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ABSTRACT

Context. Over the course of their lifetimes, the rotation of solar-type stars goes through different phases. Once they reach the zero-age
main sequence, their global rotation rate decreases during the main sequence until at least the solar age, approximately following the
empirical Skumanich’s law and enabling gyrochronology. Older solar-type stars might then reach a point of transition when they stop
braking, according to recent results of asteroseismology. Additionally, recent 3D numerical simulations of solar-type stars show that
different regimes of differential rotation can be characterized with the Rossby number. In particular, anti-solar differential rotation
(fast poles, slow equator) may exist for high Rossby number (slow rotators). If this regime occurs during the main sequence and, in
general, for slow rotators, we may consider how magnetic generation through the dynamo process might be impacted. In particular,
we consider whether slowly rotating stars are indeed subject to magnetic cycles.
Aims. We aim to understand the magnetic field generation of solar-type stars possessing an anti-solar differential rotation and we
focus on the possible existence of magnetic cycles in such stars.
Methods. We modeled mean-field kinematic dynamos in solar (fast equator, slow poles) and anti-solar (slow equator, fast poles)
differential rotation, using the STELEM code. We consider two types of mean field dynamo mechanisms along with the Ω-effect: the
standard α-effect distributed at various locations in the convective envelope and the Babcock-Leighton effect.
Results. We find that kinematic αΩ dynamos allow for the presence of magnetic cycles and global polarity reversals for both rotation
regimes, but only if the α-effect is saddled on the tachocline. If it is distributed in the convection zone, solar-type cases still possess a
cycle and anti-solar cases do not. Conversely, we have not found any possibility for sustaining a magnetic cycle with the traditional
Babcock-Leighton flux-transport dynamos in the anti-solar differential rotation regime due to flux addition. Graphic interpretations
are proposed in order to illustrate these cases. However, we find that hybrid models containing both prescriptions can still sustain
local polarity reversals at some latitudes.
Conclusions. We conclude that stars in the anti-solar differential rotation regime can sustain magnetic cycles only for very specific
dynamo processes. The detection of a magnetic cycle for such a star would therefore be a particularly interesting constraint in working
to decipher what type of dynamo is actually at work in solar-type stars.

Key words. stars: rotation – stars: activity – stars: solar-type – Sun: magnetic fields – dynamo – methods: numerical

1. Introduction

The rotation of stars is a key ingredient in working to understand
and characterize their dynamical nature. Indeed, the rotation and
magnetism of stars are closely intertwined along their evolu-
tion, which directly impacts transport properties in their interior
(Emeriau-Viard & Brun 2017, Brun et al. 2022).

Young solar-type stars begin their life by contracting and
spinning up until they reach the zero-age main sequence
(ZAMS). Then they enter a stage where they will spend most
of their life-time, namely: the main sequence (MS). Dur-
ing this phase, their rotation Ω∗ spins-down slowly, due to
mass and angular momentum losses through the magnetized
stellar wind (Schatzman 1962, Weber & Davis 1967, Mestel
1968). This wind braking (Kawaler 1988, Matt et al. 2012,
2015, Réville et al. 2015, Finley & Matt 2017, Vidotto 2021
and references therein) causes the rotation of stars with simi-
lar masses to cluster around a similar evolution, which is par-
ticularly well described by Skumanich’s law: Ω∗(t) ∝ t−1/2

(Skumanich 1972). It is therefore possible to determine stellar
ages with measurements of their masses and rotation period,
which is the basis of gyrochronology (Barnes 2003, 2007).
The magnetic activity of stars also follows a somewhat simi-
lar evolution. Fast and young rotating stars are found to pos-
sess a strong level of magnetic activity (Pizzolato et al. 2003).
The X-ray luminosity of stars is then found to decrease with
their rotation period, that is, with their age (Wright et al. 2011,
Reiners et al. 2014). The same trends were more recently found
in magnetic field estimates through Zeeman signatures by
Vidotto et al. (2014) and See et al. (2019). However, the mag-
netorotational evolution of stars older than the Sun is unclear at
present. Indeed, some observers have found evolved solar-type
stars following the Skumanich’s law (Lorenzo-Oliveira et al.
2018, 2019, do Nascimento et al. 2020), while others have not
(van Saders et al. 2016, 2019, Hall et al. 2021). It is plausi-
ble that a change in magnetic field sustained through dynamo
processes could be at the source of these discrepancies
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(Metcalfe & van Saders 2017), however, the magnetic field of
slowly rotating stars is particularly challenging to detect. As
a result, we propose a theoretical exploration of the possible
dynamo states for slow rotators based on mean-field models.

Besides its temporal evolution, the star rotation profile can
evolve in terms of latitude. It can be close to uniform in the
meridional plane or differentially distributed in the convection
zone (Brun et al. 2022). Differential rotation (DR) is indeed
one of the most important ingredients for dynamo action in
stellar interiors, spanning the convective envelope to such an
extent that the equator rotates faster than the poles for the
Sun (Thompson et al. 2003). Following the pioneering work
of Gilman (1977) and Gilman & Glatzmaier (1981), several
authors have recently highlighted that the type of DR profile real-
ized in a stellar turbulent rotating convective envelope is directly
linked with its effective Rossby number (Matt et al. 2011,
Guerrero et al. 2013, Gastine et al. 2014, Käpylä et al. 2014,
Simitev et al. 2015, Brun et al. 2017, 2022, Karak et al. 2018).
The dimensionless fluid Rossby number, Rof = ω/2Ω∗, with
ω as the vorticity, quantifies the effect of rotation on turbulent
convection. The aforementioned studies (see Brun & Browning
2017 for a review) consistently find a qualitative change of the
differential rotation profile between intermediate and slow rota-
tors. Intermediate rotators are found to possess a solar-like differ-
ential rotation (fast equator, slow poles) and slow rotators to pos-
sess an anti-solar differential rotation (slow equator, fast poles).
In Brun et al. (2022), this transition is found around Rof = 1
(in this case the solar Rof = 0.9). As yet, there has not been
any statistically strong detection of anti-solar DR for cool MS-
stars. Benomar et al. (2018) analyzed the DR of 40 solar-like
stars using asteroseismology and only found some likely anti-
solar targets so far. Strassmeier et al. (2003), Weber et al. (2005)
and Kovári et al. (2007) reported the detection of anti-solar DR
thanks to Doppler imaging spectroscopy. These detections were
nevertheless made for evolved stars, such as K giants, and
more recently for subgiants Harutyunyan et al. (2016). Finally,
Reiners (2007) attempted the detection of slowly rotating M-
dwarfs and could not conclude on whether its targets possessed
a solar or anti-solar DR. The detection of anti-solar DR in MS
cool stars is therefore still pending and will require the scrutiny
of the most promising targets we know (Noraz et al., in prep.).
It can nevertheless be expected that a solar-type star might tran-
sit toward an anti-solar DR state if it becomes old enough. This
transition could affect stellar activity and may stand as the origin
of the enhanced stellar activities, which were recently observed
by Brandenburg & Giampapa (2018) in the high Rossby regime,
where the observation of an anti-solar DR profile is anticipated.

Several studies of global 3D MHD simulations have dis-
cussed non-linear dynamos realized under anti-solar DR states.
Karak et al. (2015) first found irregular and faint cycles with
polarity changes for only few latitudes, when Varela et al. (2016)
did not. Clearer and global reversals are however present for anti-
solar rotation in Viviani et al. (2018) and (2019) simulations, but
mostly irregular and only near the DR transition regime. On the
other hand Warnecke et al. (2018) and Strugarek et al. (2018)
reported mostly stationary dynamos for this particular rotation
state. This is also the case for Brun et al. (2022), extending the
study initiated by Varela et al. (2016).

In this context, we propose a numerical experiment to study
the impact of an anti-solar rotation regime on the dynamo pro-
cess and, in particular, the presence of magnetic cycles or oth-
erwise. Global 3D MHD simulations are useful because they
self-consistently treat the flows and dynamo magnetic fields.

However, they are numerically expensive. In order to explore
a broad parameter space, we propose 2D dynamo models using
the mean-field theory presented in Sect. 2.1. Such models have
been explored by Dubé & Charbonneau (2013) using mean-field
coefficients extracted from 3D MHD prescriptions. Likewise,
Karak et al. (2020) have considered anti-solar models and found
they could trigger magnetic cycles, but only with strong α-effect
coupled with Ω-quenching. These authors obtained reversals in a
α2Ω dynamo and argued that this could not be the case with clas-
sical kinematic αΩ models when considering a positive α-effect
in the northern hemisphere. Here, we actually chose to consider
standard αΩ kinematic models and we will complete these pre-
vious studies with the following layout.

We first present the chosen models along with their physical
ingredients in Sect. 2, in particular how the anti-solar DR pro-
file is chosen. Then in Sect. 3, we construct two solar DR refer-
ence dynamos, using standard prescriptions, namely αΩ (Parker
1955) and Babcock-Leighton (BL) mechanisms (Babcock 1961,
Leighton 1969) in an interface dynamo approach (Parker 1993).
We then present the same models with an anti-solar DR. Next,
in Sect. 4, we study the role of the α-term location and the
meridional circulation (MC) on our results. We finally discuss
the context and limitations of our choices in Sect. 5 and present
our conclusions in Sect. 6.

