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Abstract
Purpose  Evaluating sediment fingerprinting source apportionments with artificial mixtures is crucial for supporting decision-
making and advancing modeling approaches. However, artificial mixtures are rarely incorporated into fingerprinting research 
and guidelines for model testing are currently lacking. Here, we demonstrate how to test source apportionments using labora-
tory and virtual mixtures by comparing the results from Bayesian and bootstrapped modeling approaches.
Materials and methods  Laboratory and virtual mixtures (n = 79) with known source proportions were created with soil sam-
ples from two catchments in Fukushima Prefecture, Japan. Soil samples were sieved at 63 µm and analyzed for colorimetric 
and geochemical parameters. The MixSIAR Bayesian framework and a bootstrapped mixing model (BMM) were used to 
estimate source contributions to the artificial mixtures. In addition, we proposed and demonstrated the use of multiple evalu-
ation metrics to report on model uncertainty, residual errors, performance, and contingency criteria.
Results and discussion  Overall, there were negligible differences between source apportionments for the laboratory and 
virtual mixtures, for both models. The comparison between MixSIAR and BMM illustrated a trade-off between accuracy 
and precision in the model results. The more certain MixSIAR solutions encompassed a lesser proportion of known source 
values, whereas the BMM apportionments were markedly less precise. Although model performance declined for mixtures 
with a single source contributing greater than 0.75 of the material, both models represented the general trends in the mixtures 
and identified their major sources.
Conclusions  Virtual mixtures are as robust as laboratory mixtures for assessing fingerprinting mixing models if analyti-
cal errors are negligible. We therefore recommend to always include virtual mixtures as part of the model testing process. 
Additionally, we highlight the value of using evaluation metrics that consider the accuracy and precision of model results, 
and the importance of reporting uncertainty when modeling source apportionments.

Keywords  MixSIAR · Sediment fingerprinting · Sediment tracing · Model testing · Artificial mixtures

1  Introduction

Sediment source fingerprinting is increasingly used to esti-
mate sources of particulate material in riverine, lacustrine, 
and coastal systems (Jalowska et al. 2017; Lavrieux et al. 

2019; Gibbs et al. 2020). This approach capitalizes on dif-
ferences in physical and biogeochemical parameters, or fin-
gerprints, to model source contributions to target material. 
Fallout radionuclides, mineral magnetic properties, color 
parameters, major and trace element geochemistry, and 
other fingerprints have all been used to apportion sources 
in end-member mixing models. Several reviews have been 
published that provide a thorough discussion of sediment 
source fingerprinting fundamentals (Walling 2005; Koiter 
et al. 2013; Owens et al. 2016) and its importance in inte-
grated water resource management (Collins et al. 2017; 
Owens 2020).

Central to the confident apportionment of target material 
to their sources is the modeling process. In the 1980s, end-
member mixing models were first introduced to solve simul-
taneous equations with mean values of selected source and 
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target fingerprints (Peart and Walling 1986; Yu and Oldfield 
1989). Approaches to modeling have significantly advanced 
over the last 20–30 years, shifting from deterministic optimi-
zation procedures (Walden et al. 1997) to stochastic frame-
works that rely on Bayesian and/or Monte Carlo methods 
(Cooper et al. 2014; Nosrati et al. 2014; Laceby and Olley 
2015). Importantly, stochastic modeling approaches produce 
distributions of unmixed source apportionments, to which 
prediction or credible intervals can be assigned. The analysis 
of prediction or credible intervals is crucial for understand-
ing and reporting the uncertainty in the model estimates and, 
therefore, providing robust source information for sediment 
management programs.

Decision-makers and stakeholders often require accu-
rate (low error) and precise (low uncertainty) sediment 
source information. While the precision of fingerprinting-
estimated source contributions can be assessed with the 
previously mentioned stochastic approaches, evaluating 
their accuracy is challenging. Ultimately, this evaluation 
of model accuracy would require in situ measurements of 
sediment fluxes from each potential source unit, which is 
pragmatically unfeasible. Accordingly, artificial mixtures 
have been used to, at the very least, test the accuracy with 
which the models can estimate known source propor-
tions. These artificial mixtures can be created in the lab 
(Martínez-Carreras et al. 2010; Haddadchi et al. 2014), by 
physically combining known masses of the source mate-
rial, or virtually, by mathematically generating target tracer 
values (Laceby et al. 2015; Palazón et al. 2015; Sherriff 
et al. 2015).

