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Abstract 
This paper discusses the design of a cylindrical test section subjected to a dynamic internal pressure for severe 

accident experiments performed at CEA. A commonly used method consists in computing the static equivalent 

response of the structure and then applying DLF coefficients. In this paper, Dynamic Load Factor (DLF) 

coefficients are obtained for cylinders.  

Based on a cylinder subjected to a stepped internal pressure, a set of dynamic equations is set up using the 

membrane theory with a modal approach (bending moments are neglected with this theory). As already commonly 

established, it is found that radial and axial displacements are coupled, resulting in a Multi-Degree Of Freedom 

(MDOF) model with coupling. The maximum DLF of the cylinder is therefore determined for both radial and axial 

displacements. It is found that the axial DLF reaches a maximum value when there is a specific ratio between the 

radius and the length (parameter 𝜋 𝑅 𝐿⁄  equal to 1.0), while the radial DLF does not depend on the geometry. 

Results are compared to Finite Elements dynamic simulations. On the whole, the dynamic results are validated for 

long cylinders (i.e. 𝜋 𝑅 𝐿⁄ ≤ 0.1). However, differences in the axial displacement tend to increase with an increase 

in the ratio 𝑅/𝐿 (shorter cylinders).  

The regular value of 2.0 established for the Single Degree Of Freedom model and for both axial and radial 

directions is exceeded when the radial and axial modes are coupled. The difference can be significantly higher 

(DLF≥ 3.9). 
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1 Introduction 
In the framework of nuclear severe accident analysis, the “Commissariat à l’Energie Atomique et aux Energies 

Alternatives” (CEA) considered the opportunity to build a new experimental facility [1-2]. It aims at analysing the 

reaction between corium and cooling fluid for Light Water Reactors (LWR) and Sodium Fast Reactors (SFR) on 

the one hand, and on studying relevant mitigation solutions on the other hand. These reactions produce pressure 

waves and involve materials or fluids that need to be contained in the facility. Vessels are used to guarantee this 

function, which means they must be designed with appropriate methods. Dynamic loads must be considered since 

the vessel response depends not only on the magnitude of the load, but also on its transient profile regarding the 

vessel characteristics (material, geometry). Such loads may lead to higher stress and deformation than those 

observed for the same loading applied statically, introducing the notion of Dynamic Load Factor (DLF). This 

expresses the ratio between dynamic displacement and static displaced, as defined in [3]. Usual design rules 

consider the value of 2.0 (see below for a justification in current situations) as a maximum DLF value, simplifying 

the processes related to dynamic effects with simple computation of static problems. However, this maximum 

value is proven wrong for the components of interest in the present research, yielding the need for more advanced 

analyses, in order to provide updated safe values of the DLF that can be used with static computation for the design 

of the considered vessels. It is reminded that such design rules are based on pure elastic computations, producing 

                                                           
1 Corresponding author 

E-mail address: christophe.garnier@cea.fr (C. Garnier) 

mailto:christophe.garnier@cea.fr


maximum values to be compared to relevant criteria depending on the considered failure modes of the structures 

that can be analysed with the model set up. This latter point is an engineering post-processing step beyond the 

scope of the proposed research. 

To this extent, the problem of cylindrical shells subjected to internal blast pressure has been extensively studied, 

either with analytical relations or with numerical techniques and for simple and complex loads [4-10]. One possible 

strategy is to establish and directly solve the dynamic equations of the cylinder taking into account the dynamic 

loading. A summary of the different dynamic equations is presented in [11] with multiple approaches. The simplest 

set of equations, namely the membrane theory, is based on membrane forces and disregards bending moments but 

considers thin cylinders. A set of dynamic equations are established and the modal behaviour is obtained as well 

as eigen-frequencies for torsional, radial, axial, circumferential and bending modes. It is shown that axial and 

radial displacements are related to each other (coupling effect) and interact. 

However, the latter theory does not take into account the effect of the thickness, known to have an impact, 

especially on radial eigen-frequencies. It is commonly considered that the membrane theory fits relatively well for 

the previously identified modes of the cylinder in the case of a “long” geometry, i.e. with a ratio between the length 

of the cylinder (L) and its radius (R) that is higher than unity and far from the extremities. In more general cases, 

bending moments must be added to membrane effects. For thin cylinders, such classical models can be cited: 

Donnell – Mushtari’s equations [12-13], Love – Timoshenko’s equations [14-15], and Flügge’s equations [16]. 

Accurate equations of motion are also proposed in [11]. These models can be considered to explicitly solve the 

dynamic response of cylinders under the applied loading. 

From a design viewpoint, however, only the maximum stress or strain response is relevant. Solving explicit 

equations does not always provide this information directly since the time of the maximum displacement cannot 

be predicted a priori for all types of loading. This is especially the case for suddenly applied constant internal 

pressure (herein referred to as “stepped internal pressure” for convenience), which has an infinite duration. Only 

this type of loading function has been considered in this study. Using this specific loading is relevant and 

conservative in the proposed research since it generally produces maximum amplification factors when comparing 

static and dynamic maximum stress levels for the simplest model based on Single Degree of Freedom (SDOF) 

with damping ignored and for the usual loading functions described in Biggs [3]. Same methodology can be used 

for other shapes of time dependence loading. 

A widely used engineering approach to design structures is based on the statements above and proposes to use the 

Dynamic Load Factor (DLF). For simple structures that can be modelled with the SDOF model, charts have been 

established for common simple loads [3]. These charts give the amplification needed to deduce the maximum 

elastic stress or strain in dynamic situations from equivalent and more affordable static computations. It is proven 

that the DLF has a maximum value of 2.0 for usual non-harmonic loads. This concept can be extended to simple 

Multiple-Degrees Of Freedom (MDOF) models and has been widely used to design beams and slabs for civil 

engineering applications [17-19], as well as spheres [20-21]. It has also been used to design cylinders using the 

SDOF model [22]. However, as previously mentioned, the coupling response between the radial and axial 

displacements for cylinders invalidates the SDOF or simple MDOF concepts. In this case, it is preferable to use 

an approach taking into account the relevant coupling and to determine the maximum value of the DLF. The 

obtained maximum value will be compared to the usual value of 2.0 for SDOF or simple MDOF models. 

Biggs [3] once again describes an efficient tool for establishing the dynamic equations of structures and for 

computing the DLF, namely the Lagrange’s equation. It can be applied in the case of multiple degrees of freedom: 

the structure is seen as an assembly of several SDOF models, each representing a natural mode. The equation is 

applied to each SDOF and the global response is computed as the sum of the responses of each mode. The DLF of 

each mode can be easily obtained and thus the global DLF as well. Some results are given for beams and slabs 

with the modal approach in [3]. In [23], the method is used to analyse the elastic pulse buckling of a thin cylindrical 

shell of finite length under cosine impulse. The equations take into account bending moments and only the first 

mode is considered. 

The specific case of cylinders subjected to internal moving blast pressure and the associated DLF has also been 

largely studied [24-26]. The results of the above-mentioned references show that the maximum DLF can largely 

exceed the usual value obtained for SDOF, which once again invalidates this concept for the design of cylindrical 

structures. 

Starting from the state-of-the-art report recalled above, this paper aims at providing a new and robust method to 

help improve engineering rules based on static computations. This method takes into account coupling between 

axial and radial modes and makes it possible to analytically determine maximum conservative values of the DLF 



for elastic cylindrical structures in situations where the classical value of 2.0 no longer holds. The simple case of 

an open cylinder simply supported is considered (i.e. radial displacement is fixed at both extremities, whereas axial 

displacement and rotations are free), with no condition on its shape. It is subjected to stepped internal pressure. 

First, the dynamic response for both radial and axial displacements is obtained on basis of a modal analytical model 

using the membrane theory and the Lagrange’s equation, resulting in a MDOF model with coupling. The maximum 

DLF values of the system for the axial and radial directions are conventionally deduced from the combination of 

the maximum DLF values computed for each modes. Conservative values (i.e. equal or higher than the maximum 

actual value) are finally established for design purposes. Contrary to solving explicit dynamic equations such as 

those presented in [11], this modal approach makes it possible to define analytical and conservative relations for 

the DLF. Relevance of the proposed approach is assessed through Finite Elements (FE) simulations of cylinders 

with various shapes (in term of ratio between radius and length). 

This paper is organized as follows. In section 2, the dynamic equations of the cylinders integrating the coupling 

effect are first established with a modal approach. The conservative maximum values for DLF are then computed 

for each mode and are combined to obtain the resulting global DLF for the structure. In section 3, these results are 

compared to FE simulations, and the relevance and limits of the model are discussed. 

2 DLF for cylinders based on a modal approach 

2.1 Review of the DLF and global methodology  
The Dynamic Load Factor, or DLF, is defined as follows, for a given location: 

𝐷𝐿𝐹(𝑧) =
max|𝑘(𝑡)|

|𝑘𝑠𝑡|
 (1) 

with 𝑘(𝑡) the displacement corresponding to time 𝑡, and 𝑘𝑠𝑡 the static displacement, both obtained at the same 

given location. For convenience, 𝐷𝐿𝐹(𝑧) is noted 𝐷𝐿𝐹. 

It can be computed for each point of the structure. The points of interest on cylinders are located at 𝑧 = 𝐿/2 (mid-

length) for radial displacement, and at 𝑧 = 0 or 𝑧 = 𝐿 (extremities) for axial displacement (see Fig. 1 for the 

reference coordinate system). 

The followed approach sets out to establish dynamic equations to express cylinder movements, broken down into 

a series of modes to compute the maximum DLF for each mode, before finally determining the maximum value 

of DLF for the global response. 

2.2 Dynamic modal equations for cylinders 
[3] proposes a method to obtain the modal dynamic response of structures using Lagrange’s equation. Based on 

energy concepts, it is a powerful tool for analysing dynamic systems. Biggs’s approach is based on the principle 

of virtual work and is expressed as follows for the specific case of an undamped structure: 

𝑑

𝑑𝑡
(
𝜕𝐾

𝜕𝑞𝑖̇

) −
𝜕𝐾

𝜕𝑞𝑖

+
𝜕𝑈

𝜕𝑞𝑖

=
𝜕𝑊

𝜕𝑞𝑖

 (2) 

with 𝐾, the kinetic energy, 𝑈, the strain energy, 𝑊, the work done by external forces, and 𝑞𝑖 a set of generalized 

coordinates. It provides the equations of motion for each parameter 𝑞𝑖 of the structure. 