2. Stellar mean-field dynamo model

In this study, we chose to use a mean-field approach to model
stellar dynamos (Roberts 1972, Krause & Raedler 1980). We
refer interested readers to the review in Charbonneau (2020) on
solar and stellar dynamos using this approach. We first present
the model setup, then we describe the numerical implementation
that is used, and, finally, we detail physical ingredients prescrip-
tions chosen for this study.

2.1. Mean-field equations

We first take the induction equation:

∂B
∂t

= ∇ × (u × B) − ∇ × (ηm∇ × B). (1)

This equation governs the evolution of the magnetic field B in
response to a flow field u, acting against the ohmic dissipation
characterized by the microscopic magnetic diffusivity ηm.

The well-known development of the mean-field dynamo
model can be found in Moffatt (1978) or Charbonneau (2020).
Here, we briefly report the different steps as follows: We first
decompose both the velocity and the magnetic fields into their
mean (〈u〉, 〈B〉) and fluctuating (b′, u′) components. Our study
then focuses on the mean magnetic part 〈B〉 evolution, cor-
responding to the large scale magnetic field. This large-scale
component is impacted by small-scale turbulence through the
electromotive force (EMF) term ε = 〈u′ × b′〉. This term
will here be parameterized in a kinematic approach with two
scalar terms α and β (respectively creating and destructing
large-scale 〈B〉), resulting from an asymptotic expansion of ε
in the so-called first order smoothing approximation (FOSA,
Brandenburg & Subramanian 2005). We then note the effective
magnetic resistivity η = ηm + β, and refer to the mean magnetic
field, B, and mean velocity field, u, by omitting the angle brack-
ets 〈 〉 for clarity. As we are working in spherical coordinates
(r, θ, φ), under the assumption of axisymmetry, a convenient
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poloidal and toroidal decomposition of the mean fields is:

B(r, θ, t) = ∇ × (Aφ(r, θ, t)êφ) + Bφ(r, θ, t)êφ, (2)
u(r, θ) = up(r, θ) + r sin θΩ(r, θ)êφ. (3)

As our approach is kinematic, we do not assume any fluctuations
in time of the differential rotation Ω and of the meridional circu-
lation up. Reintroducing this decomposition into (1), we get the
two coupled partial differential equations:

∂Aφ

∂t
=
η

ηt

(
∇2 −

1
$2

)
Aφ − Rm

up

$
· ∇($Aφ) + CααBφ + CsS , (4)

∂Bφ
∂t

=
η

ηt
(∇2 −

1
$2 )Bφ − Rm$up · ∇(

Bφ
$

) − RmBφ∇ · up

+ CΩ$(∇ × (Aφêφ)) · ∇Ω,+
1
$

∂($Bφ)
∂r

∂(η/ηt)
∂r

, (5)

where the cylindrical radius $ = r sin θ and ηt is the turbu-
lent magnetic diffusivity (constant value taken by η(r) in the
convection zone). For Babcock-Leighton models, a non-local
surface term S is added to mimic the rise of buoyant mag-
netic structures in the convection zone (Babcock 1961, Leighton
1969, Choudhuri et al. 1995, Charbonneau 2020 and references
therein).

These equations are written in a dimensionless form by
choosing: the solar radius, R�, as the length scale and the diffu-
sion time, R2

�/ηt, as the timescale. We recall here that the induc-
tion equation in the kinematic regime leads to an arbitrary vector
potential, Aφ, and magnetic field, Bφ.

This, in turn, leads to three dimensionless numbers, which
will serve as our control parameters: CΩ = ΩEqR2

�/ηt, Cα =
α0R�/ηt, and Rm = u0R�/ηt. Here, ΩEq is the amplitude of
rotation at the equator; α0 and u0 are the maximum amplitudes
of the α-effect term and the meridional flow, respectively. For
Babcock-Leighton (BL) models, the added S term leads to a
fourth dimensionless parameter: Cs = s0R�/ηt, where s0 is the
amplitude of the BL effect.

In this study, we chose to focus on αΩ or Babcock-Leighton
(BL) dynamos. Hence, an α-effect will only be considered for
the generation of the poloidal field and not for the toroidal field.
We discuss this choice in Sect. 5.

2.2. Numerical domain and boundary conditions

We used the same boundary conditions for all the simulations
described in this paper. Assuming axisymmetry, Eqs. (4) and (5)
are solved in the meridional plane with the colatitude θ ∈ [0; π]
and the normalized radius r ∈ [0.6; 1]. At θ = 0 and θ = π, we
imposed a regularity by setting homogeneous conditions such
that Aφ and Bφ are null. A perfect conductor condition is consid-
ered at rb = 0.6, which gives:

Aφ = 0 and
∂(rBφ)
∂r

= 0.

Finally, the upper boundary condition at rt = 1 smoothly
matches a potential field solution as the region r > 1 represents
a vacuum:(
∇2 −

1
r2 sin2 θ

)
Aφ = 0 and Bφ = 0.

The magnetic field is initialized with a weak dipole and, thus,
Bφ(t = 0) = 0. We used the STELEM code (Emonet &

Table 1. Ratios between coefficients of Eq. (6) for solar and anti-solar
differential rotation profiles.

� Anti-�

ΩC/ΩEq 0.93944 1.06056
a2/ΩEq −0.136076 0.136076
a4/ΩEq −0.145713 0.145713

Charbonneau 1998, priv. comm.) to solve the mean-field equa-
tions, by employing a first-order finite elements method in space,
along with a third order scheme in time (see Appendix A of
Jouve & Brun 2007 for more details). All simulations proposed
in this paper were performed with a 256× 128 resolution (latitu-
dinally vs. radially respectively) in order to reach a good numer-
ical convergence. The accuracy of the dynamo solution is here
mainly constrained by the latitudinal number of grid points.

2.3. Physical ingredients

In this study, we use relatively simple dynamo ingredients that
have been found to reproduce the main characteristics of the
large-scale solar dynamo. They are described in the following
subsections.

2.3.1. Toroidal magnetic field generation: The Ω-effect

The form of Ω(r, θ) was chosen to mimic the solar dif-
ferential rotation profile, as inferred from helioseismology
(Thompson et al. 2003). The analytic fit used here is inspired
from Dikpati & Charbonneau (1999), where the radial shear is
maximal in the tachocline:

Ω(r, θ) =
ΩC

ΩEq
+

1
2

[
1 + erf

(
2

r − rBCZ

d

)]
×

(
1 +

a2

ΩEq
cos2(θ) +

a4

ΩEq
cos4(θ) −

ΩC

ΩEq

)
, (6)

with ΩC the core angular velocity. The tachocline is placed at
0.7 R� and its thickness, d, is expected to be 0.025 R�. Symmetry
considerations allow us to create a typical anti-solar differential
rotation profile by modifying the coefficients of Eq. (6).

We show and detail these two profiles in panels a in Figs. 1
and 2, where they are represented in the core frame rotating to
ΩC . Panels b represent their radial profiles taken at different lati-
tudes, which have been obtained through Eq. (6), using the coef-
ficients in Table 1. First, we have in both cases a solid body rota-
tion for 0.6 < r < 0.7, where we find the stable radiative zone.
This lower region is surrounded by the convective zone (CZ)
where the rotation is differential, that is, the angular velocity
varies along latitudes, until the surface r = 1 (we recall here that
in 2D mean-field dynamos convective motions are not resolved).
For the solar (resp. anti-solar) case, the equatorial part of this
upper region rotates faster (resp., slower) than the core, contrary
to the poles, which rotate slower (resp., faster). In both solar and
anti-solar cases, we note a co-rotation latitude around λ ∼ 35◦,
namely, a latitude at which both the upper and lower regions
rotate at the same rate. Although we have a latitudinal shear ∂θΩ
in most of the convection zone, the radial shear ∂rΩ is confined
around r = 0.7 in an area called the tachocline. We finally note
a stronger shear ∇Ω at higher latitude, which is chosen here to
follow the DR profile inferred from helioseismology. We can see
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Fig. 1. Solar differential rotation shown with a meridional cut (a) and with radial profiles at different latitudes λ (b); (c) and (d) show the radial
and latitudinal shear respectively, responsible for the so-called Ω-effect. Profiles are represented in the frame rotating to ΩC .
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Fig. 2. Anti-solar differential rotation, responsible for the so-called Ω-effect. Same details as in Fig. 1.

it in panels c and d, representing the radial shear and the latitu-
dinal shear, respectively. The former is represented with radial
profiles taken at different latitudes.

Helioseismic inversions from Thompson et al. (2003) show
that the Sun’s radiative zone has a solid body rotation, just below
the tachocline. A convective zone is found to surround them
until the stellar surface, where the rotation becomes differential.
Indeed, non-linear convective motions redistribute the angular
momentum (Brun & Toomre 2002, 2017). In the solar case, this
redistribution transports angular momentum toward the equator.
It leads to different surface latitudes spinning at different veloc-
ities, from a fast equator to slow poles, including a latitude in
co-rotation (i.e., same angular velocity) with the radiative core.
Moreover, these same simulations also show that anti-solar pro-
files may exist. In this case, the radiative interior in still in solid-
body rotation, but the differential rotation of the convective zone
is latitudinally reversed from the solar regime. Thus, the equato-
rial convective region is found this time to rotate slower than the
core, which is contrary to polar convective regions, which spin
faster.