Testing sediment fingerprinting source apportionments 
against artificial mixtures provides information on the qual-
ity of the source discrimination afforded by the tracer suite, 
the impact of within-source tracer variability, and the struc-
ture of the modeling approach (Pulley et al. 2017, 2020; Shi 
et al. 2021). Moreover, artificial mixtures have been used to 
assess the influence of corrupt and/or non-conservative trac-
ers on model outputs, as well as the importance of different 
tracer selection procedures (Sherriff et al. 2015; Cooper and 
Krueger 2017; Latorre et al. 2021). Although artificial mix-
tures can provide a powerful tool for evaluating fingerprint-
ing models, their use in sediment tracing papers is relatively 
rare (Fig. 1). For example, a query on the Web of Science 
with the term “sediment fingerprinting” AND (“artificial 
mixtures” OR “virtual mixtures”) returned 24 articles for the 
period of 1987 to 2020. This represents 1.2% of the number 
of papers returned from the query “sediment fingerprinting” 
for the same time period (2061 hits).

In addition, models are predominantly evaluated with the 
mean absolute error (MAE) scoring metric, which is calcu-
lated from a single mean modeled relative source contribu-
tion and the known source proportion of a given artificial 
mixture. This approach to model testing counters the fun-
damental purpose of stochastic modeling, which is to pro-
vide a distribution of potential model solutions that reflects 
uncertainties in the data and model structure. Arguably, it 
is more important for a fingerprinting model to identify 
the main sources in a mixture, and for source apportion-
ments to encompass known proportions with the most real-
istic representation of data and model uncertainty, than for 

Fig. 1   Number of articles returned by the queries “sediment fingerprinting” and “sediment fingerprinting AND artificial mixtures OR virtual 
mixtures” in the WoS (1987–2020)
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mean model solutions to be highly accurate. To this end, we 
believe that guidelines and appropriate metrics for evaluat-
ing current sediment fingerprinting models against artificial 
mixtures are somewhat lacking in the literature.

Another fundamental question regarding the evaluation 
of sediment fingerprinting mixing models relates to the use 
of laboratory or virtual mixtures for model testing. While 
the first approach might be more robust in terms of repre-
senting analytical error, biases might be introduced due to 
particle size effects and sample mixing (Collins et al. 2020). 
Moreover, a limitless number of virtual mixtures can be cre-
ated without cost, which is particularly advantageous when 
the measurement of fingerprint properties is expensive and/
or time consuming. As laboratory and virtual mixtures have 
not yet been thoroughly compared, how should researchers 
decide on which approach is more appropriate for testing 
their data and models?

Here, we present the results and code for an analysis of 
79 artificial laboratory and virtual mixtures to facilitate 
researchers’ comparison of various models and tracer selec-
tion procedures. In particular, we compare a bootstrapped 
mixing model (BMM) (Batista et al. 2019) with the Bayes-
ian MixSIAR framework (Stock et al. 2018) to demonstrate 
what we can learn from testing fingerprinting source appor-
tionments against artificial mixtures. Furthermore, we pro-
pose a set of evaluation metrics and testing guidelines to 
help researchers and managers to assess model outputs, and 
to help specify which conclusions can be drawn from their 
data in support of sediment management programs.

2 � Materials and methods

2.1 � Study site

The artificial mixtures were created from samples obtained 
from the Mano (175 km2) and Niida (275 km2) catchments 
(Fig. 2), north of the Fukushima Dai-ichi Nuclear Power 
Plant (FDNPP) in Fukushima Prefecture, Japan. Riv-
ers in these catchments flow from mountainous plateaus 
(700–900 m above sea level) downstream across a coastal 
plain before discharging into the Pacific Ocean. The moun-
tainous plateaus are predominantly forested, with paddy 
fields and other croplands situated along the main river 
channel. The coastal plains consist mainly of cropland and 
developed areas.

Fallout from the FDNPP nuclear accident mainly contam-
inated the upper regions in these two catchments. For exam-
ple, 137Cs activities in soils ranged from 20 to 75 kBq kg−1 
in the upper plateaus resulting in the evacuation of the local 
population in 2011. To facilitate the return of the local popu-
lation, the Japanese authorities conducted extensive decon-
tamination of agricultural and residential areas (Evrard et al. 

2019). In particular, the top 5-cm layer of the soil profile 
was removed as it was reported to contain 95–99% of the 
137Cs concentrations (Lepage et al. 2015). Light-colored 
crushed granite extracted from local quarries replaced the 
137Cs-contaminated topsoil layer with a new substrate as 
part of the remediation program (Evrard et al. 2020). The 
crushed granite was then mixed into the topsoil layer prior 
to recultivation. The impetus for this research project was to 
investigate the utility of apportioning sediment sources from 
decontaminated and non-decontaminated cropland sources 
in the Fukushima region.

2.2 � Sample collection and preparation

Soil samples (n = 70) were collected on two different occa-
sions (July 2015 and March 2019). Sources included crop-
land (n = 18), forest (n = 30), subsurface (n = 9) (i.e., channel 
banks), and decontaminated soils (n = 13). Decontaminated 
soils were collected after the crushed granite was plowed 
into the soil. Most samples were obtained from the upper 
catchment plateau, in close proximity to the river network 
in areas susceptible to erosion processes. Each soil sample 
consisted of ~ 10 subsamples taken with a plastic spatula 
from the top 2 cm of the soil profile.