This equation can be applied to open cylinders subjected to stepped internal pressure 𝑝(𝑡). The membrane theory 

is used according to [11], i.e.: bending moments are not taken into account, the cylinder is considered as a thin 

object (𝑅/ℎ >  10) and shell deformations are small in comparison with the shell thickness. The boundary 

conditions correspond to a simply supported cylinder therefore the loads and boundary conditions are 

axisymmetric, and only axisymmetric modes are taken into account. The material is linear elastic and isotropic 

with following material parameters: 𝜌 represents the density, 𝐸 Young’s modulus and 𝜈 Poisson’s ratio. No 

damping effect is taken into account. Fig. 1 presents the cylindrical shell geometry with 𝑅 representing the 

cylindrical tube mean radius, ℎ the thickness and 𝐿 the length. 𝑢, 𝑣, 𝑤 are the displacement components at the 

mean radius location (𝑟 = 𝑅) along the 𝑧 (axial), 𝜃 (transverse) and 𝑟 (radial) axes respectively. 



 

Fig. 1 

Cylindrical shell geometry with simply supported extremities 

 

The Lagrange equation is applied to a series of well-chosen modes of the cylinder, retrieving the complete 

displacement field when the mode index 𝑚 tends towards the infinite. The displacement functions for each mode 

are taken from [11]: 

𝑢𝑚(𝑧, 𝑡) = 𝐶1𝑚(𝑡) cos 𝜆𝑚
∗ 𝑧 

𝑣𝑚(𝑧, 𝑡) = 0 

𝑤𝑚(𝑧, 𝑡) = 𝐶3𝑚(𝑡) sin 𝜆𝑚
∗ 𝑧 

(3) 

with 𝜆𝑚
∗ =

𝑚 𝜋

𝐿
, 𝑚 is an integer characterizing the mode (𝑚 ≥ 1) and 𝐶1𝑚(𝑡), 𝐶3𝑚(𝑡) are time dependant functions. 

Only the odd modes are taken into account since the geometry and loading are symmetric with respect to the 

cylinder mid-length (𝑢𝑚 and 𝑤𝑚 are symmetrical with respect to this plane). Therefore, 𝑚 is expressed as: 𝑚 =

2 𝑛 + 1 with 𝑛 an integer (𝑛 ≥ 1) and equations (3) become: 

𝑢𝑛(𝑧, 𝑡) = 𝐶1𝑛(𝑡) cos 𝜆𝑛
∗ 𝑧 

𝑣𝑛(𝑧, 𝑡) = 0 

𝑤𝑛(𝑧, 𝑡) = 𝐶3𝑛(𝑡) sin 𝜆𝑛
∗ 𝑧 

(4) 

 

𝑤 is positive for displacement moving from the inner to the outer radius of the cylinder. 

The parameters 𝑞𝑖 considered in (2) are 𝐶1𝑛 and 𝐶3𝑛, which are representative of the radial and axial displacements 

for each mode. Therefore, the structure has 2 degrees of freedom per mode. 

(2) can thus be applied to each mode 𝑛. 

The kinetic energy 𝐾𝑛 is [11]: 

𝐾𝑛 =
1

2
 𝜌 ℎ ∫ ∫ [(

𝜕𝑢𝑛

𝜕𝑡
)

2

+ (
𝜕𝑤𝑛

𝜕𝑡
)

2

]
𝐿

0

2𝜋

0

 𝑅 𝑑𝜃 𝑑𝑧 =
1

2
 𝜋 𝜌 ℎ 𝑅 𝐿 (𝐶̇1𝑛

2 + 𝐶̇3𝑛
2 ) 

𝑑

𝑑𝑡
(

𝜕𝐾𝑛

𝜕𝐶̇1𝑛
) = 𝜋 𝜌 ℎ 𝑅 𝐿 𝐶̈1𝑛, 

𝑑

𝑑𝑡
(

𝜕𝐾𝑛

𝜕𝐶̇3𝑛
) = 𝜋 𝜌 ℎ 𝑅 𝐿 𝐶̈3𝑛. 

 



The strain energy 𝑈𝑛 is [11]: 

𝑈𝑛 =
𝐸 ℎ

2 (1 − 𝜈2)
 ∫ ∫ [(

𝜕𝑢𝑛

𝜕𝑧
−

𝑤𝑛

𝑅
)

2

+ 2 (1 − 𝜈) (
𝑤𝑛

𝑅
 
𝜕𝑢𝑛

𝜕𝑧
)]

𝐿

0

2𝜋

0

 𝑅 𝑑𝜃 𝑑𝑧

=
𝜋 𝐸 ℎ 𝐿 𝑅

2 (1 − 𝜈2)
 (𝜆𝑛

∗ 2 𝐶1𝑛
2 +

𝐶3𝑛
2

𝑅2
+

2 𝜈 𝜆𝑛
∗

𝑅
𝐶1𝑛 𝐶3𝑛) 

𝜕𝑈𝑛

𝜕𝐶1𝑛
=

𝜋 𝐸 ℎ 𝑅 𝐿 𝜆𝑛
∗

(1−𝜈2)
 (𝜆𝑛

∗  𝐶1𝑛 +
𝜈

𝑅
 𝐶3𝑛), 

𝜕𝑈𝑛

𝜕𝐶3𝑛
=

𝜋 𝐸 ℎ 𝐿

(1−𝜈2)
 (

𝐶3𝑛

𝑅
+ 𝜈 𝜆𝑛

∗  𝐶1𝑛). 

 

The work done by the external force (pressure) 𝑊𝑛 is: 

𝑊𝑛 = ∫ ∫ 𝑝(𝑡) 𝑤 𝑅 𝑑𝜃 𝑑𝑧
𝐿

0

2𝜋

0

=
4 𝜋 𝑅 𝑝(𝑡)

𝜆𝑛
∗

 𝐶3𝑛 

𝜕𝑊𝑛

𝜕𝐶1𝑛
= 0, 

𝜕𝑊𝑛

𝜕𝐶3𝑛
=

4 𝜋 𝑅 𝑝(𝑡)

𝜆𝑛
∗ . 

 

Finally, the following is true for each symmetric mode when using the mean radius of the cylinder: 

𝜌 𝐶̈1𝑛 +
𝐸 𝜆𝑛

∗ 2

(1 − 𝜈2)
 𝐶1𝑛 =

−𝐸 𝜆𝑛
∗  𝜈

(1 − 𝜈2) 𝑅
 𝐶3𝑛 

(5) 

𝜌 𝐶̈3𝑛 +
𝐸

(1 − 𝜈2) 𝑅2
 𝐶3𝑛 =

4 𝑝(𝑡)

𝜆𝑛
∗  𝐿 ℎ

−
𝐸 𝜆𝑛

∗  𝜈

(1 − 𝜈2) 𝑅
 𝐶1𝑛 

 

The set of equations (5) is coupled, except for 𝜈 = 0. It is a MDOF (2 degrees) model with coupling between the 

degrees of freedom in the general case and can be written in a matrix form. 

By considering 𝑋𝑛 = [
𝐶1𝑛

𝐶3𝑛
] and 𝜆𝑛 = 𝜆𝑛

∗  𝑅 =
(2 𝑛+1) 𝜋 𝑅

𝐿
, the set of equations (5) becomes: 

𝑋̈𝑛 =
−𝐸

(1 − 𝜈2) 𝜌 𝑅2
 [

𝜆𝑛
2 𝜆𝑛 𝜈

𝜆𝑛 𝜈 1
] 𝑋𝑛 + [

0
4 𝑅 𝑝(𝑡)

𝜆𝑛 𝜌 𝐿 ℎ
] = 𝐴𝑛 𝑋𝑛 + 𝐵𝑛 

The principal directions of the system can be used to provide uncoupled equations in a new frame where: 

𝑌̈𝑛 = 𝐷𝑛 𝑌𝑛 + 𝑃−1𝐵𝑛 

with 𝑃 representing the transformation matrix such as: 𝐴𝑛 = 𝑃 𝐷𝑛  𝑃−1, 𝐷𝑛 is a diagonal matrix, 

and 𝑌𝑛 = 𝑃−1𝑋𝑛 = [
𝑐1𝑛

𝑐3𝑛
]. 

𝑃 and 𝐷𝑛 can be written as follows: 

𝑃 =
1

2 𝜆𝑛 𝜈
[
𝜆𝑛

2 − 1 − √𝜑𝑛 𝜆𝑛
2 − 1 + √𝜑𝑛

2 𝜆𝑛 𝜈 2 𝜆𝑛 𝜈
] 

(6) 

𝐷𝑛 =
−𝐸

2 𝑅2 𝜌 (1 − 𝜈2)
 [
𝜆𝑛

2 + 1 − √𝜑𝑛 0

0 𝜆𝑛
2 + 1 + √𝜑𝑛

] 

with 𝜑𝑛 = (𝜆𝑛
2 − 1)2 + 4 𝜈2 𝜆𝑛

2  



In the new frame, a classical form of the SDOF dynamic equation is reached: 

𝑐̈1𝑛 + 𝜔1𝑛
2  𝑐1𝑛 = 𝐹1𝑛 

(7) 
𝑐̈3𝑛 + 𝜔3𝑛

2  𝑐3𝑛 = 𝐹3𝑛 

with 𝜔1𝑛, 𝜔3𝑛 the natural pulsation for each symmetric mode either in a radial or axial direction: 

𝜔1𝑛
2 =

𝐸

2 𝑅2 𝜌 (1 − 𝜈2)
[𝜆𝑛

2 + 1 − √𝜑𝑛] 

(8) 𝜔3𝑛
2 =

𝐸

2 𝑅2 𝜌 (1 − 𝜈2)
[𝜆𝑛

2 + 1 + √𝜑𝑛] 

𝜔1𝑛 ≤ 𝜔3𝑛 

 

The results for the natural pulsations of a cylinder as presented in [11] are retrieved. Correspondence between the 

two values of the natural pulsations and the type of mode (radial or axial) can be deduced from the relative rank 

of |𝛺𝑖𝑛
2 − 1| with 𝛺𝑖𝑛

2 =
𝜌

𝐸
 (1 − 𝜈2) 𝜔𝑖𝑛

2  𝑅2 (𝑖 = {1; 3}): the minimum value of |𝛺𝑖𝑛
2 − 1| between its two values 

|𝛺1𝑛
2 − 1| and |𝛺3𝑛

2 − 1| corresponds to the radial mode. This set of equations (8) can be applied to both symmetric 

and anti-symmetric modes (𝑚 can take both odd and even values). However, only symmetric modes are relevant 

to this problem. 

2.3 Computing the response of the system to a stepped internal pressure 
The specific case of a stepped internal pressure is now considered. The applied load is shown in Fig. 2 and can be 

described as follows: 

For 𝑡 ≤ 0: 𝑝(𝑡) = 0 

For 𝑡 ≥ 0: 𝑝(𝑡) = 𝑝0 

For 𝑡 = 0, 𝑢(𝑡 = 0) = 𝑤(𝑡 = 0) = 0 and 𝑢̇(𝑡 = 0) = 𝑤̇(𝑡 = 0) = 0. 