The coefficients in Table 1 were therefore chosen to repro-
duce these profiles, while keeping absolute shear amplitudes
equal in the last term of Eq. (5), namely, the Ω-effect. The
absolute differences have thus been conserved in both profiles,
between ΩEq and ΩC controlling the radial shear, along with the
absolute amplitude of a2/ΩEq and a4/ΩEq controlling the latitu-
dinal shear. Thus, |∇Ω(r, θ)| is fully conserved, as we can see in
Figs. 1 and 2.

We note that this anti-solar profile differs from the one used
in Karak et al. (2020). In this similar study using an α2Ω dynamo

model, the value of the anti-solar coefficient ΩC/ΩEq is kept
at 0.93944 (as in the solar DR profile). It results in a radia-
tive zone rotating more slowly than the whole convective zone,
with no co-rotation latitude in the latter, which seems to be in
contradiction with anti-solar differential rotation profiles found
in recent 3D self-consistent simulations (Dubé & Charbonneau
2013; Brun et al. 2017, 2022). As Ω gradients play a major role
in the Ω-effect, this could seriously impact results of such mean-
field models.

2.3.2. Poloidal magnetic field generation

Here, we consider two types of mean-field dynamo: αΩ and
Babcock-Leighton (BL), which differ by the poloidal source
term. For our αΩ dynamos, the form of the α-term profile has
been inspired from Bushby (2006) and is written as:

α(r, θ, t) =
3
√

3
8

[
1 + erf

( r − r1

0.01

)] [
1 − erf

( r − r2

0.01

)]
×

1 +

(
Bφ(r, θ, t)

B0

)2−1

cos θ sin4 θ. (7)

This profile is represented in Fig. 3 (panel a) and allows us to
take an α-effect that can be localized radially within [r1, r2]. This
choice of location will be discussed more specifically in Sects. 3
and 4. However, the α-effect parametrizes the cyclonic turbu-
lence, so we always assume that its latitudinal variation is con-
strained by its dependence upon the Coriolis force, which makes
it antisymmetric with respect to the equator. As we are in a kine-
matic regime, there is no retro-action of the magnetic field on
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Fig. 3. Physical ingredients: meridional profiles of (a) α-effect, (b) BL-
effect, as well as (c) the stream function ψ (MC) and (d) normalized
radial profiles of the latter quantities, taken at θ = π/4, along with the
magnetic diffusivity η. These profiles result from Eqs. (7)–(10), respec-
tively. The α-term is here confined between (r1, r2) = (0.67, 0.73), as
in the reference cases. The BL source term S is shown for the case of
Bφ(rBCZ, θ, t) = 1. The sign of the meridional circulation, up, is repre-
sented with arrows on a black iso-contour of ψ.

the velocity. Thus, a quenching term is introduced to prevent the
magnetic energy from growing endlessly, with the parameter B0
arbitrarily set to 104.

In Babcock-Leighton dynamo models, the poloidal field is
generated by the inclination of magnetic loops emerging at the
solar surface; thus, the source has to be confined to a thin layer
just below the surface. Since the rising-time of magnetic loops
through the convection zone is short compared to the evolu-
tion of the large-scale B, the process is fundamentally non-local.
Hence, the surface source term depends on the variation of Bφ at
the base of the convection zone (BCZ). Here, we set its position
to rBCZ = 0.7. As in the α-effect, a quenching term is introduced
here and we thus use the following formulation:

S (r, θ, t) =
1
2

[
1 + erf

(
r − 0.95

0.01

)] [
1 − erf

r − 1
0.01

]
(8)

×

1 +

(
Bφ(rBCZ, θ, t)

B0

)2−1

cos θ sin θ Bφ(rBCZ, θ, t).

In BL flux-transport dynamo models, meridional circulation
(MC) can be used to dynamically link the two sources of the
magnetic field, which are the Ω-effect at the base of the convec-
tion zone (discussed in the previous subsection) and the BL-term
at the surface. Its profile will be constructed as in Jouve et al.
(2008): a large single cell per hemisphere, directed poleward at
the surface and equatorward deep in the CZ. It will penetrate
a little below the tachocline and vanish at ro = 0.6. Thus, the
stream function ψ will be taken as:

ψ(r, θ) = −
2
π

(r − ro)2

(1 − ro)
sin

(
π

r − ro

1 − ro

)
cos θ sin θ, (9)

following the relation up = ∇× (ψeφ). As illustrated in panel c of
Fig. 3, positive (resp., negative) values of ψ means clockwise
(resp., counter-clockwise) up circulation. This can be recov-
ered through a right-hand rule, with respect to the spherical

basis vector eφ. This stream function ψ leads to a bottom-top
CZ uθ,bot/uθ,top = 0.352 contrast, normalized at uθ(r = 1,
θ = 45◦) = 1.

2.3.3. Ohmic diffusion

Finally, we assume that the diffusivity in the convective zone ηt is
dominated by its turbulent contribution, whereas in the radiative
interior: ηC � ηt. We take ηC = 0.01ηt with ηt = 1011 cm2.s−1

for the models presented in this paper. We chose this value of ηt
such that our reference BL model produces a magnetic cycle of
22 years when Rm = 500, which corresponds to a MC amplitude
of u0 = 7.2 m.s−1. For the sake of consistency, we kept the same
value of ηt for all the other models.

The convection zone is distributed from the surface r = 1
to its base rBCZ = 0.7. As shown in panel d of Fig. 3, we used
an error function in order to smoothly match the two different
values at this radius such that

η̃(r) =
η

ηt
=
ηC

ηt
+

1
2

(
1 −

ηC

ηt

) [
1 + erf

(
2

r − rBCZ

0.025

)]
. (10)

3. Dynamo states for solar and anti-solar DR

We recall here that we consider two types of dynamo mod-
els in this study. For readers seeking context, we suggest com-
paring them with representative models of Charbonneau (2020,
Sects. 4.2.10 and 5.4.2).

In this section, we assume the α-effect to be driven by
some tachocline-based instability, as in Bushby (2006). Dif-
ferent types of such instabilities are discussed in Charbonneau
(2020, Sect. 4.5). Hence, the α-term will be confined within the
tachocline between r1 = 0.67 and r2 = 0.73 (see Fig. 3, panel b).

We note here that the sign of the parametrized α-effect
can be related in the kinematic regime to the averaged
kinetic helicity and the convective turnover timescale (see
Brandenburg & Subramanian 2005):

α ∼ −
τC

3
〈u′ · ∇ × u′〉, (11)

Vertical motions of the convection zone (CZ) are cyclonic (coun-
terclockwise in the northern hemisphere) and change sign as
they reach the bottom of this zone (e.g., Miesch et al. 2000,
Duarte et al. 2016, Charbonneau 2020). This leads to a change
of sign of α-effect when crossing the bottom of the CZ; Thus,
Cα will be negative for α-profiles localized at the tachocline –
and positive otherwise (see Table 3).

3.1. Solar dynamo models

Our solar reference cases have to model observational tenden-
cies of the Sun, illustrated with so-called “butterfly diagram”
(magnetogram evolution vs. latitude) as in Fig. 17 of Hathaway
(2015). First, an 11-year activity cycle due to the emergence of
magnetic structures, which are typically dipolar. Throughout the
cycle, the emergence of these structures will migrate towards
the equator. At the same time, the trailing polarity will diffuse
towards the pole, giving rise to a polar branch. This branch will
then progressively cancel the magnetic flux at the pole, result-
ing from the previous activity phase. The global dipole of the
solar magnetic field will then reverse, as will the polarization of
emerging magnetic structures in the next phase of activity. This
leads to a 22-year magnetic cycle.
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Fig. 4. Butterfly diagram of Solar αΩ model with Cα = −15 and D =
−2.1× 106, for Bφ at r = 0.7 and Br at the surface. We recall that for the
purposes of this study, 22 years correspond to 0.014 tη.

3.1.1. αΩ solar reference model

Assuming a solar differential rotation (fast equator, slow poles),
we first computed an αΩ-dynamo model with CΩ = 1.4 × 105

and Cα = −15. These values have been chosen to reproduce
cycle periods of a few tens of years with an equatorial rotation
rate of ΩEq/2π = 456 nHz for ηt = 1011 cm2.s−1. Butterfly dia-
grams are shown in Fig. 4 for Bφ and Br (respectively) at the
base and the surface of the convection zone. Both of them show
a dipolar configuration over the meridional plane. The bottom
panel representing Br first shows that this dynamo model repro-
duces well the observed surface dynamics of the Sun. The cyclic
equator-ward migration of the emergence of magnetic patterns
along with their trans-equatorial cancellation with the opposite
polarity arriving from the opposite hemisphere is well modeled.
The same holds true for the polar branch leading to a cyclic
global polarity reversal, with a period of 32 years in this case.
We did not seek to fine-tune the model to set Pcyc = 22 years (see
Fig. A.1 for such a case) as the exact value of Pcyc has no impact
on our results. This is discussed in more detail in Sect. 5.1.

