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Abstract

Contrastive Predictive Coding (CPC) (van den
Oord et al., 2018) has been successfully used to
learn representations for different signals (audio,
text, images). It uses an autoregressive model-
ing and contrastive estimation to learn long-term
temporal relation inside the raw signal while re-
maining robust to local noise. The result is a
higher level signal representation useful to solve
downstream tasks. Using CPC to learn represen-
tations for videos remains challenging due to the
structure and the high dimensionality of the signal.
In this work, we propose different implementa-
tions of CPC for video signal. The learned repre-
sentation increases the performance of an action
recognition classifier.

1. Introduction

An important field in video analysis is action recognition
or detection. This task allows to automatically understand
the behavior of people in a video. Action recognition state
of the art performances are obtained by supervised learning
of deep convolutional neural networks which requires a lot
of labeled data. These large datasets are costly and time
consuming to acquire. That is the reason why unsupervised
methods have been developed to leverage unlabeled videos
and to bypass the need of annotated data. The principle
of most unsupervised methods is to predict a part of the
data from another one, for instance, the future of the video
from the past, as in (Mathieu et al., 2016) or (Finn et al.,
2016). To predict future events, the model should under-
stand the movement involved and action performed in the
video and therefore learn useful representations for down-
stream tasks, such as video classification. As in (van den
Oord et al., 2018), we chose not to predict raw data but
representations instead. This unable the model to focus on
high-level information. In (Vondrick et al., 2015), future
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frame representations are also predicted. However, a pre-
trained CNN is used for the representations whereas in our
work, the representation is learned in the same time. Our
main results use optical flow as input as in (Wei et al., 2018)
and predicts future optical flow representations. (Luo et al.,
2017) also predicts future optical flow but using a codebook
instead of a learned representation. The main contributions
are to show that it is possible to learn good video represen-
tations thanks to CPC and to evaluate its usefulness on the
task of action recognition. In this paper, different formu-
lations, architectures and parameters are evaluated to get
more insight on the model.

2. Related work

In this section, we review two main categories of prior work,
unsupervised video representation learning and CPC that
will be applied to videos in our method.

2.1. Unsupervised video representation learning

Video representation learning methods split in two main
families, generative methods and self-supervised methods.
On one hand, generative methods output raw data such as
image frames or optical flows. Their main problem is that
they need to model low level information to get back to
the pixel level. On the other hand, self-supervised methods
extract high level information from the data and predict this
information. However, they require well engineered tasks
so that the network cannot exploit trivial solutions. In the
next sections, different methods of these two families are
briefly described.

2.1.1. GENERATIVE METHODS

Two main tasks are presented in the state of the art: future
frames prediction and video generation.

In (Liang et al., 2017), a variational autoencoder predicts
the next frame and optical flow of the video. To improve
the results, it takes advantage of the duality between two
consecutive images and optical flow. It uses the pre-trained
encoder to improve action recognition results.

In (Vondrick et al., 2016), videos are generated from noise
using a Generative Adversarial Network. Two streams are
used, one for the background and one for the foreground.
The discriminator serves as a pre-trained network for action
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recognition.

2.1.2. SELF-SUPERVISED LEARNING

The authors of (Misra et al., 2016) propose to use temporal
order to learn representations. Three frames are randomly
selected and the network must classify if they are in a correct
order or not. (Fernando et al., 2016) improves it by asking
the network to select the video in the wrong order against N
videos in the correct order.

A spatio-temporal puzzle task is proposed in (Ahsan et al.,
2018). Given different crops in an image, the network must
be able to replace them in space and time. (Kim et al., 2018)
extends this problem to spatio-temporal volumes.

In (Wei et al., 2018), segments of optical flows are used to
predict if the video is playing forwards or backwards. The
network must learn semantics to be able to determine it.

2.2. Contrastive Predictive Coding (CPC)

The authors of (van den Oord et al., 2018) propose a model
that predicts future high-level representations. Parts of the
data are encoded into representations (21, . . ., zr) through
an encoder network. An autoregressive model aggregates
the representations up to the current part and returns a con-
text ¢;. It contains the information from previous parts of
the data. From this context, a prediction network estimates

the k future representations z;y1, . . ., Z¢4k-

A regression loss cannot be used because of collapse prob-
lems. They chose a loss based on noise contrastive esti-
mation (NCE) which consists of a classification between a
positive example and several negative examples. This loss
is also related to mutual information (more detail is given in
appendix A). Minimizing it allows to find representations
that have the most information in common across the video.

3. Video CPC

The goal of this method is to learn good temporal repre-
sentations for action recognition without annotated videos.
The unsupervised task experimented is to predict future
high-level frame information given past ones, based on the
Contrastive Predictive Coding model (van den Oord et al.,
2018).