 

Fig. 2 

Stepped internal pressure 

 

The solutions of the uncoupled equations are classically given by: 

[
𝑐1𝑛

𝑐3𝑛
] = [

𝐾1𝑛 (1 − cos𝜔1𝑛𝑡)

𝐾3𝑛 (1 − cos𝜔3𝑛𝑡)
] 

with: 



[
𝐾1𝑛

𝐾3𝑛
] =

2 𝑅 𝑝0

𝜌 𝐿 ℎ

1

𝜆𝑛 √𝜑𝑛

[
 
 
 
 √𝜑𝑛 + 𝜆𝑛

2 − 1

𝜔1𝑛
2

√𝜑𝑛 − (𝜆𝑛
2 − 1)

𝜔3𝑛
2 ]

 
 
 
 

 (9) 

The solutions of the coupled equations (5) can then be deduced: 

𝑋𝑛 = [
𝐶1𝑛

𝐶3𝑛
] = 𝑃 𝑌𝑛 = [

𝑃11 𝐾1𝑛 (1 − cos𝜔1𝑛𝑡) + 𝑃12 𝐾3𝑛 (1 − cos𝜔3𝑛𝑡)

𝑃21 𝐾1𝑛 (1 − cos𝜔1𝑛𝑡) + 𝑃22 𝐾3𝑛 (1 − cos𝜔3𝑛𝑡)
] 

(10) 

 

The displacement for each mode is equivalent to the sum of two oscillating terms with different pulsations. Their 

relative magnitude depends on the ratio of 
𝑃11 𝐾1𝑛

𝑃12 𝐾3𝑛
 for 𝐶1𝑛 and 

𝑃21 𝐾1𝑛

𝑃22 𝐾3𝑛
 for 𝐶3𝑛. 

Note that similar relations can be obtained for other classical loading functions 𝑝(𝑡). 

The displacement response for each symmetric mode 2 𝑛 + 1 can be obtained from the set of equations (2) and 

(10). Finally, the global response of the cylinder is the sum of all modal contributions, i.e.: 

𝑢(𝑧, 𝑡) = ∑ 𝑢𝑛(𝑧, 𝑡)∞
𝑛=0  and 𝑤(𝑧, 𝑡) = ∑ 𝑤𝑛(𝑧, 𝑡)∞

𝑛=0 . 

2.4 Computing static deformation 
Static deformation can be obtained using a similar method without time dependency: 

𝑢𝑠𝑡𝑛
(𝑧) = 𝐶1𝑛 cos 𝜆𝑛

∗ 𝑧 

𝑣𝑠𝑡𝑛
(𝑧) = 0 

𝑤𝑠𝑡𝑛
(𝑧) = 𝐶3𝑛 sin 𝜆𝑛

∗ 𝑧 
(11) 

with 𝜆𝑛
∗  equal to the definition given for the set of equations (3). 

The loading is constant and equal to 𝑝0. From (5), it can be said that: 

𝜆𝑛 𝐶1𝑛 + 𝜈 𝐶3𝑛 = 0 

(12) 𝐸

(1 − 𝜈2) 𝑅2
 (𝜆𝑛 𝜈 𝐶1𝑛 + 𝐶3𝑛) =

4 𝑝0 𝑅

𝜆𝑛 𝐿 ℎ
 

 

This can be simplified as follows: 

𝐴𝑛 𝑋𝑛 = 𝐵𝑛 

with 𝑋𝑛 = [
𝐶1𝑛

𝐶3𝑛
], 𝐴𝑛 = [

𝜆𝑛 𝜈
𝜆𝑛 𝜈 1

] and 𝐵𝑛 = [
0

4 𝑝0 𝑅3 (1−𝜈2)

𝜆𝑛 𝐿 ℎ 𝐸

]. 

It can be easily solved: 

[
𝐶1𝑛

𝐶3𝑛
] =

4 𝑝0 𝑅

(2 𝑛 + 1) 𝜋 𝐸 ℎ
 [

𝜈 𝐿

(2 𝑛 + 1) 𝜋
𝑅

] 

The static displacements are equivalent to the sum of all the previous terms (𝐶1𝑛 and 𝐶3𝑛) combined with the 

spatial term from the set of relations (3). 

𝑢𝑠𝑡(𝑧) = ∑ 𝑢𝑠𝑡𝑛

∞

𝑛=0

=
4 𝑝0 𝜈 𝑅 𝐿  

𝜋2 𝐸 ℎ 
∑

1

(2 𝑛 + 1)2

∞

𝑛=0

 cos
(2 𝑛 + 1) 𝜋 𝑧

𝐿
 

(13) 



𝑤𝑠𝑡(𝑧) = ∑ 𝑤𝑠𝑡𝑛

∞

𝑛=0

=
4 𝑝0 𝑅

2

𝜋 𝐸 ℎ 
∑

1

2 𝑛 + 1

∞

𝑛=0

 sin
(2 𝑛 + 1) 𝜋 𝑧

𝐿
 (14) 

 

With regard to axial displacement (equation (13)): 

For 𝑧 = 0 and 𝑧 = 𝐿, cos
(2 𝑛+1) 𝜋 𝑧

𝐿
= ±1, and ∑

1

(2 𝑛+1)2
∞
𝑛=0 =

𝜋2

8
  

𝑢𝑠𝑡(𝑧 = 0) = −𝑢𝑠𝑡(𝑧 = 𝐿) =
𝜈 𝑝0 𝑅 𝐿

2 𝐸 ℎ
 (15) 

 

With regard to radial displacement (equation (14)): 

∑
1

2 𝑛+1

∞
𝑛=0 sin

(2 𝑛+1) 𝜋 𝑧

𝐿
=

𝜋

4
 for 0 ≤ 𝑧 ≤ 𝐿. 

Therefore, for 𝑧 = 𝐿 2⁄ : 

𝑤𝑠𝑡(𝑧 = 𝐿 2⁄ ) =
𝑝0 𝑅

2

𝐸 ℎ
 (16) 

 

These results are consistent with the formulas given in [29] for infinite thin cylinders subjected to internal pressure. 

Because of the membrane theory, the results for finite cylinders are equivalent to infinite geometry except for 

extremities. These relations can be used to compute the DLF. 

 

2.5 Computing the DLF for each mode 
The set of equations (10) is used to compute the maximum value of the DLF for the stepped pressure loading and 

for each mode. 

In the following, the shape of the cylinder (mean radius 𝑅 and length 𝐿) is defined with the parameter 𝜆0 =

𝜆𝑛(𝑛 = 0) =
𝜋 𝑅

𝐿
. Therefore, any value of 𝜆𝑛 can be expressed using this parameter: 𝜆𝑛 = (2 𝑛 + 1) 𝜆0. 

 

2.5.1 Radial displacement 
With regard to radial displacement and based on (10), 𝐶3𝑛 can be expressed as: 

𝐶3𝑛 = 𝑃21 𝐾1𝑛 (1 − cos𝜔1𝑛 𝑡) + 𝑃22 𝐾3𝑛 (1 − cos𝜔3𝑛 𝑡) 

0 ≤ 1 − cos𝜔𝑖𝑛 𝑡 ≤ 2 (𝑖 = {1;  3}) 

𝑃21 𝐾1𝑛 and 𝑃22 𝐾3𝑛  can be computed from equations (6) and (9). 

Since √𝜑𝑛 ≥ 𝜆𝑛
2 − 1, 𝐾3𝑛 is always positive and so is 𝑃22 𝐾3𝑛 as 𝑃22 is equal to 1. 

It can also be shown that √𝜑𝑛 + 𝜆𝑛
2 − 1 is always positive for 𝜆𝑛 ≥ 0, therefore 𝐾1𝑛 is always positive and so is 

𝑃21 𝐾1𝑛 since 𝑃21 is equal to 1.  

Finally, overestimation of this sum of cosine terms is classically obtained by summing the maximum value of each 

term. 



Thus: 

0 ≤ 𝐶3𝑛 ≤ 2 (𝑃21 𝐾1𝑛 + 𝑃22 𝐾3𝑛) =
8 𝑅2 𝑝0

𝜋 𝐸 ℎ

1

(2 𝑛 + 1)
 

The radial displacement can be obtained with equation (3). The DLF can therefore be evaluated for 𝑧 = 𝐿 2⁄ . It 

therefore results that: 

𝑤𝑛 (𝑧 =
𝐿

2
) = 𝐶3𝑛 sin

(2 𝑛 + 1) 𝜋

2
= (−1)𝑛 𝐶3𝑛 

For even values of n (n  2 k): 0 ≤ 𝑤4 𝑘+1(𝑧 =
𝐿

2
) ≤

8 𝑅2 𝑝0

𝜋 𝐸 ℎ

1

4 𝑘+1
 

For odd values of n (n  2 k+1): 
−8 𝑅2 𝑝0

𝜋 𝐸 ℎ

1

4 𝑘+3
≤ 𝑤4 𝑘+3 (𝑧 =

𝐿

2
) ≤ 0 

(17) 

As the DLF is computed with the absolute values, the following is true whatever the value of 𝑛: 

|𝑤𝑛 (𝑧 =
𝐿

2
)| ≤

8 𝑅2 𝑝0

𝜋 𝐸 ℎ

1

(2 𝑛 + 1)
 

Based on equation (16), the maximum value of the DLF (based on the absolute value of displacement) in the radial 

direction for each symmetric mode and for 𝑧 = 𝐿 2⁄  is: 

𝐷𝐿𝐹𝑛 (𝑤 (𝑧 =
𝐿

2
)) =

|𝑤𝑛|

|𝑤𝑠𝑡|
≤

8

(2 𝑛 + 1) 𝜋
 (18) 

It is observed a posteriori that this DLF does not depend on the geometry of the cylinder and especially on the 

ratio 𝑅/𝐿. It only depends on the considered symmetric mode. Such results are observed for SDOF model with 

same loading function (Biggs [3]). 

 

2.5.2 Axial displacement 
With regard to the axial direction and from (10), 𝐶1𝑛 can be expressed as: 

𝐶1𝑛 = 𝑃11 𝐾1𝑛 (1 − cos𝜔1𝑛𝑡) + 𝑃12 𝐾3𝑛 (1 − cos𝜔3𝑛𝑡) 

From (6) and (9): 𝑃11 𝐾1𝑛 = −
4 𝑅 𝑃0 𝜈 

𝜌 𝐿 ℎ

1

√𝜑𝑛 𝜔1𝑛
2  and 𝑃12 𝐾3𝑛 =

4 𝑅 𝑃0 𝜈 

𝜌 𝐿 ℎ

1

√𝜑𝑛 𝜔3𝑛
2 . 

An overestimation of this sum of cosine terms is classically obtained by summing the maximum value of each 

term. 