We go on to note in the top panel of Fig. 4 that the gen-
eration of the toroidal magnetic field Bφ at the tachocline has
two branches in each hemisphere. They propagate away from
each other by sharing the same origin, situated at the co-rotation
latitude. Moreover, the prescribed radial shear ∂rΩ gives them
similar propagation speed (see Parker-Yoshimura sign rule in
Eq. (12)). Thus, it leads to them being phase-locked. We may
note that both branches have here the same polarities in one
hemisphere. As they are inverted with respect to the equator, a
dipolar magnetic topology is thus found to dominate throughout
the meridional plane, which is true for all magnetic field compo-
nents (see Fig. B.1 for details).

The equatorial branch is slightly stronger than the polar
one. Indeed, the form of the α-effect is concentrated toward
the equator by the sin4 θ factor (Eq. (7)), generating more Bpol
there, which is subsequently available for toroidal generation.
Nonetheless, the polar branch still remains prominent in this
model as its propagation originates from a position (r, θ), where
the α-effect is still strong.
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Fig. 5. Butterfly diagram of solar Babcock-Leighton model with CS =
30 and D = 4.2 × 106, for Bφ at r = 0.7 and Br at the surface. As the
radial component diagram is much more contrasted here, we propose
some contours, using consistent colors, to illustrate weak patterns that
are not saturated enough. The vertical dashed line corresponds to the
reversal of poloidal field from negative to positive at the poles, coincid-
ing with the positive maximum of toroidal field at the base of CZ. A
logarithmic color scale has been chosen to represent the bottom panel.

3.1.2. Babcock-Leighton flux-transport solar reference model

We then constructed a BL flux-transport model that also repro-
duces a Sun-like dynamo. We used the same DR profile and
parameters. The meridional flow and the BL term were chosen
as Rm = 500 and Cs = 30. As with the previous αΩ model,
this BL dynamo reproduces well several aspects of the solar
cycle, notably its period of 22 years (by considering once again
ΩEq/2π = 456 nHz and ηt = 1011 cm2.s−1). Indeed, we see at
the surface a dipolar magnetic structure on the lower panel of
Fig. 5, with two Br-branches in each hemisphere, with analogous
dynamics toward the equator and the pole. The same topology
is shown for Bφ on the top panel, again showing two branches
going apart from one another with the same polarities in each
hemisphere. We next note a phase shift of π/2 between the deep
toroidal field and the surface polar field. The vertical black line
on the butterfly diagrams in Fig. 5 show a polarity change of the
polar field from negative to positive, when a positive value for
the toroidal field is maximal in the equatorial branch at the base
of the convection zone.

Additionally, this dynamo mechanism reveals its own partic-
ularities. First, the poloidal field is now generated by the BL-
source term close to the surface of the star. Thus, more of the
poloidal field will be available for toroidal generation through
the latitudinal shear near the surface. Second, the equatorial
branches at the base of the CZ are more extended than the polar
ones. This is the signature of the meridional circulation dragging
the toroidal field equatorward at the base of the convection zone.
Hence, we clearly see that the advection of the magnetic field is
dominating its diffusion in the domain. The signature of the MC
is also seen on the bottom panel with Br at the surface, where the
field advection is now poleward. Indeed, the polarity inversion
line (here, the latitude at which branches separate) of each hemi-
sphere is at a higher latitude than what is expected from the αΩ
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Fig. 6. Butterfly diagram of anti-solar αΩ model with Cα =−15 and
D = 2.1 × 106, for Bφ at r = 0.7 and Br at the surface.

model. We illustrate in Fig. B.1 this dynamics with time series
of meridional cuts of magnetic components. Moreover, we also
note stronger values of the surface radial magnetic component at
both poles. Indeed, the meridional circulation accumulates mag-
netic field over there, while the diffusion is too weak to avoid it.
When better agreements with solar observations are needed, dif-
fusion can be enhanced at the surface (see Dikpati et al. 2002 and
Hotta & Yokoyama 2010 for instance). For the sake of simplic-
ity, such a refinement is not needed for our purpose of studying
anti-solar DR dynamo and seemed not to be relevant to the exis-
tence or non-existence of cycles. However, this aspect could be
explored in future works.

3.2. Dynamos with anti-solar DR

Now that our physical ingredients are set up to reproduce what
we currently know about Sun-like dynamos, we take our anti-
solar rotation profile and apply it to these two dynamo mod-
els. We keep here the same Cα value without changing its sign.
Indeed, recent 3D non-linear simulations show that the behavior
of helicity is globally identical for solar and anti-solar rotation
profiles, and that the convective turnover time tends to keep the
same order of magnitude between the two types of DR profiles
for a given mass (Dubé & Charbonneau 2013, Brun et al. 2022).
Following a similar reasoning, we decided to conserve the sign
of Cs when switching the DR regime of the BL model. Indeed,
the tilting of emergent structures is thought to be dominated by
the Coriolis force over DR sign. So we here suppose that the
relative velocity of an emerging flux-tube is dominated by its
radial component in the rotating frame. Hence, we considered
the influence of Ω (rotation rate) rather than ∇Ω when modeling
the effective tilt for the BL effect.

Butterfly diagrams of the anti-solar αΩ model are presented
in Fig. 6, where we can observe a magnetic cycle, with new
dynamics. First a global convergence toward the co-rotation lat-
itude is observed for the toroidal Bφ component, shown at the
tachocline on the top panel. This was expected, because of the
Parker-Yoshimura sign rule. It was previously found that wave
solutions are allowed in αΩ mean-field models, first by Parker

(1955) for cartesian geometry and then by Yoshimura (1975) for
a spherical shape. Their travel direction, s, is given by

s = $α∇Ω × êφ and so
{

sr = $α(∂θΩ)/r
sθ = −$α∂rΩ.

}
. (12)

In our case, ∂θΩ and ∂rΩ changed sign when we switched to anti-
solar DR. That is why we obtained dynamo wave that propagate
in the opposite direction to the solar-type case. Moreover, this
observation aptly illustrates the fact that a sign change in both
differential rotation and α-effect would mathematically makes us
reach a mirror solution similar to our solar DR solution (which
we checked on models that are not presented here). This can
be intuited graphically in Fig. 9 (see the next subsection). The
propagation of the polar branches then does not originate from
mid-latitudes anymore, where the α-effect was more effective for
the poloidal generation. They now originate from the poles and
the equator, where the α-effect is weak. However, we still note
toroidal values in both branches similar to the solar reference
case. Indeed, the α-effect stays strong on the path of equato-
rial branches, giving more poloidal field, and then toroidal field
thanks to the shear. Polar branches stay relatively strong thanks
to the radial shear of the tachocline, stronger at high latitudes
(see ∂rΩ in Fig. 2). In addition, we may note that the equato-
rial branches share now the same origin at the equator, making
them phase-locked and of the same magnetic polarity. Hence, a
quadrupolar component arises in the magnetic topology at this
depth (r = 0.7 i.e., the tachocline). On the other hand, the polar
branch is not phased-locked with the equatorial one of the same
hemisphere, as they do not share the same origin of propagation
any longer, contrary to the solar DR case.

We can next observe the Br component at the surface, on the
bottom panel of Fig. 6. Despite its fluctuating behavior through
different cycles, we see two branches per hemisphere. Their
propagation is less clear than deeper down, but they appear to
propagate away from each other (poleward and equatorward).
The complexity of this dynamics is illustrated in Fig. B.1 with
a time series of meridional cuts of magnetic field. Although this
dynamics is regular through different cycles in one hemisphere,
both hemispheres are not phase-locked any longer, as previously
discussed for the toroidal field at the base of the convection
zone. This leads to switches between dipolar and quadrupolar
topology represented in Fig. 7 with Legendre decomposition odd
l = 1, 3, 5 and even 2, 4, 6 orders, respectively. Moreover, the
sign of Br changes periodically at both poles, leading to global
polarity reversals. Its cycle period has nearly halved compared
to the solar case, giving now a cycle period of 18 years. We
believe this is due to the increasing influence of the symmet-
ric l = 2 mode that modifies the cycle frequency compared to
l = 1 mode (Stix 2002). This halved period seems generic when
switching the DR from solar to anti-solar regime, even if we
modify the dynamo number D = Cα.CΩ, as presented in Table 2.
In both DR regimes, we see the cycle period changing when we
modify D, but with opposed trends. The cycle period generally
increases with D in the solar like case (except for small D), and
decreases with D in the anti-solar case. Nevertheless, the cycle
period only weakly depends on Cα, as shown in Table 2. How-
ever, these trends need to be investigated further for low dynamo
number D.

We now apply the anti-solar DR profile to the BL flux trans-
port model. The magnetic field is shown in Fig. 8. First the
dynamo becomes stationary without any magnetic cycle, which
is in striking contrast to the anti-solar αΩ case and needs to
be investigated more (see next Section). Then we see that the
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Fig. 7. Legendre decomposition on the Br magnetic component at the
surface of the anti-solar αΩ reference case. Antisymmetric and sym-
metric families are shown on the top and bottom panel, respectively.
The first six polynomial degrees l are shown.

Table 2. Change of Cα, while keeping CΩ = ΩEqR2
�/tη = 1.4 × 105

constant.

D (105) � Anti-�

−7 26.2 14.1
−21 31.8 17.7
−42 31.4 18.8
−63 30.7 19.5
−84 30.0 19.9

Notes. We report cycle periods in years, considering thus a diffusive
time tη = 1550 years. The period presented are extracted from sur-
face magnetic dynamics. Both reference αΩ dynamos described in this
Sect. 3 are shown in bold type.

magnetic field is accumulated by the MC at the pole (as repre-
sented by black lines) and is dominated by a dipolar configura-
tion. We note that the equilibrium configuration could be either
dipolar or quadrupolar depending on the value of ηt, as was
shown in the study of Jouve & Brun (2007).

