z ) is a vector solution of the following system:

           -ω 2 ε 0 µ 0 u r - ∂ ∂z ∂u r ∂z - ∂u z ∂r = -iωµ 0 j r -ω 2 ε 0 µ 0 u z + 1 r ∂ ∂r r ∂u r ∂z - ∂u z ∂r = -iωµ 0 j z +boundary conditions
The finite element is easily derived for the case n = 0. We have the Proposition 7. (finite element with 6 d.o.f., for n = 0)

The following finite element ( 0 , K, P 0 ) is unisolvent and conforming in H 0 (Ω):

-K: triangle with edges Γ i and unit tangent vector τ i , for 1 ≤ i ≤ 3 -P 0 : space of polynomials defined by

u =   α 1 r -α 3 rz (α 4 + α 5 r + α 6 z)r α 2 + α 3 r 2   (34)
-0 : set of 6 linear form, for 1 ≤ i ≤ 3 :

σ θ i : u → 1 r u θ (a i ) σ Γ i : u → Γ i u r u z • τ i dΓ i (35)

Interpolation error estimate for finite elements with 6 d.o.f. for n = 1

We are going to define explicitly the basis functions and the interpolation operator of finite elements given by Proposition 6. Let us consider a triangular domain K included in Ω. We denote by λ i , for i = 1 to 3, the three barycentric coordinates associated to K, and we form the 3 functions 

ν i = ν r i ν z i = λ j gradλ k -λ k gradλ j , for (i, j, k) circular permutation of
σ θ i (u)Λ i + 3 i=1 σ Γ i (u)N i . 2
We need also some notations and recalls. We note Π R the interpolate operator of the first order finite element of H 1 in bidimensional cartesian coordinates [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]. For all scalar function of u in H 1 , we have

Π R u = 3 i=1 u(a i )λ i
We note Π N the interpolate operator of the first order finite element of H(rot, K) in bidimensional cartesian coordinates [START_REF] Nédélec | Mixed finite elements in R 3[END_REF]. For all u vector of H(rot, K), we have

Π N u = Π N u r u z = 3 k=1 Γ k u r u z • τ k dΓ k ν k
In the sequel, to simplify notations, gradu θ and rot(u r , u z ) are respectively the rz-plane operators ( ∂u θ ∂r , ∂u θ ∂z ) and ∂u z ∂r -∂u r ∂z . We shall use after the following lemma, also use in [START_REF] Nédélec | A new family of mixed finite elements[END_REF],

Lemma 7. If u is a scalar function of H(K) ∩ (C 1 (K)) 3 , we have 3 i=1 Γ i gradu θ • τ i dΓ i • ν i = 3 i=1 σ θ i (u)gradλ i (36) or equivalently, Π N (gradu) = grad(Π R u) (37)
Proof. We have

3 i=1 Γ i gradu θ • τ i dΓ i • ν i = 1≤i<j≤3 (σ θ i (u) -σ θ j (u))(λ j gradλ i -λ i gradλ j ) = permutation (i,j,k) σ θ k (u)((λ i + λ j )gradλ k -λ k (gradλ i + gradλ j ))
and then the result because of: 3 i=1 gradλ i = 0. 2 We begin by rewriting the distance (u -Πu) and (rot r u -rot r Πu) with the norm of L 2 1 with understanding notations as indicated in Remark 1. We have the Proposition 8. We suppose that u ∈ H(K) ∩ (C 1 (K)) 3 . We have the following relations

|u -Πu | 2 (L 2 1 ) 3 ≤ 2|u θ -Π R u θ | 2 L 2 1 +|rgrad(u θ -Π R u θ ) | 2 L 2 1 +|r(U -Π N U ) | 2 (L 2 1 ) 2 (38)
and using notation ( 19)

|rot r u -rot r Πu | 2 (L 2 1 ) 3 = |U -Π N U | 2 (L 2 1 ) 2 +|rot(r(U -Π N U )) | 2 (L 2 1 ) (39) Proof. Evaluation of |u -Πu | 2 (L 2 
1 ) 3 . We have:

|u -Πu | 2 (L 2 1 ) 3 = u θ - 3 i=1 σ θ i (u) • λ i 2 L 2 1 +   u r + 3 i=1 σ θ i (u) • λ i u z   - 3 i=1 σ Γ i (u).rν i 2 (L 2 1 ) 2
and then:

|u -Πu | 2 (L 2 1 ) 3 ≤ 2 u θ - 3 i=1 σ θ i (u) • λ i 2 L 2 1 + u r + u θ u z - 3 i=1 σ Γ i (u) • rν i 2 (L 2 1 ) 2 (40) 
with some substitutions and using Lemma 7, the last norm of the previous inequality is also written:

u r + u θ + r ∂u θ ∂r u z + r ∂u θ ∂z - 3 i=1 Γ i ur+u θ r + ∂u θ ∂r uz r + ∂u θ ∂z • τ i dΓ i rν i -rgrad u θ - 3 i=1 σ θ i (u)λ i 2 (L 2 1 ) 2
then we report this last expression in (40), and using (19) and the definition of Π N , we obtain inequality (38). Now we look at the distance of the rotationals:|rot r u -rot r Πu | 2 (L 2 1 ) 3 . We have:

rot r Πu = 3 i=1 σ θ i (u)   -∂λ i ∂z -∂λ i ∂z ∂λ i ∂r   + 3 i=1 σ Γ i (u)   -(λ k ∂λ j ∂z -λ j ∂λ k ∂z ) -rot(rν i ) λ k ∂λ j ∂r -λ j ∂λ k ∂r 
 Using Lemma 7, we have the equality:

      3 i=1 σ Γ i (u) λ k ∂λ j ∂z -λ j ∂λ k ∂z + σ θ i (u) ∂λ i ∂r 3 i=1 σ Γ i (u) λ k ∂λ j ∂r -λ j ∂λ k ∂r + σ θ i (u) ∂λ i ∂z       = 3 i=1    Γ i    u r + u θ r + ∂u θ ∂r u z r + ∂u θ ∂z    • τ i dΓ i    ν i
then we can write:

|rot r u -rot r Πu | 2 (L 2 1 ) 3 = |U -Π N U | 2 (L 2 1 ) 2 + ∂u r ∂z - ∂u z ∂r - 3 i=1 σ Γ i (u) ∂rν r i ∂z - ∂rν z i ∂r + 3 i=1 σ θ i (u) ∂λ i ∂z 2 L 2 1
The last term of the above relation is also equal to

= rot(rU ) - 3 i=1 Γ i (U -gradu θ ) • τ i dΓ i rot(rν i ) + 3 i=1 σ θ i (u) ∂λ i ∂z
and using Lemma 7 for the z-component, and because 3 i=1

( Γ i gradu θ • τ i dΓ i )rotν i = 0, this term is still equal to rot(rU - 3 i=1 ( Γ i U • τ i dΓ i )rν i
and therefore we have (39). 2 Then as a result, it appears, that for the interpolation error, we have to consider the following distances: on one hand:

|u θ -Π R u θ | 2 L 2 1 (K) and |r(U -Π N U ) | 2 (L 2 1 (K)) 2 , on the other hand:|rgrad(u θ -Π R u θ ) | 2 (L 2 1 (K)) 2 and |rot(r(U -Π N U )) | 2 L 2 1 (K) .
To this end we recall some standart interpolation error estimate. We denote by the real number h the diameter of the triangle K. First for the 1-st order finite element of class H 1 (K). Lemma 8. Let K be a triangle of the rz-plane. Then there exists a constant C > 0 such that, for all function u of H k (K), we have:

|u -Π R u | L 2 (K) ≤ Ch k |u | H k (K) (41) |grad(u -Π R u) | L 2 (K) ≤ Ch k-1 |u | H k (K) (42) u -Π R u H 1 (K) ≤ Ch k-1 |u | H k (K) (43)
Proof. See [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]. 2 Lemma 9. let K be a triangle of the rz-plane. Then there exists a constant C > 0 such that, for all function u of H(rot, K) ∩ (H k (K)) 2 , we have:

|u -Π N u | L 2 (K) ≤ Ch k |u | H k (K) (44) |rot(u -Π N u) | L 2 (K) ≤ Ch k-1 |u | H k (K) (45) and then, u -Π N u H(rot,K) ≤ Ch k-1 |u | H k (K) (46)
Proof. See [START_REF] Nédélec | Mixed finite elements in R 3[END_REF]. 2 In the sequel Γ 0 is the part of Γ on the axis {r = 0} (see figure of Sect. 3.4). We need finally the interpolation error estimate for finite elements approximating W k 1/2 (Ω). This technical result is the following: Proposition 9. Let K be a triangle with a vertex or an edge on Γ 0 . Then there exists a constant C > 0 such that, for all function u of W k 1/2 (K), where k = 2 in t he case of finite elements of degree 1, k = 3 in the case of finite elements of degree 2, we have:

|u -Π R u | W 1 1/2 (K) ≤ Ch k-1 |u | W k 1/2 (K) (47) |u -Π R u | H 1 (K) ≤ Ch k-3/2 |u | W k 1/2 (K) (48) 
and if in addition, u vanishes on Γ 0 ,

|r -1/2 (u -Π R u) | L 2 (K) ≤ Ch k-1 |u | W k 1/2 (K) . (49)
Proof. It is the Lemma 6.1 of [START_REF] Mercier | Résolution d'un problème aux limites dans un ouvert axisymétrique par élément finis en r, z et séries de Fourier en θ[END_REF].

We use Proposition 9, to prove the next Proposition 10. Let K be a triangle with a vertex or an edge on Γ 0 . Then there exists a constant C > 0 such that, for all function u of (W k 1/2 (K)) 2 , where k = 2 in the case of finite elements of degree 1, k = 3 in the case of finite elements of degree 2, we have:

|rot(u -Π N u) | L 2 1 (K) ≤ Ch k-1 |u | (W k 1/2 (K)) 2 (50) 
and if in addition, u vanishes on Γ 0 ,

|r -1/2 (u -Π N u) | (L 2 (K)) 2 ≤ Ch k-1 |u | (W k 1/2 (K)) 2 . (51) K K K F z r z r K ^2 1 0 Fig. 4.
Proof. We adapt with few modification the Lemma 6.1 of [START_REF] Mercier | Résolution d'un problème aux limites dans un ouvert axisymétrique par élément finis en r, z et séries de Fourier en θ[END_REF]. Assuming that K is a triangle of the rz-plane, with at least a vertex on the axis {r = 0}, like on Fig. 4, triangle K 1 or K 2 . We denote by F K the linear mapping that transforms K into K, if K is the reference triangle of the rz-plane, constituted by points (0, 0), (0, 1), (1, 0). We denote by (r i , z i ) i=1,3 , the coordinates of the vertices of K, with (r 1 , z 1 ) such that z 1 is less than the ordinate of the eventual second point on the axis. We note B the 2×2 square matrix associated to F K . So F K 1 is define by the matrix r 2 r 3 z 2 -z 1 z 3 -z 1 , F K 2 by the matrix r 2 0 z 2 -z 1 z 3 -z 1 .