Thus, it results that: 

𝐶1𝑛 =
4 𝑅 𝑃0 𝜈 

𝜌 𝐿 ℎ

1

√𝜑𝑛

 (
1 − cos𝜔3𝑛 𝑡

𝜔3𝑛
2 −

1 − cos𝜔1𝑛 𝑡

𝜔1𝑛
2 ) (19) 

 

Since 𝜔3𝑛 ≥ 𝜔1𝑛, the maximum absolute value of (19) is given by: 

|𝐶1𝑛| ≤
4 𝑅 𝑃0 𝜈 

𝜌 𝐿 ℎ

1

√𝜑𝑛

 |
0

𝜔3𝑛
2 −

2

𝜔1𝑛
2 | =

16 𝜈 (1 − 𝜈2) 𝑅3 𝑝0

𝐸 𝐿 ℎ

1

√𝜑𝑛 (𝜆𝑛
2 + 1 − √𝜑𝑛)

 

The axial displacement can be expressed with equation (3). For 𝑧 = 0 and 𝑧 = 𝐿: 

𝑢𝑛(𝑧 = 0, 𝑡) = 𝐶1𝑛(𝑡) = −𝑢𝑛(𝑧 = 𝐿, 𝑡) 



Thus: 

|𝑢𝑛(𝑧 = 0)| = |𝑢𝑛(𝑧 = 𝐿)| ≤
16 𝜈 (1 − 𝜈2) 𝑅3 𝑝0

𝐸 𝐿 ℎ

1

√𝜑𝑛 (𝜆𝑛
2 + 1 − √𝜑𝑛)

 

 

With (15), 𝐷𝐿𝐹𝑛(𝑢) can be expressed for 𝑧 = 0 or 𝑧 = 𝐿 (highest axial static displacement): 

𝐷𝐿𝐹𝑛(𝑢(𝑧 = 0)) = 𝐷𝐿𝐹𝑛(𝑢(𝑧 = 𝐿)) =
𝑀𝑎𝑥(|𝑢𝑛|)

|𝑢𝑠𝑡|
≤

32 (1 − 𝜈2)

(2 𝑛 + 1)2 𝜋2

𝜆𝑛²

√𝜑𝑛 (𝜆𝑛
2 + 1 − √𝜑𝑛)

 (20) 

 

Unlike radial displacement, the axial DLF this time depends on both the geometry (ratio 𝑅/𝐿 through the parameter 

𝜆𝑛) and Poisson’s ratio, which can be attributed to the more complex nature of the axial displacement induced by 

internal radial pressure loading. 

The function 𝑓(𝜆𝑛) =
𝜆𝑛
2

√𝜑𝑛 (𝜆𝑛
2+1−√𝜑𝑛)

 presents a maximum value for 𝜆𝑛 = 𝜆𝑐 = 1 ∀ 𝑛. This value is equal to 

𝑓(𝜆𝑛 = 1) =
1

4 𝜈 (1−𝜈)
. Therefore, the maximum possible value of 𝐷𝐿𝐹𝑛(𝑢) is reached for 𝜆𝑐  ∀ 𝑛, with 

𝑀𝑎𝑥(𝐷𝐿𝐹𝑛(𝑢)) =
8

(2 𝑛+1)2 𝜋2

1+𝜈

𝜈
. 

This maximum value corresponds to the switch between the two modes, i.e. the radial and axial modes: for 𝜆𝑛 <
1, 𝜔1𝑛 corresponds to the axial mode whereas 𝜔3𝑛 represents the radial mode. Modes are inverted for 𝜆𝑛 > 1. 

 

2.5.3 Evolution of the DLF in both directions with respect to the shape of the cylinder 
Fig. 3 presents the variations in the DLF with respect to 𝜆0 (𝜆0 ≠ 0) for both directions and for the first symmetric 

mode (i.e. 𝑛 = 0): 𝐷𝐿𝐹𝑛=0(𝑢) represents the DLF for the axial direction whereas 𝐷𝐿𝐹𝑛=0(𝑤) represents the radial 

direction. 𝜈 is considered equal to 0.33. The dashed curves represent the specific values of 𝐷𝐿𝐹 = 1.0 (red curve) 

and 𝐷𝐿𝐹 = 2.0 (green curve). First, 𝐷𝐿𝐹𝑛=0(𝑢) > 𝐷𝐿𝐹𝑛=0(𝑤) in the case of some values for 𝜆0. Moreover, both 

DLF are always greater than 1.0 (red curve), which means that the displacement is always amplified. Therefore, 

𝐷𝐿𝐹𝑛=0(𝑤) is always higher than 2.0 (green curve), whereas 𝐷𝐿𝐹𝑛=0(𝑢) only exceeds this specific value in the 

case of some values for 𝜆0 (around 𝜆0=1). This means that the usual value for the SDOF model (𝐷𝐿𝐹 = 2.0) can 

be exceeded in both directions. 

 

Fig. 3 

𝐷𝐿𝐹𝑛=0(𝑢) and 𝐷𝐿𝐹𝑛=0(𝑤)with respect to 𝜆0 for the first symmetric mode (𝑛 = 0) and 𝜈=0.33 



 

2.6 Estimating the global DLF taking into account all the modes 
In this section, an estimation of the value of the DLF is presented for each direction taking into account all modes.  

The global response of the cylinder is equivalent to the sum of all the modes. Therefore, for each position 𝑧, the 

DLF can be expressed as: 

𝐷𝐿𝐹(𝑢) =
𝑚𝑎𝑥|∑ 𝑢𝑛(𝑧, 𝑡)∞

𝑛=0 |

|∑ 𝑢𝑠𝑡𝑛
(𝑧)∞

𝑛=0 |
=

𝑚𝑎𝑥|∑ 𝐶1𝑛(𝑡) cos 𝜆𝑛
∗ 𝑧∞

𝑛=0 |

|∑ 𝐶1𝑛
∞
𝑛=0  cos 𝜆𝑛

∗ 𝑧|
 

(21) 

𝐷𝐿𝐹(𝑤) =
𝑚𝑎𝑥|∑ 𝑤𝑛(𝑧, 𝑡)∞

𝑛=0 |

|∑ 𝑤𝑠𝑡𝑛
(𝑧)∞

𝑛=0 |
=

𝑚𝑎𝑥|∑ 𝐶3𝑛(𝑡) sin 𝜆𝑛
∗ 𝑧∞

𝑛=0 |

|∑ 𝐶3𝑛
∞
𝑛=0  sin 𝜆𝑛

∗ 𝑧|
 

The maximum value of both DLF can be found with respect to the position 𝑧. However, in this paper, only the 

following cases are considered: 𝑧 = 𝐿/2 for the radial direction, and 𝑧 = 0 or 𝑧 = 𝐿 for the axial direction. 

Therefore, the set of equations (21) becomes: 

𝐷𝐿𝐹(𝑢(𝑧 = 0)) =
𝑚𝑎𝑥|∑ 𝐶1𝑛(𝑡)∞

𝑛=0 |

|∑ 𝐶1𝑛
∞
𝑛=0 |

 

(22) 

𝐷𝐿𝐹(𝑤(𝑧 = 𝐿 2⁄ )) =
𝑚𝑎𝑥|∑ 𝐶3𝑛(𝑡)∞

𝑛=0 |

|∑ 𝐶3𝑛
∞
𝑛=0 |

 

 

Previous expressions used to compute the DLF of each mode for 𝐶1𝑛(𝑡) and 𝐶3𝑛(𝑡) can be employed to estimate 

the global resulting DLF. It should be remembered that some conservative assumptions have been applied to obtain 

these relations. It appears that the axial DLF depends on 𝜆𝑛 (which depends on the cylinder shape with 𝜆𝑛 =
(2 𝑛 + 1) 𝜆0. 

Several methods can be used to compute the global DLF. 

The most conservative method involves directly summing all the previously computed DLF values for each mode. 

It is noted as 𝐷𝐿𝐹𝑠𝑢𝑚. This implies that all the oscillating terms reach their maximum value at the same time so 

they can be summed together. For each direction: 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢,𝑤) = ∑ 𝐷𝐿𝐹𝑛(𝑢, 𝑤)

∞

𝑛=0

 
(23) 

Another approach involves using the Root Mean Square (RMS) relation based on the DLF for each mode: 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝑤) = √∑(𝐷𝐿𝐹𝑛(𝑢,𝑤))
2

∞

𝑛=0

 (24) 

The conservatism of this relation cannot be guaranteed a priori. This point is analysed in section 3 of the paper. 

These two relations can be applied for both directions, axial and radial directions.  

The global DLF for the radial direction is computed at 𝑧 = 𝐿 2⁄  and is designated as 𝐷𝐿𝐹𝑠𝑢𝑚(𝑤) or 𝐷𝐿𝐹𝑅𝑀𝑆(𝑤) 

depending on the method used to compute it. The global DLF for the axial direction is computed at 𝑧 = 0 and 𝑧 =
𝐿. As the response proved to be symmetric, it has the same value for both locations. It is noted as 𝐷𝐿𝐹𝑠𝑢𝑚(𝑢) or 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢) depending on the method used to compute it. 

2.6.1 Radial displacement 
With regard to the radial direction, the set of equations (17) can be used for each mode. Instead of considering the 

absolute value for one single mode, the sign of each term must be taken into account when contributing to the sum. 



However, in order to maximize the value of the global DLF, the following considerations must be taken into 

account: 

 For even values of 𝑛 (𝑛  2 k): 0 ≤ 𝑤𝑛(𝑧 =
𝐿

2
) ≤

8 𝑅2 𝑝0

𝜋 𝐸 ℎ

1

4 𝑘+1
 

 For odd values of 𝑛 (𝑛  2 k+1): 𝑤𝑛 (𝑧 =
𝐿

2
) ≤ 0 

 The displacement tends to be outwards. Therefore, the maximum displacement should be positive. 

Thus, only even values of 𝑛 are taken into account, corresponding to 𝑚 = 4 𝑘 + 1 with 𝑘 integer and 𝑘 ≥ 0. In 

order to obtain homogenous notations, 𝑘 is replaced with 𝑛 (𝑛 integer and 𝑛 ≥ 0). This is a very conservative 

assumption. With (16), it results in: 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑤) =
8

𝜋
 ∑

1

(4 𝑛 + 1) 

∞

𝑛=0

 
(25) 

This series diverges and no overestimate can be defined. However, a truncation of this series can provide an 

overestimate. The number of modes to be taken into account can be obtained from the convergence analysis needed 

to select the main modes contributing to the dynamic response described in section 3. 

The series containing all the terms (either negative or positive) converges, which means the DLF can be expressed 

as follows: 

8

𝜋
 ∑

(−1)𝑛

(4 𝑛 + 1) 

∞

𝑛=0

= 2.0 ≤ 𝐷𝐿𝐹𝑠𝑢𝑚(𝑤) 

This result shows that the classical DLF value for the SDOF model is exceeded for the cylinder. 