3.3. Phenomenology of solar and anti-solar dynamos

We can attempt to understand the lost of cycle in the anti-
solar DR Babcock-Leighton case by drawing a cartoon (see also
Karak et al. 2020). We propose to also include in Fig. 9 case
with the α-effect, illustrating them for both solar (bottom-left)
and anti-solar DR (top-left) regime.

We start (in the first column) from global dipole configu-
rations with a similar polarity, inspired by the schematic pro-
posed by Sanchez et al. (2014). On the second column, the DR
shears the initial field in different directions according to the DR
regime considered: anti-solar (fast poles and slow equator) on the
top and solar (slow poles and fast equator) on the bottom. The
poloidal field is converted into a toroidal component, whose ori-
entation depends on the DR regime (third column). This mech-
anism is called the Ω-effect in reference to the shape of sheared
poloidal field lines. We then propose on the next three columns
different paths in order to restore the poloidal magnetic field
from the freshly formed toroidal one.

In the first and last rows, we can see how the BL mechanism
parametrizes the rise of buoyant magnetic ribbons undergoing
the effects of the Coriolis force. These ribbons originate from
toroidal magnetic field structures, deeply anchored at the base
of the convection zone, and form sunspots when they emerge at

the surface, as illustrated on the fourth column. Please note that
spots polarities are inverted according to the DR regime consid-
ered. The fifth columns shows the diffusion and reconnection of
sunspots near the equator. Sunspots closer to the poles diffuse in
a poleward branch, reconnecting (or not) according to the polar-
ity of the initial polar field. The freshly formed polar magnetic
flux is then transported deeper in the CZ by the MC in column
six. This new flux is either added to the initial one in the anti-
solar DR regime, or cancels it out in the solar DR regime. In the
latter case a global reversal occurs, whereas in the anti-solar case
flux can only be added and no reversal occur.

The three middle rows illustrate various configurations when
considering the α-effect. This mechanism parametrizes the
cyclonic turbulence of the convection, also influenced by the
Coriolis force. Indeed, cyclonic motions can be characterized
with the kinetic helicity, experiencing sign changes at the base of
the CZ, and can be related to the α-effect via Eq. (11). Different
signs of this effect (here, corresponding to that of Cα) correspond
to different cyclonic motions (see grey arrows in column four).
This effect is named after the shape resulting from the torsion of
small magnetic loops. The fifth column illustrates the creation
of small-scale poloidal fields, which produces a new large-scale
one in average in column six. Finally, this new poloidal flux will
either be added to or will cancel the previous one. In the latter
case, the cyclic activity can be maintained.

Hence, we note that changing the DR is expected to impact
strongly dynamo action, likely explaining the results presented
in Sects. 3.1 and 3.2. Indeed, these four reference cases cor-
respond to rows 1, 3, 4, and 5 in Fig. 9. We seek to confirm
this interpretation in the next section. To this end, we studied
the impact of other characteristics differentiating both types of
the dynamo model αΩ/BL, such as the location of the poloidal
source term, which will lead us to the second row of Fig. 9.

4. Robustness of cycles in presence of an anti-solar
DR

We show in the previous section how an αΩ dynamo in the anti-
solar DR regime can allow for a cyclic activity with global polar-
ity reversals, considering deeply located poloidal field sources.
We further complete what was considered in previous studies
(e.g., Karak et al. 2020). We also note a change of dominant
topology between both DR regimes. However, BL flux-transport
models seem non-cyclic when an anti-solar DR is considered. In
this section, we seek to understand what makes an anti-solar DR
dynamo cyclic by exploring fundamental differences between
the two anti-solar DR reference models of the previous section.
We first study the role of the α-effect location. Then we add a
meridional circulation (MC) in order to investigate how it mod-
ifies the dynamo solutions. Finally, we explore the robustness
of the physical interpretation that we proposed in the previ-
ous section concerning the stationarity of the anti-solar DR BL
dynamo model.

4.1. Alpha effect location

One of the main differences between αΩ and Babcock-Leighton
models is the position of the poloidal magnetic field source
term (see Fig. 3). In this section, we thus explore different loca-
tions for the poloidal generation. For this purpose, we consid-
ered an αΩ dynamo model, in which we changed the α-effect
location using r1 and r2 from Eq. (7). An important point is
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Fig. 8. Left: meridional cut from 0.6 to 1 R�, of magnetic components for the reference BL dynamo model in anti-solar DR regime with CS = 30
and D = 4.2 × 106. Colors are mapped on a logarithmic scale for Bφ/B0, and black continuous contours are positive Aφ iso-contours, i.e., Bpol
clockwise-oriented field lines. Field lines above the surface r = 1 R� result from a potential extrapolation. Right: surface Br butterfly diagram for
the same model, where we clearly see the stationarity of the solution. As in Fig. 5, a logarithmic color scale has been chosen.
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Fig. 9. Different steps of geometrical interpretations for αΩ and BL dynamo models in various configurations. They start on the left side with the
differential rotation (DR) shearing magnetic field lines, so-called Ω-effect. It is represented on the first three columns, for anti-solar DR on the top,
and the solar one on the bottom (see horizontal grey arrows). The next part (three next columns) illustrates the Babcock-Leighton (BL) mechanism
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current sheet (light grey lines) and the meridional circulation (MC) (darker grey arrows), respectively, in Cols. 4–6. For the α-effect, column 4
illustrates orientation of cyclonic motions with grey arrows. Finally, the last columns conclude the dynamo loop, with the presence of a cyclic
activity when the final poloidal polarity is opposed to the initial one (bottom), or being stationary otherwise (top). More details are discussed in
Sect. 3.3. The layout of this Figure is inspired from Sanchez et al. (2014).
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Table 3. α-effect is distributed through the tachocline and CZ for solar
and anti-solar DR regimes.

Cα r1–r2 � Anti-�

15 0.9–1 7.3 ×

15 0.8–1 25.1 ×

15 0.7–1 32.4 ×

15 0.8–0.9 15.5 ×

15 0.7–0.9 26.8 (18.9) ×

15 0.7–0.8 64.9 (9.7) ×

15 0.7–0.76 27.0 (9.0) ×

15 0.69–0.75 71.5 (10.3) ×

−15 0.69–0.75 × 71.5 (10.3)
−15 0.68–0.74 15.8 9.0
−15 0.67–0.73 31.8 17.7

Notes. We fix the dynamo number D = 2.1 × 106, and magnetic cycle
periods are expressed in years, considering a diffusive time, tη = 1550
years. The period presented are extracted from surface magnetic dynam-
ics. For some cases, a second cycle is present and its period is then
indicated in parentheses. Both reference αΩ dynamos described in the
previous section (Sect. 3) are shown in bold type.

that here we are taking the opposite sign Cα = 15 when our
α-profile is significantly out of the tachocline, within the CZ.
As previously discussed the kinetic helicity sign does indeed
change at this transition, which directly impacts our α-effect
according to Eq. (11). We offer a systematic presentation of the
models in their solar and anti-solar DR regime for the sake of
completeness.

We consider various cases of the location of the α-effect
compared to the reference case: saddled slightly above the
tachocline, extended into the CZ, and fully displaced into the
CZ. The different runs are summarized in Table 3. In the last
row we list the reference αΩ models with the solar and anti-solar
DR, discussed in Sect. 3. By keeping an equivalent radial width
of the term, we then slightly shift upward its location toward the
convection zone. We chose to switch the sign of Cα as soon as
r1 is above 0.69R�. Cases with no magnetic cycles are labeled
with a cross ×, otherwise the magnetic cycle period is indicated
in years.

We see that the magnetic cycle disappears in the anti-solar
rotation cases for α-effects above r1 = 0.69. It happens when
the α-source term is no longer spread enough on the tachocline,
namely, when the poloidal generation is segregated from the
main location of the toroidal one. For the sake of complete-
ness, we added the case where the α-effect is confined between
r1 = 0.69 and r2 = 0.75 for both Cα signs. It illustrates mirrors
solutions, where solutions are mathematically switched when
we invert one of both dynamo ingredients. The cyclic solu-
tions for anti-solar DR regime is therefore only found when
the α-effect is saddled on the tachocline, where the radial shear
is located. Such solutions therefore exist only in a very nar-
row parameter space. Meanwhile, the dynamo remains cyclic
for solar rotation cases, as we used a classical distributed α-
effect in our models. It is noteworthy that these models would
lose their cycles if Cα is negative and α is segregated enough
from the radial shear location, as shown in the last three rows
of Table 3.

We show in Fig. 10 butterfly diagrams when the α-effect is
at the base of the CZ between r1 = 0.7 and r2 = 0.76 for one
of the solar models. We clearly see on the top panel the Parker-
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Fig. 10. Butterfly diagram of solar αΩ model at the base of the convec-
tion zone with r1 = 0.7, r2 = 0.76, Cα = 15, and D = 2, 1.106. Respec-
tively, Bφ at r = 0.7, detrended Br at the surface and full Br at the surface
(arbitrary units). A logarithmic color scale has been chosen to represent
the middle and bottom panels. The middle panel is detrended from the
long cycle.