Samples were dried at 40 °C for 48 h, sieved to 63 µm, 
and placed into 15-ml plastic boxes prior to analysis. For 
colorimetric parameters, samples were analyzed with a port-
able diffuse reflectance spectrophotometer (Konica Minolta 
CM-700d), calibrated prior to each session with samples 
analyzed in triplicates. XYZ tristimulus values were deter-
mined based on the color-matching functions defined by 
the International Commission on Illumination (CIE 1931). 
Standardized tristimulus values were transformed into the 
CIE L*a*b* and CIE L*u*v* Cartesian coordinate systems 
with 15 colorimetric parameters determined for each sample 
(L*, a*, b*, c*, h, x, y, z, L, a, b, u*, v*, u′, v′).

An energy-dispersive X-ray fluorescence spectrometer 
(ED-XRF; Epsilon 4) was used to determine the chemi-
cal composition of the soil samples. Measurements were 
conducted on a minimum of 0.1 g of material in contain-
ers covered with Mylar films showing a 10-mm exposure 
surface, with all samples analyzed in triplicates. In total, 
16 geochemical elements were determined, including Mg, 
Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Ba, and 
Pb. Four elements (P, Cr, Co, and Ba) had values below the 
detection limit for multiple samples, and as such, they were 
excluded from subsequent analyses.

2.3 � Artificial mixtures

To generate the laboratory mixtures, we prepared composite 
samples for each source. An equal amount of the individual 
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Fig. 2   Location of the Mano and Niida catchments, the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), and soil sampling locations
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source samples collected in the field was used to prepare 
the composite. In total, 79 laboratory mixtures containing 
variable proportions of the four sources (ranging between 0 
and 100% and summing to 100%, Supplementary Material 
Fig. 1) were generated and prepared in the same containers 
as the soil samples.

The virtual mixtures for the BMM were generated by cal-
culating multivariate normal distributions for the color and 
geochemical parameters in each source, in order to represent 
the uncertainty in the target mixtures and to preserve the 
correlations between tracers. The values in the multivariate 
normal distribution were then multiplied by the source con-
tribution used to generate the laboratory mixtures. This was 
necessary because the model draws target tracer values from 
multivariate distributions for each iteration of the Monte 
Carlo simulation. Code to generate the artificial mixtures is 
appended in the supplemental information. For MixSIAR, 
the virtual mixtures were produced by simply multiplying 
mean source tracer values by their proportion in each mix-
ture. This simpler procedure was chosen due to the abil-
ity of MixSIAR to handle single mixture data by use of a 
process error structure, in which mixture tracer values are 
drawn from a normal distribution, with a same mean, and 
a variance derived from weighted source variances (Stock 
et al. 2018).

2.4 � Tracer selection and modeling

Fingerprint parameters were selected following the widely 
employed three-step procedure: (i) a range test for conserva-
tive behavior, (ii) a Kruskal–Wallis H-test for group differ-
ences, and (iii) a stepwise discriminant function analysis 
(DFA) (niveau = 0.1) for defining a minimum set of trac-
ers that maximize source discrimination. For the range test, 
we assumed that the median and the interquartile range 
(IQR) of a tracer value in the mixture should be brack-
eted by the medians and the IQRs of the tracer value in the 
source groups. Of note, we did not test different fingerprint 
selection approaches, as this goes beyond the scope of our 
research. However, we encourage others to test alternative 
tracer screening methods with our dataset, code, and evalu-
ation guidelines.

For the bootstrapping approach, we used the BMM out-
lined in Batista et al. (2019). The BMM is the open-source 
evolution of the distribution mixing model (Laceby and 
Olley 2015) that minimizes the sum of square residuals 
of the mixing equation for each iteration of a Monte Carlo 
simulation (n = 2500). Tracer values are sampled from mul-
tivariate normal distributions, which were constructed based 
on the log-transformed source and mixture data. For the lab-
oratory mixtures, tracer distributions were created by taking 
the measured values in the mixture as a mean and assuming 
5% standard deviation for each tracer.

The MixSIAR model trials for the laboratory mixtures 
were carried out with a process error formulation, which is 
used when single mixture values are available (Stock and 
Semmens 2016). The same error structure was used for the 
virtual mixtures. In both cases, we used an uninformative 
Dirichlet prior, and a very long Markov Chain Monte Carlo 
chain length with default burn-in and thinning values. Model 
convergence was assessed by the Gelman-Rubin diagnos-
tic, in which none of the variables had a value greater than 
1.01. Prior to modeling, all tracers were log-transformed to 
enforce a higher degree of normality to the fingerprint dis-
tributions. This was performed because MixSIAR assumes 
that source tracer values are normally distributed, and the 
removal of non-normally distributed tracers may reduce 
model accuracy (Smith et al. 2018). According to Laceby 
et al. (2021), log transformations were able to provide a 
higher degree of normality for geochemical data used as 
input for MixSIAR, compared to other transformations.