With the RMS method: 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑤) =
8

𝜋
√∑

1

(4 𝑛 + 1)2

∞

𝑛=0

 (26) 

The results are not precisely known. However, it is worth noting the following relations: 

1 ≤ ∑
1

(4 𝑛 + 1)2

∞

𝑛=0

≤ ∑
1

(2 𝑛 + 1)2
=

𝜋2

8

∞

𝑛=0

 

8

𝜋
≤ 𝐷𝐿𝐹𝑅𝑀𝑆(𝑤) ≤

4

√2
 

This result is still higher than 2.0. 

The previous results are summarised in table 2. 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑤) 
2.0 ≤ 𝐷𝐿𝐹𝑠𝑢𝑚(𝑤) ≤

8

𝜋
 ∑

1

(4 𝑘 + 1) 

𝑛

𝑘=0

 

(truncation up to mode n) 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑤) 
8

𝜋
≤ 𝐷𝐿𝐹𝑅𝑀𝑆(𝑤) ≤

4

√2
 

Table 1: Synthesis of the different methods and approximations used to compute the global radial DLF 

 



2.6.2 Axial displacement 
With regard to the axial direction, the sum method results in the following for 𝑧 = 0 or 𝑧 = 𝐿 and from equation 

(20): 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢) =
32 (1 − 𝜈2)

𝜋2
∑

1

(2 𝑛 + 1)2

𝜆𝑛²

√𝜑𝑛 (𝜆𝑛
2 + 1 − √𝜑𝑛)

∞

𝑛=0

 (27) 

The result of this series is not known. However, an upper bound can be found by considering that the maximum 

value of 
𝜆𝑛²

√𝜑𝑛 (𝜆𝑛
2+1−√𝜑𝑛)

 is obtained for 𝜆𝑛 = 𝜆𝑐 = 1. It should be remembered that 𝜆𝑛 depends on 𝑛. This quantity 

is first maximized for the first symmetric mode, i.e. 𝑚=1 or 𝑛=0: 𝜆0 = 1. Therefore: 

𝜆𝑛 = 𝑚 𝜆0 = 𝑚 = (2 𝑛 + 1) ∀ 𝑛 

The associated DLF (𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = (2 𝑛 + 1))) can be expressed as follows: 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢) ≤ 𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) =
32 (1 − 𝜈2)

𝜋2
∑

1

√𝜑𝑛 ((2 𝑛 + 1)2 + 1 − √𝜑𝑛)

∞

𝑛=0

 (28) 

with 𝜑𝑛 expressed as: 𝜑𝑛 = ((2 𝑛 + 1)2 − 1)2 + 4 𝜈2 (2 𝑛 + 1)2. 

This expression no longer depends on 𝜆𝑛 and consequently can be applied to any cylinder. However, the exact 

result is unknown and has to be approximated by means of truncation. This point is discussed in part 3. 

Nevertheless, the series is always higher than its first term (i.e. 𝑛=0): 

8 (1 + 𝜈)

𝜋2 𝜈
≤ 𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) 

The minimum value can be obtained for 𝜈 = 0.5: 𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) ≥
24

𝜋2. This result is higher than the 

usual value of 2.0 for the SDOF model. 

A further conservative simplification can be applied, i.e. 𝜆𝑛 = 𝜆𝑐 = 1 whatever the value considered for 𝑛. The 

following simplifications therefore apply: 

32 (1−𝜈2) 𝜆𝑛²

𝜋2 √𝜑𝑛 (𝜆𝑛
2+1−√𝜑𝑛)

=
8 (1+𝜈)

𝜋2 𝜈
 and ∑

1

(2 𝑛+1)2
=

𝜋2

8

∞
𝑛=0 . 

The associated DLF (𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = 1 )) is then: 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢) ≤ 𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = 1 ) =
(1 + 𝜈)

𝜈
 (29) 

In this case, the exact result can be computed, though more conservative. 

In order to illustrate the previous results, an example is provided here below. The axial DLF is computed with the 

first three symmetric modes (𝑚 = 2 𝑛 + 1 ≤ 5) and by using the three previous methods. The value of 𝜆0 = 0.5 

is considered. Fig. 4 illustrates the different intermediate and final results. The basic method uses the full 

expression of the DLF (𝐷𝐿𝐹𝑠𝑢𝑚(𝑢) with (27)). For 𝜆0 = 0.5, the DLF values for the first three symmetric modes 

correspond to markers 1, 2 and 3. The value 4 is the sum of the three previous terms. The second method 

(𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) with relation (28)), which is more conservative, does not take into account the actual 

value of lambda, but sets it at 𝜆0 = 1. The results for the three considered modes correspond to markers 5, 6 and 

7. The resulting DLF is associated with marker 8. Finally, the last method is the most conservative 

(𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = 1 ) with relation (29)): it considers that 𝜆𝑛 is equal to 1.0 for all modes (all odd values of 𝑚). 

The associated markers are referenced 9, 10 and 7. The resulting sum corresponds to marker and line 11. The 

relative rank between the methods (reflecting their conservatism) is highlighted with this simple example. 



 

Fig. 4 

Computing the axial DLF using the different methods for 𝜆0 = 0.5 and for 𝜈 = 0.33 

 

With the RMS method and for 𝑧 = 0 or 𝑧 = 𝐿: 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢) = √∑(𝐷𝐿𝐹𝑛(𝑢))
2

∞

𝑛=0

 (30) 

 

As previously explained for the sum method, this quantity can be maximized by first considering 𝜆0 equal to 1.  

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) =
32 (1 − 𝜈2)

𝜋2
√∑ (

1

√𝜑𝑛  ((2 𝑛 + 1)2 + 1 − √𝜑
𝑛
)
)

2
∞

𝑛=0

 
(31) 

with 𝜑𝑛 expressed as: 𝜑𝑛 = ((2 𝑛 + 1)2 − 1)2 + 4 𝜈2 (2 𝑛 + 1)2. 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢) ≤ 𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) 

This expression no longer depends on 𝜆𝑛 and can be applied to any cylinder. However, the exact result is not 

known and has to be approximated with truncation. Nevertheless, just like the sum method, the series is always 

higher than its first term (i.e. 𝑛=0): 

8 (1 + 𝜈)

𝜋2 𝜈
≤ 𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) 

Like the sum method, 𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) ≥
24

𝜋2. This result is higher than the usual value of 2.0 for the 

SDOF model. 

 

Again like the sum method, a further conservative simplification can be considered, i.e. that 𝜆𝑛 = 𝜆𝑐 = 1 whatever 

the value for 𝑛. Therefore, the following simplification can be applied: 



𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = 1) =
8 (1 + 𝜈)

𝜋2 𝜈
√∑

1

(2 𝑛 + 1)4

∞

𝑛=0

 

And given that: 

∑
1

(2 𝑛 + 1)4

∞

𝑛=0

=
𝜋4

96
 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = 1) =
2

√6

(1 + 𝜈)

𝜈
=

2

√6
 𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = 2 𝑛 + 1) 

(32) 

and: 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢) = √∑(𝐷𝐿𝐹𝑛(𝑢))
2

∞

𝑛=0

≤ 𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = 1) 

 

The previous results are summarised in table 2. 

 Full expression First conservative 

approximation 

𝜆0 = 1 

Second conservative approximation 

𝜆𝑛 = 1 ∀ 𝑛 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢) Equation (27) 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢) 

Truncation 

needed 

Equation (28) 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) 

Truncation needed 

≥
24

𝜋2
 

Equation (29) 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = 1 ) 

=
(1 + 𝜈)

𝜈
 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢) Equation (30) 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢) 

Truncation 

needed 

Equation (31) 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) 

Truncation needed 

≥
24

𝜋2
 

Equation (32) 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = 1) 

=
2

√6

(1 + 𝜈)

𝜈
 

=
2

√6
 𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = 1 ) 

Table 2: Summary of the different methods and approximations used to compute the global axial DLF 

 

3 Assessment of the model and discussion 
In this section, the above analytical results are compared with FE simulations.  

The case in question consists of an open cylindrical test section. The loading and boundary conditions are identical 

to the configuration described in section 2, with an internal pressure of 30.6 MPa. The test section is made of 

aluminium. Table 3 specifies the parameters applied to the cylinder.  

Density (𝜌) 2685 kg/m3 

Young’s modulus (E) 72300 MPa 

Poisson’s ratio (𝜈) 0.33 

Mean radius (𝑅) 0.1 m 

Thickness (ℎ) 0.007 m 

Table 3: Parameters of the test section 



The previously defined radius, 𝑅, is considered to be equal to the mean radius for the FE model. 

The ratio 𝑅/ℎ corresponds to a thin cylinder. The cylinder length 𝐿 can be deduced from the applied value for 𝜆0. 

The following four cases are considered: 𝜆0 = 0.1, 𝜆0 = 0.5, 𝜆0 = 1.0 and 𝜆0 = 2.0. For 𝜆0 < 1.0, the cylinder 

is considered as long cylinder. 

In the following sub-sections, the numerical tools used are first presented, i.e. the FE method and Discrete Fourier 

Transform (DFT). Then, both the FE and analytical models are compared on basis of the static displacement, the 

modal frequencies and the dynamic response. A preliminary analysis of the dynamic displacement is then provided 

to determine the number of modes to be integrated into the calculation (truncation of the modes). Finally, the DLF 

are determined for each cylinder so the effect of the parameter 𝜆0 can also be analysed.  

As mentioned above, the locations relevant to the problem are the extremities (𝑧 = 0, 𝑧 = 𝐿), and the mid-length 

of the cylinder (𝑧 = 𝐿/2). 

3.1 Numerical methods 
Two numerical tools are used: the FE Method (FEM) and a discrete formulation of Fast Fourier Transform (FFT), 

namely Discrete Fourier Transform (DFT). 

A FE model is established to validate the previous dynamic analytical model. It is an axisymmetric transient model 

with simply supported extremities (𝑤(𝑡, 𝑧 = 0) = 𝑤(𝑡, 𝑧 = 𝐿) = 0). As the geometry and the loading are 

symmetric with respect to the mid-plane at 𝑧 = 𝐿 2⁄ , only a half-length is taken into account with symmetric 

conditions (𝑢(𝑡, 𝑧 = 𝐿 2⁄ ) = 0). 

Regular quadrangles are used for meshing. The mesh is fine enough to capture all the main modes contributing to 

the dynamic response. Radial displacement is fixed at 𝑧 = 0 for the node located on mean radius (mid-thickness 

of the wall). Internal pressure is applied to the inner radius. Fig. 5 illustrates the model in question. Cast3M [27] 

is used for simulations. 

 

Fig. 5 

FE transient axisymmetric model (half model with symmetrical condition) 

 

As a preliminary step, it is worth completing a modal analysis to compute the eigen-modes and frequencies, and 

to compare the results with the previous analytical frequencies (given on basis of the parameters 𝜔1,𝑛 and 𝜔3,𝑛) 



given by the set of relations (8). The previous half model only provides symmetric modes, which are the only 

modes participating in the dynamic response for this type of loading. 