We suppose that the triangle is regular in the sense where if ρ is the radius of the inscribed circle to K, there exists a constant χ such that h/ρ ≤ χ. Let (r, ẑ) be the coordinates of a point of K and (r, z) the corresponding coordinates by F K in K. Then we have: r = r 2 r + r 3 ẑ for K 1 , r = r 2 r for

We show now the second statement of Proposition 10. We recall a not very obvious result from [START_REF] Mercier | Résolution d'un problème aux limites dans un ouvert axisymétrique par élément finis en r, z et séries de Fourier en θ[END_REF] (Theorem 4.4 and Remark 4.1 of [START_REF] Mercier | Résolution d'un problème aux limites dans un ouvert axisymétrique par élément finis en r, z et séries de Fourier en θ[END_REF]), W k 1/2 ( K)⊂ > H 1 ( K)

and we recall the following result, immediate for u ∈ H 1 0 (K), Lemma 10. There exists a constant C > 0 such that for all function u ∈ H 1 (K) and verifying u |Γ 0 = 0, we have

K u 2 r 2 drdz ≤ C|u | 2 H 1 (K) (56)
Proof. It is the Corollary 4.1 of [START_REF] Mercier | Résolution d'un problème aux limites dans un ouvert axisymétrique par élément finis en r, z et séries de Fourier en θ[END_REF].

We use again Theorem 2, with X = H 1 ( K)

2

, that allow us to obtain

|u -Π N u | (H 1 (K)) 2 ≤ C|û -ΠN û | (H 1 ( K)) 2 ≤ C|û | (W k 1/2 ( K)) 2
and we deduce as for the first inequality

|u -Π N u | (H 1 (K)) 2 ≤ Ch k-3/2 |u | (W k 1/2 (K)) 2
If we suppose that u vanishes on Γ 0 , (u -Π N u) also vanishes on Γ 0 and since its belongs to the space (H 1 (K)

2 ), according to Lemma 10, (u-Π N u) belongs to the space (L 2 -1 (K)) 2 , of square integrable vectorial functions of order 2 for the (drdz/r) measure. Therefore we can consider the following inequality

|r -1/2 (u -Π N u) | 2 (L 2 (K)) 2 ≤ C ρ detB|r -1/2 (û -ΠN û) | 2 (L 2 ( K)) 2 (57) 
then applying Lemma 10, there exists a constant C > 0, such that

|r -1/2 (û -ΠN û) | 2 (L 2 ( K)) 2 ≤ |û -ΠN û | 2 (H 1 ( K)) 2 (58) 
from inequalities (54),(57),(58) it ensues that, for a certain C,

|r -1/2 (u -Π N u) | 2 (L 2 (K)) 2 ≤ C ρ 2 B 2k |u | 2 (W k 1/2 (K)) 2
then finally, since the triangle is regular,

|r -1/2 (u -Π N u) | (L 2 (K)) 2 ≤ Ch k-1 |u | (W k 1/2 (K)) 2 . 2
then by Proposition 10, there exists a constant C such that:

|rot(U -Π N U ) | L 2 1 (K) ≤ Ch|U | (W 2 1/2 (K)) 2
and finally such that, according to the preeceding estimates,

|rot(r(U -Π N U )) | L 2 1 (K) ≤ Ch|U | (W 2 1/2 (K)) 2 (63) 
Then inequality (64) is a consequence of, on one hand inequalities (38) an (39), and on the other hand inequalities (60),( 61),( 62) and (63). Inequality (64) true for functions in D( Ω) 3 vanishing in a neighbourhood of {r = 0}, is also true for functions of H, by vitue of Lemma 2(ii) and Proposition 2. Let Ω be an open of R 2 + = {(r, z), r > 0}. Let τ h = ∪ Ne l=1 K l be a triangulation of Ω in N e triangles. We explain how to determine the basis functions in the case of Fourier modes n = 0. We rewrite the set of d.o.f. define by (33),

= {σ i such that σ i = σ θ i and σ i+3 = σ Γ i for i = 1, 3}, and we look for functions p j solutions of the following linear 6 × 6 system: σ i (p j ) = δ ij , (Kronecker symbol), for 1 ≤ i, j ≤ 6 (64) Let p j be a function defined by (32) and for which we search 6 real coefficients α j 1 , α j 2 , α j 3 , α j 4 , α j 5 , α j 6 , such that this function verify explicitly the system (64). We note (r i , z i ) and Γ i , for i = 1, 3 respectively the three vertices and the three edges of triangle K. We note also τ i = λ i µ i , the unit vector to the edge Γ i of K. We define the three following 3 × 3 matrices: the first one corresponding to the d.o.f. relative to the vertices:

M =   -1 r 1 -z 1 -1 r 2 -z 2 -1 r 3 -z 3   ,
the second one corresponding to the d.o.f. linked to the circulation:

M j =    m 1 j 0 m 1 j m 2 j 0 m 2 j m 3 j 0 m 3 j   
where m i j = λ j Γ i dΓ i and m i j = λ j Γ i z dΓ i , and the third one:

Fig. 1 .cos θ -sin θ 0 sin θ cos θ 0 0 0 1 
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 1 Ω) is an Hilbert space for the scalar product associated to | | 1 . The continuity of the function r in the rdrdz-measure implies the Lemma 1. D(Ω) is dense in L 2 1 (Ω) for the norm | | 1 . We use also the space: L ∞ (Ω) = {u, drdz-measurable with |u| ≤ C a.e., C constant } with the norm: | | ∞ = inf{C, |u| ≤ C a.e. on Ω }. We shall need some classical functional Sobolev space:

( 1 ,-

 1 2, 3).According to proposition 6, it is straightforward to see that we have the following Property 1. for n = 1, and for the finite element of Proposition 6, we have -the 3 functions associated to d.o.f. (33) σ θ i , are Λ i = the 3 functions associated to d.o.f. (33) σ Γ i , are N i = interpolate operator over K, defined for all vector field u ∈ H(Ω), by Πu = 3 i=1

6 .

 6 Use of Maxwell-Fourier finite elements with 6 d.o.f.

  Therefore u ε tends weakly to u in H, when ε tend to 0. And finally the space E is dense in H, because it is weakly dense, by vertue of Mazur theorem [3]. 2
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K 2 , and there exists a constant C, independant of h, such that we have the inequalities:

Let u and û be two functions such that: u(F K (r, ẑ)) = T B -1 û(r, ẑ). We define ΠN on K by

We recall that: r otû = detB rotu, where r ot is the rotational operator in the (r, ẑ) variables.

Let u ∈ (W 1 1/2 (K)) 2 . We estimate with (52) and using notations of [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF], the following distance

and then, since the triangle is regular, we have for another constant still noted

According to Theorem 1 above, W 2 1/2 ( K)⊂ > C 0 ( K), then ΠN is an operator defined on space (W 2 1/2 ( K)) 2 and (I -ΠN ) is continuous from

Now we have (I -ΠN )p = 0, for all p ∈ P k-1 ( K), then ΠN verify hypothesis of Theorem 2, and we can replace the norm in the preeceding inequality by the corresponding semi-norm, for another constant C,

then using the first inequality of (52), we obtain the multi-index derivation

and then because of the regular hypothesis on the triangle

finally by collecting the last inequalities, we have for a constant C

Proposition 11. Let K be a triangle with a vertex or an edge on Γ 0 . Then there exists a constant C > 0 such that, for all function u of H∩(W 2 1/2 (K)) 3 , we have the following interpolation error estimate

Proof. We are going to estimate successively each encountered term

then according to (47), it results the inequality:

Estimate of the term:

then by vertue of the first inequality of Proposition 9, there exists a constant C such that:

We suppose for the two following estimates, that u vanishes in an neighbourhood of {r = 0} and in addition, we assume that K is included in {r < 1}. Estimate of the term:

2 then according to the second inequality of Proposition 10, there exists a constant C

Estimate of the term: |rot(r(U -Π N U )) | L 2 1 (K) . We have the obvious inequality:

with n i j = λ j Γ i r dΓ i , n i j = µ j Γ i r dΓ i , n i j = Γ i (µ j r 2 -λ j rz) dΓ i . Then we resolve for each element of number j, the 6 × 6 systems below:

which solutions provide the six basis functions whose support encounter the triangle K.