2.5 � Model assessment

Appropriate evaluation metrics should be consistent with the 
purpose of a model. We believe that stochastic approaches to 
fingerprinting should provide distributions of source appor-
tionments that encompass the actual source proportion in a 
mixture, while providing a realistic uncertainty estimation. 
That is, the distributions of source apportionments should 
reflect the errors in the data, in the mixing model, and the 
inherent uncertainty stemming from tracer variability, source 
sampling, and source grouping. From a management per-
spective, a mixing model should at least be able to consist-
ently identify the main source in a mixture. That is, if we 
are unable to pinpoint the dominant sediment source in a 
catchment, we should not make management decisions based 
on modeled source apportionments.

Accordingly, we present four types of model assessment 
criteria, which focus on uncertainty, residuals, performance, 
and contingency errors. These criteria are outlined below, 
and a summary of the metrics and equations are provided 
in Table 1. Of note, all evaluation metrics originally devel-
oped for testing point-based estimates (e.g., MAE) were 
here calculated considering two prediction/credible inter-
vals, namely the 50% (0.25 quantile–0.75 quantile) and 95% 
(0.025 quantile–0.975 quantile).

For the uncertainty parameters, we calculated the width 
of the 50 and 95% prediction/credible intervals of the source 
apportionments (W50 and W95). Wider distributions trans-
lated to higher uncertainty in the model solutions. In addi-
tion, we determined the proportion of known values in the 
artificial mixtures encompassed by the 50 and 95% (P50 and 
P95) prediction/credible intervals of the model outputs. The 
proportion should be equal to or greater than the interval 
(i.e., ≥ 0.5 for the 50% interval, ≥ 0.95 for the 95% interval).
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Regarding the residual methods, we calculated the 
mean absolute error of the 50 and 95% intervals (MAE50 
and MAE95). In this case, if the known proportion was 
within the mentioned intervals, the error was zero. Oth-
erwise, the error was calculated based on the difference 
between the upper or lower limits of the intervals and 
the known source values. MAE values range from zero 
to infinity, with zero being the perfect value. The MAE 
takes the same unit as the model, and it is not affected by 
cancelation (Bennett et al. 2013). We also estimated the 
mean error of the 50 and 95% intervals (ME50 and ME95). 
An ideal value of zero represents an unbiased model, while 
negative and positive values indicate under- and overpre-
diction, respectively.

To quantify model performance, we calculated the con-
tinuous ranked probability score (CRPS) (Matheson and 
Winkler 1976), which is used to compare probabilistic 
model forecasts of continuous variables. The CRPS evalu-
ates both the accuracy and the sharpness (i.e., precision) 
of a distribution of forecasted values: if the observed value 
corresponds to a high probability value in the distribution 
of model outputs, while the probability of other values 
is minimal, then the CRPS is minimized (Boucher et al. 
2009). CRPS values range from zero (perfect deterministic 
forecast) to infinity, taking the same unit as the continu-
ous variable. Formulae and detailed descriptions are pro-
vided in Jordan et al. (2019) and Laio and Tamea (2007). 
In addition, we calculated the Nash–Sutcliffe efficiency 
index (NSE) (Nash and Sutcliffe 1970) for the 50 and 95% 
intervals (NSE50 and NSE95). The NSE compares the per-
formance of the model against the mean of the observed 
data, which we assumed to be an equal contribution from 
every source (0.25). Values range from minus infinity to 
one, with negative values indicating a worse performance 
than the mean, and one being a perfect model. As with 
the residual methods, the difference between known and 

estimated values was nullified if the actual source propor-
tions were within the considered intervals.

For the contingency error metrics, we utilized the criti-
cal success index (CSI) for the identification of dominant 
sources. The CSI measured the fraction of cases in which 
dominant sources (> 0.5 proportion) were correctly identi-
fied within the 50 and 95% intervals (CSI50 and CSI95). 
The score penalizes both misses and false alarms. We also 
estimated the hit rate (HR) of the 50 and 95% intervals 
(HR50 and HR95). The hit rate represented the probabil-
ity of detection of dominant sources (> 0.5 proportion). 
Unlike the CSI, the hit rate does not penalize misses or 
false alarms.

All scores and metrics described above were used both 
cumulatively to calculate global model results and, at indi-
vidual source levels, to analyze source discrimination and 
specific patterns. Model implementation and statistical anal-
yses were performed with the R open-source software and 
programming language (R Core Team 2021). Raw source 
and mixture data, as well as model code, are available as 
supplementary material.