Therefore, the dynamic response can be obtained thanks to a transient analysis. The time step ∆𝑡 is taken low 

enough to capture all the main modes contributing to the dynamic response. Its value is determined on basis of a 

classical convergence analysis of the dynamic results. The modes taken into account are progressively increased 

until the results stabilise.  

The nodal displacements are post-processed at their previously defined locations (𝑧 = 0 and 𝑧 = 𝐿 2⁄ ) so they can 

be compared against the previously defined locations. 

An equivalent model is used in a static configuration in order to compute the DLF. The results for the previous 

quantities are retrieved. 

The second tool used is the discrete formulation of FFT. FFT is a very powerful tool for analysing the dynamic 

response of a structure. Its discrete formulation (Discrete Fourier Transformation, DFT) implemented in the Python 

code [28] is used (1-D discrete Fourier Transforms, see scipy.org). It can be used to obtain the natural frequencies 

of the modes contained in the dynamic response and to compare the different models (i.e. FE and analytical 

models). However, the quality of results depends on both the quantity of data and the time step. As previously 

explained, the maximum time step (or sampling frequency) depends on the maximum frequency of the modes 

involved in the response. Its value should not be too high in order to include the main modes. The other coupled 

parameter is the duration of the simulated response. The DFT frequency spacing (∆𝑓) depends on both these 

parameters. The longer the duration is, the lower the frequency spacing (∆𝑓). The objective value for ∆f is fixed 

around 60 Hz, which requires an acceptable amount of samples. Therefore, the frequency values retrieved by the 

DFT (𝑓) should be interpreted taking into account this interval: the actual frequency can be limited between 𝑓 −
∆𝑓 2⁄  and  𝑓 + ∆𝑓 2⁄ . 

3.2 Static response 
The static displacements must be calculated in order to evaluate the DLF. In this part, they are calculated using the 

analytical relations given in section 2.4 and then compared to the results obtained with the FE model (static model). 

Table 4 presents the results for both the analytical and FE models. Relative differences are low for radial 

displacement. The axial displacement is relatively low for the lowest value of 𝜆0 and increases with this parameter. 

The results for the axial displacement with the membrane theory are less accurate for short cylinders. Bending 

moments should be taken into account. Moreover, it should be remembered that the internal pressure is applied on 

the inner radius for the FE model, whereas it is applied on the mean radius for the analytical model. Consequently, 

the resulting difference is higher for thick cylinders, which is the case for the considered cylinders when 𝜆0 

increases.  

 

   𝜆0 

   0.1 0.5 1.0 2.0 

𝑤𝑠𝑡  Analytical mm 0.605 0.605 0.605 0.605 

FE mm 0.590 0.590 0.590 0.610 

Relative 

difference 

% 2.5 2.5 2.6 -0.9 

𝑢𝑠𝑡 Analytical mm 3.13 0.627 0.273 0.157 

FE mm 2.90 0.565 0.313 0.127 

Relative 

difference 

% 8.1 11.0 14.8 23.4 

Table 4: Static displacements 

 

3.3 Modal analysis 
Even if this paper does not set out to determine the validity of the results of the modal analysis using the membrane 

theory, frequency values have an impact on the dynamic results and are used to define the time step. Therefore, 

these results should be analysed in a first step. 



Tables 5 and 6 present the natural frequencies for the axial and radial modes respectively. Here, both the symmetric 

and anti-symmetric modes are computed. The relative difference is calculated using the FE results as the reference: 
(𝑓𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙−𝑓𝐹𝐸)

𝑓𝐹𝐸
 (%). Even if a larger number of modes are used in the dynamic response, only the first main 

modes are presented. 

The axial modes are practically identical between the two models. With regard to the radial modes, no significant 

difference can be observed for the lowest value of 𝜆𝑛=0 (𝜆𝑛=0 = 0.1). When 𝜆𝑛=0 increases, differences can be 

observed for the modes higher than the first mode, as shown in Fig. 6. The difference increases with 𝜆 and with 

the mode number 𝑚 (harmonics). However, the value for the first natural mode tends to be very close to the 

reference (FE value). These observations highlight the accuracy of the membrane theory for radial modes as long 

as the cylinder is long; this is true except for the first mode for which the results correlate well for any cylinder 

shape. 

This analysis is supplemented with the DFT applied to the dynamic response. 

 

𝜆0  Unit Axial mode 

𝒎 

1 3 5 

0.1 

Analytical results Hz 825 2465 4060 

FE results Hz 825 2465 4060 

Relative difference % 0.00 0.00 0.00 

0.5 

Analytical results Hz 4060 13617 22093 

FE results Hz 4060 13617 22087 

Relative difference % 0.00 0.00 0.02 

1.0 

Analytical results Hz 10090 26422 43843 

FE results Hz 10090 26413 43793 

Relative difference % 0.00 0.03 0.12 

2.0 

Analytical results Hz 17799 52575 87537 

FE results Hz 17797 52492 87103 

Relative difference % 0.01 0.16 0.50 

Table 5: Frequencies for axial modes – comparison between analytical results and FE results 

 



𝜆0  Unit Radial mode 

𝒎 

1 3 5 7 

0.1 

Analytical 

results 

Hz 
8754 8795 8899 9130 

FE results Hz 8759 8800 8904 9134 

Relative 

difference 

% 
-0.06 -0.06 -0.05 -0.05 

0.5 

Analytical 

results 

Hz 
8899 7960 8176 8220 

FE results Hz 8904 7965 8233 8460 

Relative 

difference 

% 
-0.05 -0.07 -0.69 -2.84 

1.0 

Analytical 

results 

Hz 
7161 8204 8240 8249 

FE results Hz 7162 8329 9245 11631 

Relative 

difference 

% 
-0.01 -1.50 -10.9 -29.1 

2.0 

Analytical 

results 

Hz 
8119 8246 8254 8256 

FE results Hz 8140 10224 18207 31060 

Relative 

difference 

% 
-0.26 -19.3 -54.7 -73.4 

Table 6: Frequencies for radial modes – comparison between analytical results and FE results 

 

 

Fig. 6 

Comparison of the relative differences between odd radial modes (odd values of 𝑚 from 1 to 7) for several values 

of 𝜆0 (𝜆0 = {0.1; 0.5; 1.0; 2.0} 

 

3.4 Dynamic response 
As a first step, the influence of the number of modes taken into account is studied for the analytical model in order 

to establish a reference “converged” model. This reference model is then compared with the FE model. 



3.4.1 Influence of the number of modes 
The influence of the number of modes is studied for the analytical model. The number of modes taken into account 

in the dynamic response is progressively increased for both directions independently. 

Radial displacement must systematically contain a pair of symmetric modes. As explained in section 2.6.1, the 

radial displacement is positive for even values of 𝑛 (𝑛 = 2 𝑘), whereas it is negative for odd values 𝑛 (𝑛 = 2 𝑘 +
1). Therefore, the dynamic response must contain the set of values for 𝑛 composed of even values of 𝑛 (2 𝑘) and 

its corresponding odd value (𝑛 + 1). It should be pointed out that this constraint does not apply to axial 

displacement. 

The parameters analysed are the maximum and minimum displacements observed over the time range of the 

simulation. These parameters are considered since they are used to compute the DLF. 

First, the analytical model is considered. Fig. 7 illustrates the variations in the relative difference applied to the 

maximum and minimum values of the radial displacement for the cylinder with 𝜆0 = 0.1. The reference 

displacement is considered with the first two symmetric modes (𝑚 is equal to 1 and 3). 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑤) =
𝑀𝑎𝑥(𝑤) − 𝑀𝑎𝑥(𝑤,𝑚 = {1,3})

𝑀𝑎𝑥(𝑤, 𝑛 = {0,1})
 (%) 

The influence of the radial and axial modes on the radial displacement is successively analysed. A total of 16 radial 

modes are needed to observe stabilization in the results, whereas 6 axial modes are sufficient. The inflection of the 

radial displacement curve observed for 10 modes corresponds to the shift between the natural pulsations and their 

corresponding modes (either radial or axial modes). 

 

Fig. 7 

Influence of the axial and radial modes on the radial displacement of the cylinder with 𝜆0 = 0.1 and with the 

analytical model – a) radial modes; b) axial modes 

 

Fig. 8 presents the previous relative differences computed with the axial displacement. The results do not seem to 

stabilise with 16 radial modes, whereas only 8 axial modes are required. However, the variation is very low with 

16 modes, which is why this number of radial modes is retained.  



 

Fig. 8 

Influence of the axial and radial modes on the axial displacement of the cylinder with 𝜆0 = 0.1 and with the 

analytical model 

 

In conclusion, the first 16 radial modes and the first 8 axial modes are taken into account for the case with 𝜆0 =
0.1. 

Similar analyses are performed for other values of 𝜆0. The results are summarised in table 7 (values for 𝜆0 are also 

recalled). The parameters for following parts are also given: the highest number of required modes are retained 

and applied to both displacements. A higher number of modes is required for the radial modes than for the axial 

modes.  

 

 Radial displacement Axial displacement Applied parameters 

𝜆0 Number of 

axisymmetric 

radial modes 

Number of 

symmetric 

axial modes 

Number of 

symmetric 

radial modes 

Number of 

symmetric 

axial modes 

Number of 

symmetric 

radial modes 

Number 

of 

symmetric 

axial 

modes 

0.1 16 8 16 6 16 8 

0.5 10 4 16 4 16 4 

1.0 12 4 14 4 14 4 

2.0 8 4 14 4 14 4 

Table 7: Number of modes taken into account in the dynamic response 

 

3.4.2 Comparison with FE results 
Fig. 9 presents the dynamic displacement response for radial and axial displacements, computed with both models 

(analytical dynamic model and FE model). Five graphs have been plotted for each value of 𝜆0. The first three 

curves concern the radial displacement and represent the dynamic displacement response, the maximum and 

minimum values (envelope) and the absolute difference between the FE and analytical responses. The remaining 

two curves concern the axial displacement with the displacement response and the absolute difference between FE 

and analytical responses. 

For the lowest value of 𝜆0, both the radial and axial displacements are globally in good agreement with the FE 

results, especially at the beginning of the transient. However, differences appear in the radial displacements for 𝑡 

greater than 0.004 ms. Maximum and minimum values tend to be very close up to 𝑡 of around 0.010 ms. With 

regard to the axial displacement, the curve plotting the difference between the response of the two models is 



periodic at the beginning, following the response. The curve becomes slightly disrupted for 𝑡 higher than 0.004 

ms, and this difference increases. There are some differences between the two responses, which appear during the 

transient. These differences may be induced by either slight shifts in the frequencies or differences in the 

contribution of the modes. It should also be noted that the mean radius is considered in the analytical response, 

and in particular the effect of external forces (internal pressure) is computed with this value whereas pressure is 

applied to the internal radius for the FE model.  

For 𝜆0 higher than 0.1, differences are observed earlier during the transient and they tend to be higher, especially 

for the radial direction. The radial displacement for the highest value of lambda (shortest cylinder) does not 

correspond between the two models. 