The model takes as input a sequence of T segments of N
frames (images or optical flows). The N frames are stacked
into the channels as in (Simonyan & Zisserman, 2014).
Therefore, the tensor will have the following shape : [B,
T, H, W, CxN] . This T video segments are then encoded
by a convolutional neural network which outputs represen-

'B : batch size, H: height, W: width, C: number of channels (3
for images and 2 for optical flows)

C
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Figure 1. Schema of the CPC Video model

tations z7 to zp.

In this work, two different models are investigated. The first
one takes the first representations z; to z,, and aggregates
them through a network. The output is a context value c
from which z,,41 to zr representations are predicted. A
schema of the model is shown in figure 1. The second model
replaces the aggregation network by an autoregressive net-
work to create context values ¢, with ¢ going from 1 to 7'—1,
depending only on the past representations. From each ¢,
z¢41 to zp values are predicted. They will be referred as
model I and model 2 in the rest of the text.

The first model is easier to interpret and has the advantage
of not relying on an autoregressive model. The second
model has the advantage of making multiple predictions and
therefore being faster to train.

For both models, the predictions Z; are then compared to z;
(positive example) and N negative examples ("), using the
dot product as a similarity function. The results are used to
make a classification with N+1 classes where the right class
corresponds to the positive example. The loss is a softmax

_ N S exp(£;.2i)
cross-entropy: L = —log xb(E e D exp(zen™)

The representations of all the other videos in the batch are
selected as negative examples. It is also possible to select
examples from the same video but at a different time, they
are called difficult negative examples. As they are more
similar with the true example, they are harder to classify as
a negative example.

4. Experiments

In this section, we describe how our unsupervised method
will be evaluated, on which dataset and details on its imple-
mentation.

4.1. Evaluation

To evaluate the efficiency of our unsupervised learning algo-
rithm, we propose two main methods : linear classification
and finetuning. Eight segments of the video are randomly
selected and fed into the pre-trained CNN encoder. A dense
layer is added on top of it with a softmax activation. Clas-
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sical cross-entropy loss is used for learning. For linear
classification, only the dense layer is optimized, all layers
are optimized for finetuning.

4.2. Dataset

UCF-101 dataset (Soomro et al.) is used for the unsuper-
vised representation learning and the supervised evaluation
on the task of action recognition. It is composed of 13320
realistic videos coming from Youtube (27 hours in total).
Each video shows an action among the 101 classes, for in-
stance, playing a musical instrument, practising a sport, a
hobby or a work. The actions are short (few seconds for
most of them).

4.3. Implementation details

For model 1, the frames are cropped from 256 x 342 to
224 x 224 as a pre-processing (frame segments in input
have the same crop and frame segments to predict different
ones). For model 2, the frames are resized to 224 x 224.
The spatial mean is subtracted for optical flow as in (Si-
monyan & Zisserman, 2014). We chose Resnet18 (He et al.,
2015) as an encoder because it is efficient and low time and
memory consuming. The 7x7 feature maps at the end of
the CNN encoder are global mean-pooled if the aggregation
or autoregressive model is 1D (LSTM) and not if it is 3D
(TCAM and Conv3D). Precisions about the networks used
can be found in appendix B.

We chose to use 8§ time-steps. For the first model, 4 are used
in the aggregation model and 4 are predicted. We use a batch
size of 16 which allows to use 15 x 8 negative examples, 7
more if the difficult ones are included.

We investigated different segments selection as well. They
can be selected with an overlap, in a consecutive manner or
spaced. We also proposed a selection method with a variable
spacing which allows to model multiple time scales.

The networks are trained using Stochastic Gradient Descent
with a momentum of 0.9 and regularized using a weight
decay of 0.0001.

Unsupervised training: For unsupervised learning, the
training lasts 60 000 iterations. The initial learning rate
is set to 0.01 and is decreased at iterations 3000, 10000 and
20000.

Linear classification training: The network is trained for
20000 iterations. The initial learning rate is 0.005 and is
decreased to 0.001 after 10000 iterations.

From scratch and finetuning training: The network is
trained for 30000 iterations. The initial learning rate is 0.01
and is decreased to 0.005 after 15000 iterations. A dropout
of 0.8 is used to regularize the network.

Table 1. Comparison of the accuracy for images and optical
flows. Model 1 with Conv3D aggregation network and 10 frames
per segment and a variable spacing selection are used.

MODALITY UNSUPERVISED \ SUPERVISED
IMAGE 90.4 14.5
OPTICAL FLOW 81.7 55.4

Table 2. Influence of the selection of segments and the number
of flows in each segment Model 1 with TCAM aggregation are
used. First part uses 1 flow per segment and second part variable
spacing selection

SPACING SUPERVISED || N FLOWS  SUPERVISED
0 40.9 1 44.6
3 43.2 3 48.8
5 43.5 5 48.6
VARIABLE 44.6 10 49.6

5. Results

First, we evaluate the influence of different parameters on
the performances of our method thanks to linear classifica-
tion. Unsupervised accuracy, which considers the classifi-
cation of the true example against the negative ones is also
given. Then, we compared the results of our method with
random initializations and state of the art methods. In table
5, the method is evaluated using linear classification and
finetuning. The supervised training is done with different
number of labeled examples per class. All results given in
the tables are accuracies, for supervised or unsupervised
training.