3 � Results

3.1 � Tracer selection

All analyzed tracers were within the range of the laboratory 
and virtual mixtures, as expected. Fe and Ni did not display 
a significant difference according to the Kruskal–Wallis test 
and were therefore excluded from further analysis. The final 
tracer selection based on the stepwise DFA included color 
and geochemical parameters (L, h, y, c*, K, Mn, Si, Ti, Zn), 
and yielded a reclassification accuracy of 90% (Supplemen-
tary Material Fig. 2).

Table 1   Model evaluation metrics and criteria

Criteria Parameter Equation Reference

Uncertainty Interval accuracy (P) encompassed

total
–

Interval width (W) upperquantile − lowerquantile –
Residual methods Mean absolute error (MAE) 1

n

∑n

i=1
��yi − ŷi

�� Bennett et al. (2013)

Mean error (ME) 1

n

∑n

i=1
(yi − ŷi)

Bennett et al. (2013)

Performance Continuous ranked probability score 
(CRPS)

(
Fi, yi

)
= ∫ ∞

−∞
(Fi

(
yi
)
− H

{
yi ≥ ŷi

}
)
2
dx Matheson and Winkler (1976)

Nash–Sutcliffe efficiency index
1 −

1

n

∑n

i=1
(yi−ŷi)

2

1

n

∑n

i=1
(yi−yi)

2

Nash and Sutcliffe (1970)

Contingency Critical success index (CSI) hits

hits+misses+falsealarms
Bennett et al. (2013)

Hit rate (HR) hits

hits+misses
Bennett et al. (2013)
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3.2 � Laboratory versus virtual mixtures

Source apportionments from the MixSIAR and BMM 
approaches for laboratory and virtual mixtures were highly 
similar. The results from the laboratory mixtures are plotted 
against the virtual mixtures in Fig. 3. MixSIAR apportion-
ments for the different mixture types had a 0.95 correlation 
coefficient for the 0.05, 0.25, 0.5, 0.75, and 0.95 quantiles. 
The BMM results were slightly less correlated for the lower 
quantiles, showing a steady increase from the 0.05 quan-
tile (r = 0.91) to the 0.95 quantile (r = 0.95). In addition, the 
accuracy and precision of estimated source proportions for 
both MixSIAR and BMM were parallel for the laboratory 
and virtual mixtures. This is illustrated by the negligible dif-
ferences between CRPS values in Table 2. The contingency 
metrics demonstrated the largest difference between mixture 
types among the evaluation criteria, in particular for Mix-
SIAR, which had superior results for the virtual mixtures.

3.3 � Model assessment

There was a greater dissimilarity between MixSIAR and 
BMM outputs than between the results from the differ-
ent mixture types. In particular, the uncertainty bands for 
the BMM apportionments were approximately twice as 
wide as those generated by MixSIAR (Table 2 and Fig. 4). 
Accordingly, a larger percentage of known source values 
was encompassed by the 50 and 95% intervals for the BMM 
apportionments. Although the 50% interval widths for the 
BMM calculations were almost identical to the 95% for Mix-
SIAR, the BMM model’s 50% interval widths were more 
accurate, encompassing ~ 70% of the known data, compared 
to ~ 50% for MixSIAR (Table 2).

Regarding the residual criteria, both models yielded 
slightly negative ME values (μ MixSIAR = − 0.01, μ 
BMM = − 0.03) for the 50% interval, which demonstrates 
a small bias toward underpredictions. MAE values per 

Fig. 3   Comparison between model solutions for the laboratory and mathematical mixtures. The 1:1 line represents a perfect fit. Legend: r = Pear-
son’s correlation coefficient
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distribution interval were slightly lower for the BMM model 
(~ 0.02), again due to the wider uncertainty bands.

With respect to performance criteria, the BMM model 
had marginally higher NSE values (between 0.03 and 0.06) 
for the analyzed intervals (Table 2). The CRPS score, which 
considers both the precision and accuracy of the model 
simulations, indicated a similar performance for BMM and 
MixSIAR. The accuracy and precision of model estimates 
decreased with increasing source proportions in the mix-
tures, for both MixSIAR and BMM, as demonstrated by the 
CRPS curves in Fig. 5. Although residuals were also large 
when actual source proportions were low (< 0.05), errors 
and uncertainty increased sharply when known contribu-
tions were above 0.75 in the mixtures. In particular, Mix-
SIAR source apportionments were less accurate/precise for 
lower source proportions, whereas the BMM model dis-
played higher errors and uncertainty with increasing source 
contributions.