These observations highlight the limit of the theory used (membrane theory), which correlate well for long 

cylinders. In addition, as previously explained, the internal pressure is applied to the inner radius for the FE model 

whereas it is applied to the mean radius for the analytical model. The DFT method provides further quantitative 

information to analyse the previous response and is presented in the next sub-section. 

 



 

 



 

Fig. 9 

Radial (𝑤) and axial (𝑢) displacements for several values of 𝜆0 – comparison between the analytical model and 

the FE model– a) 𝜆0 = 0.1; b) 𝜆0 = 0.5; c) 𝜆0 = 1.0; d) 𝜆0 = 2.0 

 

3.5 DFT analysis 
DFT spectra for both directions are shown in Fig. 10. Previous dynamic responses are compared (dynamic 

analytical model and FE simulations). This numerical method provides additional information compared with 

modal analysis: not only the frequency of the modes is provided, but also the contribution of these modes to the 

dynamic response. Both these parameters establish a “signature” of the dynamic response for each cylinder. This 

comparison should reflect the results observed for the DLF.  

Detailed quantified results of the radial displacement and the axial displacement are presented in table 8 and table 

9 respectively. The frequency and magnitude of the different main peaks are also indicated. Frequency values are 

compared with results of the modal analysis from section 3.3, which also provides the type of mode (axial or 

radial) and its number (odd values of 𝑚). 𝑓=0 corresponds to the “mean” value and contains the contributions of 

all modes. 

First of all, the frequency values from DFT are in good agreement with the modal analysis, at least for the main 

frequencies (i.e. for the lowest values of 𝑚). Some harmonics cannot be retrieved. However, for the lowest values 

of 𝜆0 or when using the analytical model, the radial modes are so similar to each other that they cannot be 

discriminated with the applied DFT parameters. It should be remembered that the accuracy of the results depends 

on the DFT parameters (number of samples and time step). Conclusions are similar to those from the modal 

analysis (section 3.3): the main radial mode frequencies correlate well between the two models for long cylinders. 

They are in very good agreement for axial displacements whatever the shape of the cylinder.  

The mean value (𝑓=0) and the two fundamental modes (in bold in the tables) are compared to better understand 

the magnitude of the peaks. Mean values are globally constant with 𝜆0 for radial displacements whereas they 

decrease for axial displacements (shorter cylinders result in lower axial displacement). With regard to the radial 



direction, the results are in very good agreement between the two models, even if differences seem to increase 

slightly for 𝜆0 = 2.0. Moreover, the highest differences can be observed for radial modes whereas axial mode 

contributions are relatively similar between the two models. These observations are probably due to the difference 

in the modal behaviour along the radial direction, as shown in section 3.3. However, DFT analysis suggests that 

harmonic radial modes reveal differences not only in their frequencies but also in the extent of their contribution. 

Differences with regard to the axial direction tend to be higher than for the radial direction and seem to increase 

with 𝜆0. The same conclusions as for radial displacements can be applied to axial displacements. In addition, the 

mean displacement (𝑓=0) seems to be over-estimated by the analytical model. In addition, for 𝜆0 ≥ 1.0, the main 

contribution corresponds to a radial mode whereas it is an axial mode for 𝜆0 ≤ 1.0. 

In conclusion, DFT is an efficient tool for characterizing and comparing the response of the cylinder. It can be 

used to identify the main frequencies contributing to the response and their relative impact. The results show good 

agreement for the radial displacement when considering the mean value (𝑓=0) and the two fundamental modes. 

Differences are slightly higher for the axial displacement, even for the mean value (𝑓=0). Spectra are especially 

similar for the lowest value of 𝜆0 even if slight differences can be observed, which should partially explain the 

difference observed with the dynamic response. The differences tend to be slightly more pronounced for higher 

values of 𝜆0. This is probably due to the shift in frequencies for the harmonic radial modes between the analytical 

and FE models. However, DFT suggests that there is also a difference in the magnitude of the contribution for 

these modes. 

The DFT results could be improved with more appropriate parameters (reduce of Δ𝑓) but this would require 

increasing the quantity of data. 

 



 

 



 

Fig. 10 

DFT of displacements for several values of 𝜆0 – comparison between the analytical model and the FE model – a) 

𝜆0 = 0.1; b) 𝜆0 = 0.5; c) 𝜆0 = 1.0; d) 𝜆0 = 2.0 

 



𝜆0 m 

R/A 
Analytical model FE model DFT 

parameter 

Relative 

difference 

on 

magnitude 

Modal 

analysis 

DFT Modal 

analysis 

DFT 

f f Magnitude f f Magnitude Δf 

Hz Hz mm Hz Hz mm Hz % 

0.1 - - 0 1.185 - 0 1.182 59.5 -0.3 

1/A 825 834 0.083 825 834 0.076 9 

3/A 2465 2441 0.025 2464 2441 0.024 4 

5/A 4060 4048 0.027 4060 4048 0.023 17 

1/R 8754 8752 0.727 8759 8752 0.730 -0.4 

3/R 8795 - - 8800 - -  

5/R 8899 - - 8904 8871 0.169  

7/R 9130 9109 0.072 9134 9109 0.067 7 

0.5 - - 0 1.185 - 0 1.179 60.1 0.5 

1/A 4060 4087 0.095 4060 4087 0.089 7 

3/A 13617 13643 0.008 13617 13583 0.007 14 

1/R 8899 8895 0.630 8904 8895 0.680 -7 

3/R 7960 7933 0.177 7965 7993 0.153 16 

5/R 8176 8174 0.181 8233 8234 0.155 17 

1.0 - - 0 1.181 - 0 1.178 60.1 0.3 

1/A 10090 10097 0.250 10090 10097 0.254 -2 

3/A 26422 26443 0.001 26413 27405 0.004 -75 

1/R 7161 7152 0.489 7162 7152 0.470 4 

3/R 8204 - - 8329 8354 0.174  

5/R 8240 8234 0.189 9245 9255 0.093 103 

2.0 - - 0 1.181 - 0 1.219 60.1 -3 

1/A 17799 17789 0.007 17797 17789 0.007 0 

1/R 8119 8113 0.736 8140 8113 0.523 40 

3/R 8246 8233 0.215 10224 10217 0.152 41 

Table 8: DFT results for the radial displacement (𝒘(𝒛 = 𝑳 𝟐⁄ )) 

 

𝜆0 m 

R/A 
Analytical model FE model DFT 

parameter 

Relative 

difference 

on 

magnitude 

Modal 

analysis 

DFT Modal 

analysis 

DFT 

f f Magnitude f f Magnitude Δf % 

Hz Hz mm Hz Hz mm Hz  

0.1 - - 0 6.250 - 0 5.838 59.5 7 

1/A 825 834 2.481 825 834 2.311 7 

3/A 2465 2441 0.227 2464 2441 0.215 6 

5/A 4060 4048 0.118 4060 4048 0.114 4 

1/R 8754 8752 0.026 8759 8752 0.021 24 

3/R 8795 - - 8800 - -  

5/R 8899 8871 0.021 8904 8871 0.023 -9 

7/R 9130 9109 0.026 9134 9109 0.029 -10 

0.5 - - 0 1.240 - 0 1.131 60.1 9 

1/A 4060 4087 0.447 4060 4087 0.418 7 

3/A 13617 13643 0.019 13617 13583 0.025 -24 

1/R 8899 8895 0.134 8904 8895 0.125 7 

3/R 7960 7933 0.057 7965 7993 0.058 -2 

5/R 8176 - - 8233 8234 0.025  

1.0 - - 0 0.616 - 0 0.545 60.1 13 

1/A 10090 10097 0.253 10090 10097 0.254 -0.4 

3/A 26422 26443 0.002 26413 26383 0.004 -50 

1/R 7161 7152 0.492 7162 7152 0.473 4 

3/R 8204 8173 0.020 8329 8354 0.023 -13 

5/R 8240 8294 0.017 9245 9255 0.009 89 

2.0 - - 0 0.309 - 0 0.254 60.1 22 

1/A 17799 17789 0.032 17797 17789 0.038 -16 

1/R 8119 8113 0.16 8140 8113 0.111 44 

3/R 8246 8233 0.017 10224 10217 0.01 70 

Table 9: DFT results for the axial displacement (𝒖(𝒛 = 𝟎)) 



 

3.6 DLF analysis 
In this subsection, the DLF values of the global response (i.e. taking into account several or all modes) are 

computed for the four previous cylinders. These values can be obtained using the analytical relations established 

in section 2.6. They can also be evaluated directly by using the maximum value from the dynamic response (i.e. 

temporal response presented in section 3.4) obtained either with the dynamic analytical model or with the previous 

FE model. The results are presented and compared in the following subsections. 

 

3.6.1 DLF using analytical relations 
The DLF values are calculated using the analytical relations given in section 2.6. It should be remembered that 

these relations are derived from the dynamic analytical equations using conservative simplifications. Two methods 

are considered to combine the modes: the sum method and the RMS method. The results obtained with both 

methods are compared in this section. The specific values corresponding to the four considered cylinders are 

indicated. When the exact result is not known, the sum is approximated by taking into account the maximum 

number of symmetric modes deduced from the analysis presented in subsection 3.4.1 (truncation of the series): the 

first 16 modes are selected. Concerning the radial DLF, only half of the 16 modes must be considered since only 

even values of 𝑛 are retained to compute the DLF (see subsection 2.6.1, positive displacement). 

All the results are shown in table 10 for the radial direction and in table 11 for the axial direction. Fig. 11 presents 

the variations in the axial DLF computed with the different established relations. 

The results with the two methods are different. The RMS method is systemically lower with a relative difference 

from around -10 % to -35 %. Concerning the axial direction, differences tend to be rather low between the two 

considered conservative approximations (𝐷𝐿𝐹(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) and 𝐷𝐿𝐹(𝑢, 𝜆𝑛 = 1)). The relative difference 

between the second approximation (𝐷𝐿𝐹(𝑢, 𝜆𝑛 = 1)) and the first approximation (𝐷𝐿𝐹(𝑢, 𝜆𝑛 = (2 𝑛 + 1))) is 9 

% with the sum method and less than 0.1 % with the RMS method. Fig. 11 confirms that the axial DLF computed 

with the full expression reaches a maximum value for 𝜆0 = 1. 