Yoshimura sign rule in toroidal Bφ dynamics, exhibited poleward
along with the equatorward branches. Here the radial expansions
of α and ∂rΩ indeed still faintly overlap at r = 0.7. Furthermore,
we note that the sign change of Cα induces similar dynamics
to the reference anti-solar case shown in Fig. 6. Comparing the
top panels of both models (e.g., Figs. 6 and 10), we see that the
latitudinal extent and the amplitude have decreased; in partic-
ular, the strength of the polar branch. Indeed, we see that the
α-term is concentrated around low latitudes, but now its radial
location has been pushed higher in the CZ. The poloidal field
production is thus less intense at this radius (r = 0.7) and has a
greater contrast between the polar and equatorial regions. Hence,
the toroidal field production is less intense as well, especially at
high latitudes. This has a direct consequence on the surface but-
terfly diagram, where the polarity coming from the pole is now
notably less intense, leaving room mainly for the dynamics of
the equator polarity going poleward. In addition, we note the
presence of a second cycle for some cases where the α-effect is
located near the bottom of the CZ. We illustrate one of them on
the middle panel of Fig. 10, for the case where the α-effect is
located between r1 = 0.7 and r2 = 0.76. In order to highlight such
dynamics, the long magnetic cycle has been filtered from the
surface butterfly diagram. It appears that such cases are highly
sensitive to the numerical resolution, probably due to the partic-
ularly sharp profile of the α-effect used here (see discussion in
Sect. 5.2).
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Fig. 11. Time-radius diagram of Bφ in solar αΩ model with Cα = 15 and
D = 2.1 × 106, for models with respectively a location of α-term such
that (r1, r2) = 0.7 − 0.8 ; 0.8−0.9 ; 0.9−1 (from bottom to top panel).
The three are represented on the same radial and temporal ranges, with
logarithmic color scales. We note the clear difference of propagation
patterns and cycle period, and that the standard deviation of magnetic
amplitude increases as the α-effect location is deeper.

The upper part of Table 3 corresponds to α-effects spanning
a large part of the convection zone. We first reiterate the absence
of magnetic cycle for our anti-solar DR αΩ cases, even if we
increase the value of Cα by an order of magnitude. Dynamos
of this type remain stationary and are illustrated on the second
row of Fig. 9. Concerning the solar DR models, we find that
the cycle period generally increases as the α-effect is located
deeper in the CZ and over a larger radial extent. We illustrate it in
Fig. 11 with time-radius traces of Bφ for 3 models. We note again
the Parker-Yoshimura sign rule, this time with dynamo waves
propagating radially outward, thanks to the latitudinal shear ∂θΩ
(see Eq. (12)). Indeed, the α-effect is now in the bulk of the CZ,
where Bφ is generated only by the latitudinal shear, as there is no
radial shear there.

Finally, we note again the presence of a shorter additional
cycle in the model with the α-effect located between r1 = 0.7,
r2 = 0.8.

To summarize, we see that the magnetic cycle period in αΩ
dynamos depends on the location and thickness of our α-source
term. Moreover, we note in anti-solar DR regime that moving
this poloidal source term away from the tachocline is enough
to suppress the magnetic cycle. So the disappearance of cyclic
behavior in our reference BL model (Sect. 3.2) is likely linked to
the radial separation between both toroidal and poloidal sources.
However, this is not the only particularity of such flux-transport

models. The meridional circulation plays a key role, linking
dynamically the two sources of the magnetic fields. In the next
section, we propose to study the effect of such a velocity field on
αΩ models, in particular the anti-solar ones.

4.2. Impact of the meridional circulation on αΩ dynamo
models

Observations of the Sun have revealed large-scale flows on the
solar surface. In particular meridional flows from the equator
toward the pole have been found at the surface, which may be
evidence of a global meridional circulation in the convection
zone, as illustrated in panel c of Fig. 3. Although its existence
is well established down to 0.9 R�, disagreement still exist about
what occurs deeper down (Giles et al. 1997, Zhao et al. 2013,
Basu 2020).

As described in Sect. 2.3.2, MC is considered essential ingre-
dient in the study of stellar magnetism dynamics in flux-transport
models (Choudhuri et al. 1995, Jouve & Brun 2007 and Karak
2010). It is also a large-scale flow genuinely emerging in global
3D non-linear numerical simulations (Featherstone & Miesch
2015, Brun et al. 2017). Therefore, taking into account this phys-
ical ingredient is crucial in understanding the role of large-scale
flows in the resulting dynamics.

The effects of the MC on α2Ω dynamos have been studied by
Küker et al. (2001) and Bonanno et al. (2002, 2003). Following
their lead, we here propose to consider similar models than in
the previous section, shifting the poloidal field generation from
the tachocline to the surface. As discussed earlier in this paper,
we switched the sign of Cα according to the α-term location. In
addition, we now have to consider the magnetic Reynolds num-
ber characterizing the MC. We considered Rm = 500, as in the
BL models described in Sect. 3.

Here, we present some of the results of these experiments
(Table 4). First, we note that for both DR regimes, the merid-
ional circulation makes it harder to maintain a cycle, as there
are fewer cyclic models available for this parameter range. Once
more, they are totally absent for the anti-solar regime when the
poloidal generation is located in the bulk of the CZ, as expected
based on Fig. 9. Additionally, we observe that the presence of
the MC makes cyclic activity disappear when considering α-
effect locations near the surface. This might result from destruc-
tive interference, occurring in the polar dynamo branch, due to
strong advection when the Rm becomes high enough. Obviously,
decreasing the MC amplitude is then one solution for recovering
the polarity cycle. On the other hand, an increase by an order of
magnitude of the α-effect amplitude helps to recover the cycle. It
shows the subtle balance between both α-effect and MC, which
determines which mechanism dominates the other. The model
can be indeed significantly impacted by the MC when its ampli-
tude, u0 = Rmηt/R�, becomes comparable to the characteristic
propagation speed of the dynamo waves.

When solar models remain cyclic, some cycle periods are
shortened by the MC. Considering reasonable Rm values, this
can be understood as the meridional flow accelerating the migra-
tion of newly-generated toroidal magnetic field toward the sur-
face source term. However, we show in Table 4 that there
is no general trend and that the period may also increase.
It indeed illustrates this subtle balance of the MC effect and
the α-generation well, as shown by Roberts & Stix (1972) or
Yeates et al. (2008).

We then applied a MC to our αΩ reference cases (from
Sect. 3.2). The addition of this large-scale motion makes their
cyclic activity disappear. As discussed earlier in this work, this

A144, page 11 of 18



A&A 658, A144 (2022)

Table 4. α-effect from the tachocline, through the convection zone, with
a meridional circulation, Rm = 500 (50 for starred (∗) case), for solar and
anti-solar DR.

Cα r1–r2 � Anti-�

15 0.95–1 × ×

15 0.9–1 × ×

15 0.8–1 21.1 ×

15 0.7–1 24.0 ×

15 0.8–0.9 23.4 ×

−15 0.67–0.73 × ×

−15 (∗) 0.67–0.73 24.4 121.8 (31.3)

Notes. Magnetic cycle periods are expressed in years, considering a
diffusive time tη = 1550 years. The period presented are extracted from
surface magnetic dynamics.

is likely due to destructive interference from the strong advec-
tion of the MC. Cycles can be recovered by decreasing the MC
amplitude, as shown on the last row of Table 4. This happens
in this model for Rm ∼ 50 and we propose to illustrate it in
Fig. 12. We now clearly see the signature of the MC with an
equatorward toroidal flux accumulation at the base of the CZ
(top panel). The equatorial branch going poleward is now propa-
gating slower, compared to the reference case in Fig. 6, while the
polar branch propagates even quicker. Indeed, the action of the
MC shortens locally the cyclic period of polar structures to 13
years, while it locally extends the cycle period of the equatorial
dynamics to 31 years. This equatorward advection then accu-
mulates more magnetic field in the equatorial branch. Equatorial
cyclic patterns then rise toward the surface, where they govern
the dynamics, as shown on the second panel. Time-radius pan-
els confirm that indeed the short cycle remains confined to the
base of the CZ for these low latitudes. Finally, we note that this
31.3-year cycle is not perfectly regular, which results in an even
longer cycle at the surface in polar regions. Indeed, the global
dipole polarity is reversed with a period of 121.8 years. When
Rm increases, this long cycle period increases, and the cycle ulti-
mately disappears at large Rm. This is illustrated in the second to
last row of Table 4, where the dynamo is stationary. We shown
in the next subsection how adding a surface source term impacts
this model.

In the end, adding a MC to αΩ models generally does not
help to obtain a magnetic cycle if one did not exist before,
regardless of the DR regime. Finally, studying the location of
the poloidal source term in a flux transport model leads us to
conclude that it is even more difficult to obtain a magnetic cycle
the closer this term is to the surface. In particular, this allows
us to conclude that the magnetic cycle loss of the anti-solar BL
model is not caused by its non-local character, but rather by an
unfavorable field polarity interplay.