Regarding the contingency criteria, the CSI metric 
showed a stronger performance for MixSIAR, specifically 
for the 95% interval (~ 100% increase). The BMM displayed 
a higher hit rate for the 50% interval (~ 10% increase), and 
both models encompassed the main sources when the 95% 
interval was considered (0.98 and 1.0 hit rates for MixSIAR 
and the BMM, respectively).

Table 2   Model evaluation metrics grouped by mixture type and 
model

Mean values per model and mixture type

Evaluation 
criteria

Parameter Mixture type

Laboratory Mathematical

Model

MixSIAR BMM MixSIAR BMM

Uncertainty P50* 0.26 0.67 0.30 0.68
P95* 0.47 0.94 0.49 0.93
W50* 0.14 0.29 0.12 0.29
W95* 0.32 0.60 0.29 0.60

Residuals MAE50 0.07 0.04 0.06 0.04
MAE95 0.03 0.00 0.02 0.00
ME50  − 0.01  − 0.03  − 0.01  − 0.03
ME95 0.00 0.00 0.00 0.00

Performance CRPS* 0.10 0.10 0.09 0.10
NSE50 0.86 0.92 0.89 0.91
NSE95 0.96 1.00 0.97 1.00

Contingency CSI50 0.72 0.73 0.88 0.78
CSI95 0.58 0.29 0.72 0.30
HR50 0.81 0.91 0.91 0.91
HR95 0.98 1.00 0.98 1.00

Fig. 4   Summary of the mixing model results by source, mixture type, and mixture number. Solid lines are group medians, shaded areas (rib-
bons) are the IQR, and dashed lines are the 0.025 and 0.975 quantiles. Circles represent actual mixture proportions
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Considering each source separately, the model evalua-
tion revealed a higher capability from both MixSIAR and 
the BMM for estimating the contributions from forests and 
subsurface material than decontaminated soil and cropland 
(Fig. 4). This is highlighted by the lower MAE and CRPS 
values for the forest and subsurface sources (Supplementary 
Material Table 1). While most evaluation metrics displayed 
small differences between mixture types when grouped by 
model, some contrast could be observed when sources were 
analyzed separely. This is particularly evident when com-
paring the hit rates of the laboratory and virtual mixtures, 
for both BMM and MixSIAR (Supplementary Material 
Table 1). For instance, the HR50 for the subsurface source 
increased from 0.69 in the laboratory mixtures to 0.88 in 
the virtual mixtures, for both modeling approaches. Overall, 
models, mixture types, and evaluation metrics illustrated a 
lower discrimination power between the decontaminated 
soils and cropland as sediment sources.

4 � Discussion

4.1 � Laboratory or virtual mixtures?

The comparison of 79 laboratory and virtual sediment mix-
tures found limited differences between them, with respect 
to the ability of the two modeling frameworks to unmix their 

known source proportions. This indicates that the analyti-
cal methods did not introduce significant uncertainty into 
the model solutions. Moreover, it demonstrates how virtual 
mixtures are potentially as useful for model testing as labo-
ratory mixtures. Nonetheless, the comparison of virtual to 
laboratory mixtures does hold value in highlighting situa-
tions where analytical methods may introduce errors into 
the modeling process. Laboratory mixtures might also be 
required in proof-of-concept experiments which propose 
novel tracing approaches (see Lake et al. 2022).

Multiple studies have demonstrated how tracer selection 
procedures can affect fingerprinting source apportionments 
(Laceby and Olley 2015; Palazón et al. 2015; Smith et al. 
2018; Gaspar et al. 2019), and how typical approaches to 
quantify the quality of source discrimination (e.g., DFA 
reclassification accuracy) are not always reliable proxies 
for model accuracy (Smith et al. 2018; Batista et al. 2019; 
Latorre et al. 2021). Hence, to avoid the use of non-optimal 
tracer suites and to increase the reliability of sediment fin-
gerprinting approaches, we recommend that researchers and 
analysts always use multiple virtual mixtures for model test-
ing, and potentially for tracer selection (see Latorre et al. 
2021). Although this will not guarantee precise and accurate 
model results when real-world sediment data is unmixed, 
it will at least constrain the situations in which data and/
or models are non-behavioral, and therefore should not be 
used for decision-making. As there is no cost involved in the 

Fig. 5   Relation between artificial mixture  source proportions and the CRPS for the different sources, models, and mixture types



	 Journal of Soils and Sediments

1 3

generation of virtual mixtures, there is no reason not to use 
them to assess the performance of sediment fingerprinting 
approaches.

4.2 � Model comparison

Much research has been focused on the frequentist (a term 
which is used loosely to designate anything from deter-
ministic model optimizations to different Monte Carlo and 
bootstrapping approaches) versus Bayesian debate when it 
comes to fingerprinting mixing models (see Davies et al. 
2018 for a review). Since both frameworks essentially solve 
similar linear equations, the differences between them are 
associated to how error structures, covariates, and prior 
information are incorporated (Stock and Semmens 2016; 
Cooper and Krueger 2017), and ultimately how uncertainty 
is represented. Moreover, while the bootstrapping approach 
optimizes the mixing equation for each model draw, Bayes-
ian models explore all distribution parameters simultane-
ously (Cooper and Krueger 2017).