 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑤) Reference of equation Equation (25) 

Approximation with the first 

8 terms 

4.01 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑤) Reference of equation Equation(26) 

Approximation with the first 

8 terms 
2.63 (≤

4

√2
≈ 2.83) 

Relative difference (RMS vs sum) -35 % 

Table 10: Global radial DLF from analytical model 

 



  Full expression First conservative 

approximation 
𝜆0 = 1 

Second conservative 

approximation 
𝜆𝑛 = 1 ∀ 𝑛 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢) Reference of 

equation 

Equation (27) 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢) 

Equation (28) 
𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) 

Equation (29) 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = 1)=
(1+𝜈)

𝜈
 

Approximation 

with the first 16 

terms 

See Fig. 11 

Depends on 𝜆0 

3.64 

(≥
24

𝜋2) 
3.98≤

(1+𝜈)

𝜈
≈4.03 

𝜆0 𝐷𝐿𝐹(𝑢) 

0.1 2.09 

0.5 2.51 

1.0 3.64 

2.0 2.41 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢) Reference of 

equation 

Equation (30) 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢) 

Equation (31) 
𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) 

Equation (32) 
𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = 1)

=
2

√6

(1 + 𝜈)

𝜈
 

Approximation 

with the first 16 

terms 

See Fig. 11 

Depends on 𝜆0 

3.27 

(≥
24

𝜋2) 
3.29≈

2

√6

(1+𝜈)

𝜈
 

𝜆0 𝐷𝐿𝐹(𝑢) 

0.1 1.65 

0.5 2.07 

1.0 3.27 

2.0 2.06 

Relative difference (RMS vs 

sum) 
𝜆0 𝐷𝐿𝐹(𝑢) -10 % -17 % 

0.1 -21 % 

0.5 -18 % 

1.0 -10 % 

2.0 -15 % 

Table 11: Global axial DLF from analytical model 

 

Fig. 11 

Global axial DLF with the different methods based on analytical model (𝜈 = 0.33) 

 



3.6.2 DLF from dynamic response and comparison 
In this subsection, global DLF are computed from the dynamic response, which was obtained either from the 

analytical model or from the FE simulations. The maximum displacements of the dynamic response (see subsection 

3.4 for the model set-up and the parameters) are established. The DLF can then be calculated by using the previous 

static displacements (see subsection 3.2). Finally, all the results are compared with those obtained using the 

analytical relations from subsection 3.6.1. 

When computing the maximum displacements of the dynamic response, the time corresponding to this maximum 

cannot be predicted a priori. Therefore, the dynamic response should be computed for any time, which is obviously 

impossible. For the dynamic response, the number of cycles taken into account is indicated. It is computed on basis 

of the lowest frequency of the different modes considered with the analytical model. 

The different results for the global DLF (analytical relations and dynamic response using the analytical model) are 

compared with the value computed with the FE dynamic response with the relation: relative 

difference=
(𝐷𝐿𝐹−𝐷𝐿𝐹𝐹𝐸)

𝐷𝐿𝐹𝐹𝐸
 (%). 

Tables 12 and 13 present the results for the radial and axial DLF respectively.  

First, the values computed with the dynamic response (itself obtained with the analytical model) are very close to 

those obtained with the FE model: the maximum absolute relative difference is 9 %. Even if the analytical dynamic 

response presents some differences with the FE model, the impact is negligible on the DLF estimation. Most of 

the cases underestimate the DLF when the analytical model is used (i.e. DFL with analytical dynamic model < 

DLF with FE model). 

The following observations can be made with respect to estimating the DLF using the different methods and 

equations established on basis of the analytical model. With regard to the radial direction, the sum function is 

always conservative as expected (i.e. the DLF is higher than the actual value obtained with the dynamic response), 

whereas the RMS function is generally not conservative except for one case (shortest cylinder). The latter should 

not be used for design purposes. The sum function presents relatively high differences with the dynamic response 

(either with analytical or FE models). As previously explained, the time of the maximum response is not known, 

so that maximum value obtained with the dynamic response cannot be set as a reference. The most conservative 

value obtained with the sum function is around 4.01, which is much higher than the regular value of 2.0 obtained 

with a SDOF model. Differences between the DLF obtained with the dynamic responses are low, and seem to 

decrease with 𝜆0. The DLF analysis in section 3.5 concluded that the mean displacement and the fundamental 

mode contributions are in good agreement, whereas differences are higher for harmonics. This suggests that the 

mean displacement and the fundamental modes are the main contributors to the DLF value and are correctly 

represented with the analytical model from the DLF point of view. 

Concerning the axial direction, the sum method with the most conservative approximation is always conservative 

as expected. The relative difference may be very high, up to 102 %, but this relation does not take into account the 

shape of the cylinder. For 𝜆0 = 1, difference is negligible (2%). Less conservative models reduce the difference, 

but they can underestimate the DLF on the other hand. The sum function using the full expression is the closest to 

the actual (i.e. FE) results (the maximum absolute relative difference is 7 %). Concerning the DLF computed with 

the RMS function, values are not systematically conservative, even if estimations are improved with the most 

conservative approximation (𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = 1)). As previously proved for the radial direction, the RMS method 

should not be used for design. Differences between the dynamic responses are low and seem to increase with 𝜆0, 

as was concluded with the DLF analysis. The same conclusions as for dynamic radial displacement can be applied 

for axial displacement: the mean displacement and the fundamental modes are the main contributors to the DLF 

value and are correctly represented with the analytical model from a DLF perspective. 

As a conclusion, the relation using the sum of all the DLF with the most conservative approximation (i.e. 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = 1)) can be used for design as it always provides conservative values. The relation is very simple 

and it avoids computing the dynamic response of the system, which is more complex and cannot guarantee the 

conservatism of the result. However, this relation does not take into account the effect of geometry and 

consequently can be highly conservative for values of 𝜆0 that are far from 1.0. In this case, the second relation 

using the less conservative approximation (𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = (2 𝑛 + 1))) can be used as it slightly reduces the 

difference. As for radial direction, the maximum DLF value is much higher than 2.0. (up to nearly 4.0). 

 



  𝜆0 

  0.1 0.5 1.0 2.0 

Analytical model 𝐷𝐿𝐹𝑠𝑢𝑚(𝑤) 4.01 

Relative 

difference 

26 % 25 % 38 % 59 % 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑤) 2.63 

Relative 

difference 

-17 % -18 % -9 % 4 % 

From dynamic 

response 

3.02 2.90 2.79 2.55 

Relative 

difference 

-5 % -9 % -4 % 1 % 

FE From dynamic 

response 

3.18 3.20 2.90 2.52 

Number of cycles 

(FE & analytical) 

 13863 68776 169446 135098 

Table 12: DLF - radial displacement (𝒘(𝒛 = 𝑳 𝟐⁄ )) 

 

   𝜆0 

   0.1 0.5 1.0 2.0 

Analytical model Analytical 

relations with 

the sum 

function 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢) 2.09 2.51 3.64 2.41 

Relative difference 6 % -0.4 % -6 % -7 % 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) 3.64 

Relative difference 85 % 44 % -6 % 41 % 

𝐷𝐿𝐹𝑠𝑢𝑚(𝑢, 𝜆𝑛 = 1) 3.98 

Relative difference 102 % 58 % 2 % 54 % 

Analytical 

relations with 

the RMS 

function 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢) 1.65 2.07 3.27 2.06 

Relative difference -16 % -18 % -16 % -20 % 

𝐷𝐿𝐹𝑅𝑀𝑆(𝑢, 𝜆𝑛 = (2 𝑛 + 1)) 3.27 

Relative difference 66 % 30 % -16 % 26 % 

Explicit 

dynamic 

response 

From dynamic response 1.96 2.43 3.62 2.39 

Relative difference -1 % -4 % -7 % -8 % 

FE  From dynamic response 1.97 2.52 3.89 2.59 

Number of cycles 

(FE & analytical) 

  13863 68776 169446 135098 

Table 13: DLF - axial displacement (𝒖(𝒛 = 𝟎)) 

4 Conclusion 
This paper addresses the issue of designing a cylindrical test section subjected to a dynamic internal pressure for 

severe accident experiments. A commonly used method consists in computing the static equivalent response of 

the structure and then applying DLF coefficients. DLF coefficients are therefore obtained for cylinders in this 

paper.  

To do this, a coupled MDOF analytical model of the cylinder subjected to a stepped internal pressure is set up. 

This model is based on modal response. The associated maximum DLF of the cylinder is estimated for both radial 

and axial displacements for each mode and finally for the global response. It has been found that the axial DLF 

reaches a maximum for the specific value 𝜆0 =
𝜋 𝑅

𝐿
, while the radial DLF does not depend on the geometry. 

Conservative values have been established using very simple formulas and without computing the dynamic 

response of the cylinder. However, as the geometry (parameter 𝜆0) is not taken into account, differences (i.e. 

conservatism) can be high for some cases. These differences can be reduced, but this requires more complex 

relations, even if they are less cumbersome than computing the dynamic response. The sum method is 

recommended compared with the RMS method for design, as conservative values are always obtained, especially 

when using the second approximation for axial displacement (𝐷𝐿𝐹(𝑢, 𝜆𝑛 = 1 )). 



The results have been compared with FE simulations. For long cylinders (i.e. 𝜆0 ≤ 0.1), the dynamic results are 

globally validated, as are the DLF computed from the dynamic response. However, the difference for the axial 

DLF increases with the increase in 𝜆0 (shorter cylinders), contrary to radial DLF. Nevertheless, the impact on DLF 

is low: the maximum relative difference is 9 %. DFT comparisons of both dynamic responses shows that the two 

models share very similar results for the mean displacement and for the fundamental mode of both radial and axial 

displacements. This result suggests that these parameters are the main characteristic values to consider from a DLF 

point of view. 

When the radial and axial modes are coupled, the regular value of 2.0 established for SDOF model is exceeded. 

The difference can be significantly higher (DLF up to 4.0 with analytical model, 3.9 with FE but for a finite range 

of time). 

The membrane theory has been applied. It essentially neglects the bending moments. Therefore, some differences 

appear in the dynamic response, which increase as 𝜆0 increases. The actual radial harmonic modes shift from the 

frequencies given with the analytical model. The results may be improved by taking into account these moments, 

as done in Chengyi et al. (1996). A model is also proposed in [11] for axisymmetric loading. Results should not 

only depend on the ratio 𝑅/𝐿 but also on the thickness. However, the resulting analytical equations would be more 

sophisticated. 

The cylinder is simply supported and considered to be open-ended, which does not correspond to the usual 

configuration of a pressurized vessel. This model can be extended to closed cylinders. Preliminary analyses have 

shown different results from those presented in this paper. Regular boundary conditions (e.g. one extremity fixed 

while the other is free) are more difficult to solve. The model can also be easily extended to other simple typical 

loads, which can be modelled with classical mathematical functions (such as triangular or exponential loads). 

The results should be assessed with dedicated experiments. However, the cylinder response depends on both the 

boundary conditions and the applied loading. Previous boundary conditions cannot be easily reproduced 

experimentally. The model will need to be modified. The other point concerns the loading, which will not 

correspond to the ideal load applied to the previous models. Therefore, it should be dynamically characterized as 

well as its spatial distribution thanks to different sensors. Finally, structural damping may also affect the dynamic 

response of the actual structure, which is not taken into account for the model.  
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