4.3. Considering whether a Babcock-Leighton dynamo with
an anti-solar DR could sustain a magnetic cycle

As we show in Sect. 3, the magnetic cycle disappears from
our BL model when we impose an anti-solar DR regime and,
therefore, the dynamo becomes stationary. We can see in previ-
ous subsections that this disappearance is likely caused by the
location of the BL source term. The interplay between polar-
ities could then lead to a flux addition, making global topol-
ogy reversals impossible, as illustrated in Fig. 9. The goal of
this section is, thus, to test the robustness of such a conclusion.
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Fig. 12. Both top panels are butterfly diagrams of the anti-solar αΩ
model with Cα =−15, D = 2.1 × 106, where we added a MC with
Rm = 50. The α-source term is at the base of the convection zone with
r1 = 0.67 and r2 = 0.73. Respectively, Bφ at r = 0.7 and Br at the surface.
Both bottom panels represent time-radius plots, respectively for Bφ and
Br at λ = 45◦. Logarithmic color scales are chosen for second and last
panels.

To this end, we have carried out some exploration of the ref-
erence BL model’s parameters space, investigating the different
factors. The CΩ value has been decreased by up to a factor of
5, motivated by a stellar rotation rate, which is likely to be sig-
nificantly lower in anti-solar DR regimes. The amplitude of the
shear ∆Ω/ΩEq ∼ 26% has also been decreased up to 10 and 1%
by changing coefficient of Table 1. Only the switch toward solar
DR can bring the cyclic activity back. The impact of a double
bump in the η profile (see comment and references at the end
of Sect. 3.1) has been explored as well. We changed the ampli-
tude of the MC, decreasing it until 0, considering even clockwise
circulation in the northern hemisphere (negative values for Rm).
But as expected earlier, no magnetic cycle has been seen in our
flux-transport BL model as soon as the anti-solar DR profile was
set. All corresponding butterfly diagrams stay equivalent to the
one presented in Fig. 8.
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Fig. 13. Butterfly diagram of solar BL flux-transport model with
CS = 30 and Rm = 500, where an α-source term is added. This term
is saddled on the tachocline between r1 = 0.67 and r2 = 0.73, with Cα =
−150. Respectively, Bφ at r = 0.7 and Br at the surface. A logarithmic
color scale has been chosen to represent the bottom panel.

We try subsequently to add in this model the α-profile pro-
viding a cycle in the anti-solar αΩ model, from Sect. 3.2.
We therefore couple the anti-solar BL-flux transport model to
an additional α-effect located between r1 − r2 = 0.67−0.73.
Although the dynamo remains stationary with Cα = −15, we
need to decrease Cα below −70 in order to obtain a cyclic activ-
ity. We illustrate such a model in Fig. 13, where Cα = −150. The
top panel shows us the signature of the MC, with a strong equa-
torward accumulation of toroidal field in the equatorial region
at the bottom of the CZ. We also note clear polarity inversions
located at mid-latitudes at the tachocline and the surface, with-
out polarity reversals of the global poloidal field. We also find
very few changes in the cycle period with regard to Cα (based
on models not included in this paper). On the other hand, the
cycle period has been found to be mainly controlled by the MC
dynamics in a advection-dominated regime.

In that sense, another way to obtain a cyclic behavior, while
keeping Cα = −15, is to decrease the MC amplitude. The
dynamo then becomes cyclic when we go below Rm ∼ 25. We
illustrate such a model for Rm = 10 in Fig. 14, where we note
again local polarity reversals. As a result of a weaker MC, we see
on the top panel that they are now localized around the equator
and emerging at the surface as shown in the bottom panel. Com-
ing back to the schematic in Fig. 9, the polar dynamics can be
interpreted here as the BL dynamo path on the first row, while
the cyclic local dynamo around the equator can be illustrated
with the third row.

We can conclude that in presence of the MC with an anti-
solar DR, a BL source-term only will not be able to maintain
a cyclic activity. However, an α-effect can create global polar-
ity reversals in the presence of a MC, but only if it is the only
source of poloidal magnetic field, which then has to be located
at the bottom of the convection zone. Indeed, we observe that
global polarity reversals disappear at both poles when combin-
ing both α-effect and BL-effect. Only a local cyclic dynamo near
the equator is preserved in this hybrid case. Ultimately, we find
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Fig. 14. Butterfly diagram of solar BL flux-transport model with
CS = 30 and Rm = 10, where an α-source term is added. This term is
saddled on the tachocline between r1 = 0.67 and r2 = 0.73, with Cα =
−15. Respectively, Bφ at r = 0.7 and Br at the surface. A logarithmic
color scale has been chosen to represent both panels.

that the MC can prevent a cyclic behavior when it is fast enough
(i.e., when the Rm is large enough).

5. Context and discussions

5.1. Astrophysical context

The STELEM code used in this study computes mean-field equa-
tions in a dimensionless form. From a dynamical system point of
view our interest was focused on keeping similar dynamo num-
bers, D, in order to conserve all our reference models in the
same dynamical range. This explains why we do not have the
exact solar magnetic cycle period for the reference αΩ model of
Sect. 3.1.

Now taking the astrophysical point of view, we could relax
the constraint on keeping D similar between models and fine-
tune the solar period. This can be done by increasing the turbu-
lent diffusivity ηt through a decrease of CΩ value. To this end,
we can get the 22-year magnetic cycle period of our Sun, from
the αΩ model of Sect. 3.1, by decreasing CΩ to 9.3 × 104. We
thus still consider ΩEq/2π = 460 nHz at its solar value, and
keep Cα = −15, which leads to new values for tη = 1030
years, ηt = 1.5 × 1011 cm2.s−1 and α0 = 33.2 cm.s−1. We illus-
trate this model in Fig. A.1. Despite a better agreement with the
observed magnetic solar period, the dynamical solution is highly
similar to the reference model of Sect. 3.1, which confirms
the interest of this study from the point of view of dynamical
systems.

Moreover, global 3D numerical simulations of stellar con-
vection show that anti-solar differential rotation (fast poles –
slow equator) might emerge for high Rossby numbers with a
transition around the unity. Hence, this DR regime is likely to
occur for slow rotators, when considering equivalent convective
characteristics. Following the same astrophysical point of view,
we can adapt the rotation rate with lower CΩ. We note that thanks
to the dimensionless form of the equations, the reference anti-
solar DR αΩ model in Sect. 3.2 can also be seen as a star rotating
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slower than the Sun and less diffusive than ηt = 1011 cm2.s−1,
while conserving CΩ = 1.4 × 105. Again, this approach leads to
the same conclusions as the ones presented in this work.

5.2. Model context

For the sake of completeness, several points have to be addressed
in order to present the context of our model choices and how to
improve them in future work.

First, the analytical fit used in Eq. (6) captures most of the
solar internal rotation properties, but does not account for radial
variations within the convection zone. In particular, we do not
take into account the near-surface shear layer (NSSL). Such a
layer has been shown to have a potential impact on dynamo
migration (Karak & Cameron 2016), and is particularly interest-
ing in terms of the Babcock-Leighton dynamos as it introduces
a shear near the location of poloidal field generation. Neverthe-
less, we do not yet know whether slow rotator with anti-solar
DR would go on to develop an NSSL-like layer, thus, we opted
to omit this aspect in the present study. We shall consider its
inclusion in a future work.

Second, Eq. (11) gives us an expression of the parametriza-
tion of turbulence by the parameter α in the mean-field theory
context. We chose to conserve Cα sign while transiting the DR
regime as the kinetic helicity is likely to do as well. Never-
theless, this expression has several forms, especially if a cur-
rent helicity term is meant to be taken into account, such that
α = −

τC
3 (u′ · (∇× u′)− 1

cρ j′ · b′); as introduced by Pouquet et al.
(1976), discussed in Brandenburg & Subramanian (2005), and
illustrated in stellar convective shells of Warnecke et al. (2018).
Recent global MHD numerical simulations of Brun et al. (2022)
do not show any significant sign or behavior change of the cur-
rent helicity profile between the different DR regimes.

Then multiple choices of meridional flow can be made in
order to link toroidal and poloidal flux. As the amplitude of the
solar MC is relatively low (observed around 10−20 m.s−1 at the
surface, and thought to be ∼4 m.s−1 at the base of the CZ), its
inversion from helioseismology can be very difficult. Indeed,
some observers detect multiple cells per hemisphere, while oth-
ers do not (see Gizon et al. 2020 and references in Sect. 5.4.3
of Charbonneau 2020). In the meantime, global numerical sim-
ulations of stellar convection tend to predict multiple cells for
solar DR against only one per hemisphere for the anti-solar
regime (see Brun et al. 2017). Thus, this physical process is
currently subject to debate and we refer interested readers to
Featherstone & Miesch (2015) for a detailed theoretical study.
Here, we chose a single cell hemispheric meridional flow to
follow our objective of maintaining simplicity. Finally, other
choices could have been made in order to link magnetic fluxes,
such as diffusion-dominated model or turbulent pumping (see,
respectively, Yeates et al. 2008 and Do Cao & Brun 2011). Such
considerations come out of the scope of the present study.

We observe in Sect. 4.1 that second cycles with shorter peri-
ods can emerge in some cases when increasing the resolution of
the numerical simulation. It happens near the tachocline, when
the transition between stationary and cyclic dynamos appears for
the anti-solar DR regime. It seems that the period of such mod-
els is very sensitive to the resolution, which is likely due to the
sharpness of the chosen α-profile. Nevertheless, numerical res-
olutions do not change the nature of our solution (cyclic or sta-
tionary) and, therefore, they do not affect the main conclusions of
this study. This is the main reason why we report dynamo models
with a resolution of 128× 256, namely, to ensure a good solution
convergence (as in the benchmark published in Jouve et al. 2008).