For our dataset, the main differences between BMM 
and MixSIAR outputs were the width and the shape of the 
distributions of model solutions. While MixSIAR outputs 

were usually sharp and bell-shaped, BMM model solutions 
were wide, skewed, or even bimodal (Fig. 6). A similar pat-
tern was reported by Cooper et al. (2014) when comparing 
Bayesian and bootstrapping fingerprinting approaches. This 
difference in the distributions of model outputs was reflected 
in their ability to encompass the known mixture proportions 
within a given quantile interval, and consequently in some 
of our evaluation metrics. However, the median values and 
the general pattern of source apportionments was similar 
between the tested approaches (Figs. 4 and 6).

Overall, the comparison between the BMM and MixSIAR 
illustrates a trade-off between accuracy and precision, which 
was interestingly canceled out in the CRPS values. The score 
was identical between models for the laboratory mixtures 
with only a minimal difference for virtual mixtures (i.e., 
0.01). Importantly, the ability of the BMM to encompass a 
larger number of known source contributions seemed to be 
related to the skewed distributions of the model solutions 
(Fig. 6). That is, the lower quantiles of the outputs were 
often zero, which was not the case for MixSIAR. As many 
mixtures contained zero contributions from a given source, 
this favored some of the evaluation metrics for the BMM 
(perhaps spuriously). In any case, the low interval accuracy 

Fig. 6   Probability density 
functions of model solutions for 
mixture ten (decontaminated: 
0.625, forest: 0.0, cropland: 0.0, 
subsurface: 0.375)
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(P50, P95) observed for MixSIAR indicated a certain degree 
of overconfidence in the source apportionments, and poten-
tially overly optimistic uncertainty bands. However, it should 
be highlighted that MixSIAR outputs are sensitive to choices 
in the error structure and the number of mixture samples 
(Smith et al. 2018). Hence, we recommend for different 
structures to be tested in the future.

Ultimately, both mixing model frameworks provided con-
verging solutions, which mutually corroborates their ability 
to provide reliable source apportionments for this dataset. 
We speculate there will not be a “best” model framework 
for all sediment fingerprinting purposes. Instead, researchers 
and analysts should decide on which approach to take on a 
case-by-case basis and substantiate their choices with data.

4.3 � Beyond mean errors

As we have demonstrated, many evaluation metrics can be 
used to assess the uncertainty and performance of sediment 
fingerprinting source apportionments. All scores operate 
under the explicit knowledge that mixing model outputs 
consists of distributions of possible source contributions 
and should be tested as such.

For sediment management, we found the contingency 
metrics particularly useful as they quantify the ability of 
the models to correctly identify major sediment sources in 
a mixture. The region affected by fallout from the FDNPP 
accident is an example where identifying main sediment 
sources is of particular interest to managers. Importantly, 
the CSI demonstrated how the lower uncertainty in Mix-
SIAR apportionments minimized the confusion in the 
identification of main sources. On the other hand, the wide 
uncertainty bands from the BMM apportionments led to 
a higher hit rate, which might be desirable for identifying 
rare events (e.g., when a single source has a disproportional 
dominance).

For more general model testing purposes, and specifically 
for scientists, the CRPS provided a useful metric for assess-
ing both the accuracy and precision of the mixing model 
source apportionment. The CRPS should be particularly use-
ful for comparing models or tracer selection approaches. 
In addition, the NSE helped to identify whether the sedi-
ment fingerprinting approach was at all useful: if the value 
had been negative, one would be better off guessing that all 
sources contribute the same to the mixture. Such situations 
may arise when a model severely misclassifies the contribu-
tions from a given source.

Researchers should choose the best-suited evaluation 
metrics for their sediment fingerprinting models based on 
the purpose of their application. We find it unlikely that 
a single score will be sufficient for characterizing model 
performance. However, we recommend that researchers 
should always provide figures and evaluation metrics that 

characterize not only the model accuracy, but also their 
uncertainty. The current generation of mixing models 
provides distributions of source apportionments, and this 
invaluable information needs to be reported more regularly.

4.4 � How good is good enough?

A common difficulty in evaluating environmental models is 
defining what is good enough, or what are acceptable limits 
of model error (Beven 2009). A potential solution involves 
quantifying the error in the testing data, and then assuming 
that models cannot be expected to be more accurate than our 
ability to measure a system response. For sediment finger-
printing models being tested against artificial mixtures, it 
would be possible to define such limits based on the quantifi-
cation of analytical errors. The NSE can also provide a clear 
threshold for model failure, as mentioned above.