We investigated the gain of using images or optical flows. As
shown in table 1, with images, linear classification accuracy
is largely low whereas unsupervised accuracy is higher than
for optical flows. The main reason is that images in a same
video are too similar which makes the unsupervised task
too easy and does not enable high-level features learning.
Optical flows are used for the following experiences.

The selection of the optical flows is also a very important
parameter. Table 2 shows that with a higher number of
optical flows in the stacks, better accuracies in linear classi-
fication are obtained. Indeed, it gives more information to
the network during the unsupervised learning, information
that will be also used for linear classification. If the network
is asked to predict further away representations in time, it
has lower unsupervised accuracies but better linear classifi-
cation accuracies, as shown in table 2. It is explainable by
the fact that long way predictions are harder but force the
network to learn higher semantic information. The better
results are obtained with the variable spacing. Segments of
10 flows selected with a variable spacing are used for the
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Table 3. Comparison between model 1 and model 2 10 flows
per segment with variable spacing selection is used. Temporally
masked Conv3D is used instead of Conv3D in the dense model

MODEL AGGREGATION  SUPERVISED
1 LSTM 32.8
1 Conv3D 55.4
2 LSTM 43.6
2 CoNv3iD M 45.2

Table 4. Influence of difficult negative examples Model 2 with
10 segments of 10 flows and a selection with an overlap of 5.
LSTM is used as an autoregressive model

DIFFICULT ~ UNSUPERVISED | SUPERVISED
NO 90.3 37.9
YES 33.7 44.9

final results.

We compared both models described previously for different
aggregation architectures. As shown in table 3, the model 2
has better results when using a LSTM, but using masked 3D
convolutions does not improve much the results, compared
to model 1 with 3D convolutions. It can be explained by
the fact that 3D convolutions have more expressivity than
masked ones.

We studied the effects of difficult negative examples as
well. Difficult negative examples make the task harder, the
unsupervised accuracy decreases significantly as shown in
table 4. However, it allows to have better linear classification
results as the network is forced to learn the temporal order.
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Figure 2. t-SNE visualization of the obtained representations

Representations obtained by our method are visualized us-
ing t-SNE in figure 2 (only 10 classes among the 101 for
visualization purposes). The representations are quite in line
with the different classes. For instance, Boxing Speed Bag,
Breast Stroke and Playing Cello are well separated from the

Table 5. Pretraining performance with different numbers of la-
beled examples. 10 flows with a variable spacing selection are
used. Model 1 is used with TCAM and Conv3D aggregation net-
works. First 2 sections shows linear classification results, the 2
next finetuning results. Last section shows finetuing of methods
using images as input

PRETRAINING FINETUNE ALL 18 5
RANDOM NO 21.1 209 18.5
AGGREG TCAM NO 49.6 47.8 34.7
AGGREG CONV3D NO 55.4 51.6 37.5
(WEIET AL., 2018) NO 58.6 X X
RANDOM YES 76.4 653 41.8
AGGREG TCAM YES 80.5 70.8 50.0
AGGREG CONV3D YES 80 71.4 49.5
(WEIET AL., 2018) YES 86.3 X X
(KIM ET AL., 2018) YES 65.8 X X
(LIANG ET AL., 2017) YES 55.1 X X
(VONDRICK ET AL., 2016) YES 52.1 X X
(MISRA ET AL., 2016) YES 50.2 X X

other classes.

Table 5 shows that without finetuning, our pre-trained model
has better results than random initialization, but does not
reach the state of the art accuracy (Wei et al., 2018). The
accuracy also drops when using less labels per class. When
finetuning, our method has better results than learning from
scratch. Using all the labels, our pre-training method gains
4.1% and 8.2% when using only 5 labels per class. The gap
between finetuning and learning from scratch performances
increases with label scarcity. We can observe that using
Conv3D as an aggregation network gives better results in
linear classification than TCAM but similar results when
finetuning. Last methods of table 5 have worst results as
they use images as input.

6. Conclusion

We have proposed a new method based on Contrastive Pre-
dictive Coding to learn video representations. We showed
that it learns useful representations for a downstream action
recognition task, especially when labeled data is scarce and
even if the neural network used is rather small. We found
that the use of optical flow and long term predictions are
essential for this method. Furthermore, we highlighted the
benefits to use a dense model and difficult negative examples.
Scaling up the model and the dataset used for unsupervised
training could improve the performances and is let to further
experiments.
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