Next, deciding on which formulation to take for the α-effect
is not an easy task, as its profile is not simple to determine
exactly, even from 3D simulations where all the 3D information
is known (see Simard et al. 2016 for instance). We ultimately
chose to use a similar profile to the one used in Bushby (2006),
as it allows us to reproduce more faithfully the surface magnetic
field of the Sun through simulation and to then explore which
region is important for cyclic activity.

Moreover, we made the choice of an isotropic α-effect for
the sake of simplicity regarding the interpretation of our results.
Indeed, it allows us to highlight quite clearly the role of each
chosen ingredient and how they act in an anti-solar DR regime.
Some studies seem to extract significantly anisotropic α ten-
sors for fast rotators; however, this is not the case for slow
rotators, where we are likely to find an anti-solar DR profile
(Warnecke & Käpylä 2020).

With the same goal of maintaining simplicity, we decided
to use αΩ models instead of α2Ω. Indeed, we assumed in these
cases that a toroidal α-effect would be negligible in compari-
son with the Ω-effect, as Cα � CΩ. This assumption seems
to be supported by energy transfers study in decadal magnetic
cycles of global MHD simulations (see e.g., Fig. 23 of Brun et al.
2022). However, the α2Ω model may still be relevant as the α-
effect operates in a very thin layer such as the tachocline (see
Charbonneau 2020 and references therein). We tried to apply
such an α2Ω model in some of our runs (not shown here) but
did not find significant differences from a dynamical point of
view. Nevertheless, we did not do it through the entire parame-
ters space that we explored in this paper.

We note here that as we chose CΩ � Cα or CS for this study,
therefore the toroidal magnetic energy is always higher than the
poloidal magnetic energy. The ratio of these two energies can
vary by two orders of magnitude for a given dynamo type, when
modifying the α-effect location. The models considered in this
work produce a steady-state energy ratio between 1.8 × 102 and
2.4 × 105.

Using a different anti-solar DR profile that does not pre-
serve the same shear properties applied in the present study,
Karak et al. (2020) performed a study using α2Ω mean-field
dynamos. Symmetric and antisymmetric α-profiles were con-
sidered, adding anisotropy for some models. We note that these
authors only considered profiles lying mainly in the bulk of the
CZ, hence did not use negative α-effect values. They conclude
that global magnetic polarity reversals are possible for anti-solar
DR, but only if a quenching of the DR shear by the magnetic
field is prescribed.

We show here that global polarity reversals for anti-solar DR
are possible without any retro-action on the part of the mag-
netic field on the large-scale flows by exploring dynamo mech-
anisms with deeper location than what was done before. How-
ever, we could extend our model out of the kinematic regime
by taking into account this retro-action. This could be done
in a future work for instance with the Malkus-Proctor effect
(Malkus & Proctor 1975), characterizing the macroscopic feed-
back by the Lorentz force on the flows. Indeed, recent studies
like Strugarek et al. (2017) and Brun et al. (2022) underline the
major role of this feedback mechanism in dynamics of decadal
solar-type magnetic cycles.

Non-linear feedback also occurs at small scale in dynamo
action, and this aspect has been modeled as a simple alpha
quenching in this work. Nevertheless, recent studies underline
that mean-field coefficients can have non-trivial dependencies,
for instance, in high Rossby regime where anti-solar DR are
expected (see Warnecke et al. 2021, and reference therein). Such
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complex feedbacks are beyond the scope of the present study and
shall be considered in future works (see also Pipin 2021).

6. Conclusions

In this work, we explore how the dynamo mechanism behaves
under different physical prescriptions of the mean-field theory.
Our main interest is to assess whether magnetic cycles could be
sustained in an anti-solar differential rotation regime. We con-
sider αΩ and Babcock-Leighton models of solar-type stars to
this end.

We first set up the two types of models, so that they may
reproduce the well-known characteristics of the dynamo in its
solar context, based on the exploration of the models by the com-
munity over the past half-a-century. We obtained similar surface
dynamics representative of those at work in our star: a cycle with
polarity reversal, a migration of the activity towards the equa-
tor as well as the diffusion of the opposite polarity towards the
poles during a cycle. We also found the expected characteristics
in each hemisphere at the bottom of the CZ for αΩ and BL mod-
els, namely, Parker-Yoshimura waves for the former and strong
equatorward migrating branches for the latter. The dynamo is, of
course, closed by an Ω-effect induced by a solar DR profile.

Reversing this DR profile toward an anti-solar regime, we
studied its effect on the dynamo mechanism. With a simple αΩ
dynamo model, we show that magnetic cycles can occur in anti-
solar DR regime with an α-effect saddled on the tachocline at
the base of the CZ. This result holds regardless of the α-effect
sign considered in the northern hemisphere (see mirror solutions
when inverting the sign of Cα), which seems to contradict what
has been postulated in previous studies as Karak et al. (2020)
that have mainly been focused on α-profiles distributed through-
out the bulk of the CZ. Additionally, they need to prescribe a
magnetic feedback in order to get global polarity reversals in
anti-solar DR regime, which is not the case for the present study.
Finally, we observed an increase of the cycle frequency, which
is nearly doubled, due to the emergence of a strong quadrupolar
component of the magnetic topology in this model.

In contrast, we show the disappearance of the cyclic behav-
ior, for positive α-effect in the CZ and BL model, once an anti-
solar DR regime is applied. We propose in Fig. 9 a geometrical
interpretation, relying on the fact that Coriolis effect in anti-solar
DR could lead to polar flux addition, instead of cancellation, in
the well-known solar DR regime. This could explain why no
global polarity reversals are observed in most of anti-solar DR
cases. In the solar DR regime, we found that the magnetic cycle
period in αΩ dynamos depends on the location and thickness of
our α-source term and it is generally longer for deeper locations
and broader source terms. Indeed, the closer to the surface the
α-effect, the less magnetic flux will have to be cancelled by the
next polarity in the cycle; hence, the cycle period is shorter.

In the anti-solar DR regime, we found that moving the α-
effect away from the tachocline is enough to suppress the mag-
netic cycle in such model; namely, if we segregate spatially both
the poloidal and toroidal source terms. The disappearance of
cyclic activity in BL models under anti-solar DR regime is there-
fore likely to be caused by the position of its poloidal source
term, rather than its non-local nature.

We further confirmed this finding by studying the influence
of MC. We concluded for all cases that the MC generally does
not help to obtain a magnetic cycle if one did not exist before.
This was also found in Bonanno et al. (2002) for α2Ω models.
For solar cases, it even sometimes leads to suppress the cyclical
behavior of some models which initially had it, especially when

the poloidal generation is located near the surface and the MC
(via Rm) is relatively fast.

Finally, we completed this investigation by considering the
opposite side of the problem and trying to make the reference
anti-solar BL model cyclic. To this end, we tried to modify the
different parameters of the model, but the dynamo remained sta-
tionary in all cases. The only way we found it possible to make
a BL model with anti-solar DR cyclic was to consider an addi-
tional α-effect at the base of the CZ. In that case, the dynamo is
eventually cyclic, albeit with a polarity reversal occurring only
locally at mid and low latitudes.

In conclusion, we found that the BL model alone, in its sim-
plest expression and in the anti-solar DR regime, seems to pre-
vent any form of cyclic stellar activity. This is mainly due to a
flux addition, illustrated in Fig. 9 (also proposed by Karak et al.
2020 in their Fig. 1). We do not find a significant drop of the
large-scale magnetic field topology for anti-solar DR regime
that could explain a possible break of gyrochronology for slow
rotators, as proposed by Metcalfe & van Saders (2017). Like-
wise, the αΩ model generally do not produce cycle in the anti-
solar DR regime, except when the α-effect is localized at the
tachocline. The key point of such models is then the overlap
between the poloidal generation through α-effect and the toroidal
generation through radial shear. In these models we also do not
observed any drop of the large-scale field. Observational con-
straints on the magnetism of stars with anti-solar DR would
therefore provide a fantastic constraint on dynamo acting within
cool stars.
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Appendix A: Fine-tuned α − Ω solar model
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Fig. A.1. Butterfly diagram of the reference αΩ model in solar DR regime of Figure 4, fine-tuned in order to get our Sun magnetic cycle period
with CΩ = 9.3 × 104. We recall that for this specific case, 22 years correspond to 0.021 tη.
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Appendix B: Meridional evolution of cyclic reference models
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Fig. B.1. Meridional cut from 0.6 to 1 R�, of magnetic components for three reference models of Section 3: Solar DR αΩ dynamo (first line), the
solar DR BL dynamo (second line) and the anti-solar DR αΩ dynamo (third line). Colors are mapped on a logarithmic scale for Bφ/B0. Black
continuous contours are positive Aφ iso-contours while dotted lines are for negative contours, i.e., Bpol clockwise oriented field lines, and anti-
clockwise respectively. Field lines above the surface r = 1R� result from a potential extrapolation. Four different time steps are proposed for each
model. We recall that in this study 22 years correspond to 0.014 tη.
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