Another option is to define clear purposes for the sedi-
ment fingerprinting application, and then scrutinizing the 
model solutions for flaws, which would impede it from ful-
filling the stated objectives. This would not require fixed 
limits of acceptability, but rather an exploration of the poten-
tial errors and uncertainties in the approach. If the model 
results will be used for sediment management programs, the 
definition of what is tolerable error can be discussed with 
end users. This might include evaluating the capacity of the 
sediment fingerprinting approach to identify large contribu-
tions from a single source, or just highlighting the major 
sources.

4.5 � Model evaluation, limitations, and future 
perspectives

Ultimately, models are rarely tested to their core: what we 
evaluate is a combination of data, models, auxiliary hypoth-
eses, and potentially subjective choices made by the mod-
eler. Within our dataset and assumptions, we identified that 
both the BMM and MixSIAR approaches could not provide 
accurate and precise apportionments in mixtures for which 
relative contributions from a single source were higher than 
0.75. In addition, BMM apportionments were in some cases 
too uncertain to provide meaningful insight, while MixSIAR 
outputs more often failed to encompass known source values 
due to what seems to be unwarranted certainty. Both frame-
works were, however, able to represent the overall trends in 
the mixtures and to identify the major sources in them—
although to a lesser extent for croplands and decontaminated 
soils. For such purposes, we would not reject using either of 
the approaches with real sediment data from the Mano and 
Niida catchments.

Importantly, acceptable results from sediment finger-
printing mixing models tested against laboratory or virtual 
mixtures will not always translate into accurate catchment 
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source apportionments. The mixtures represent a best-case 
scenario, in which all sources are known, samples are rep-
resentative of the source material, particle size selectivity is 
negligible, and all tracers are within source range. Open sys-
tems are much more complicated, and testing fingerprinting 
apportionments requires an investigative approach, in which 
multiple sources of data are used to evaluate the consist-
ency, coherence, and consilience of models as hypotheses 
of the system (see Baker 2017). This type of “soft” evalua-
tion might entail incorporating processual understanding of 
source signal development into tracer selection approaches 
(Koiter et al. 2013), analyzing fingerprinting apportion-
ments against any kind of field observations, and compar-
ing unmixed source contributions to the results from erosion 
and sediment transport models (Laceby 2012; Wilkinson 
et al. 2013). The latter option seems attractive; however, as 
it essentially relies on a model comparison, it can at best 
provide mutually corroborative evidence. When results are 
contrasting, it might be difficult to identify which model is 
more wrong (Batista et al. 2021). When the results support 
one another, it provides multiple lines of evidence that mod-
els are able to simulate the behavior of the system.

5 � Conclusions

Here, we presented a comparison between laboratory and 
virtual mixtures used for evaluating sediment fingerprint-
ing source apportionments. In addition, we compared the 
bootstrapping BMM model with the MixSIAR Bayesian 
framework, while providing guidelines, scores, and metrics 
to improve model evaluation and the communication of the 
uncertainty in model outputs. Our results demonstrate that 
virtual mixtures can be as useful as laboratory mixtures for 
model testing, at least when analytical errors are negligible. 
As a large number of virtual mixtures can be easily created 
at no cost, we recommend that sediment fingerprinting stud-
ies strive to provide a model testing section in their results. 
We hope our data and code can incentivize others to include 
virtual mixtures in their work, and that model evaluation 
will become standard practice in sediment fingerprinting 
research.

As most models currently employed use stochastic 
frameworks, their modeled source apportionments should 
be tested as distributions, instead of point-based esti-
mates. Among the different scores and metrics employed 
for model evaluation in the current research, we found the 
CRPS particularly useful for scientists who wish to com-
pare modeling approaches or tracer selection methods, 
as this score quantifies both the accuracy and precision 
of the source apportionments. The modified NSE should 
also be useful for defining limits of acceptability of model 
error, and the contingency metrics might be interesting 

for managers who want to know if the fingerprinting 
approach can, at the very least, identify the major source 
in a catchment.

Finally, our model comparison illustrated a trade-off 
between accuracy and precision, with the BMM outputs 
being often too uncertain to provide robust source esti-
mates, and MixSIAR frequently failing to encompass 
the known source values. Moreover, model performance 
decreased with increasing source proportions. Both models 
were, however, able to identify major sources and to repre-
sent the general trends in the data. We therefore understand 
that a bootstrapped model like the BMM might be useful 
for scanning the uncertainties in the data. On the other 
hand, MixSIAR presents several advantages, such as the 
ability to incorporate covariates, prior information, con-
centration dependency, and different residual structures. 
Modelers can thus, on a case-by-case basis, decide which 
framework is more appropriate for their purposes and cor-
roborate their model selection with data and/ or research 
context.
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