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Abstract

When aiming for large scale parallel computing, waiting time due to network latency, synchronization, and load imbalance are the
primary opponents of high parallel efficiency. A common approach to hide latency with computation is the use of non-blocking
communication. In the presence of a consistent load imbalance, synchronization cost is just the visible symptom of the load imbalance.
Tasking approaches as in OpenMP, TBB, OmpSs, or C++20 coroutines promise to expose a higher degree of concurrency, which can
be distributed on available execution units and significantly increase load balance. Available MPI non-blocking functionality does
not integrate seamlessly into such tasking parallelization. In this work, we present a slim extension of the MPI interface to allow
seamless integration of non-blocking communication with available concepts of asynchronous execution in OpenMP and C++. We
furthermore investigate compile-time analysis necessary to transform an application using blocking MPI communication into an
application integrating OpenMP tasks with our proposed MPI interface extension.

1. Introduction

Next to theory and experimentation, simulation has long estab-
lished its place as the third pillar of science. This development
has lead to an ever-growing increase in demand for computa-
tional power in high-performance computing (HPC). To pro-
vide this computational power, HPC systems comprise up to
thousands of separate compute nodes in a single distributed-
memory system. The de-facto standard programming model
for distributed-memory systems in a scientific and HPC context
is the Message Passing Interface (MPI) [1]. Here, processes
exchange explicit messages to coordinate work and distribute
data.

While conceptually targeting distributed-memory platforms
with its explicit exchange of messages, MPI can be employed
on distributed-memory systems, shared-memory systems, and
hybrids of the two. This means multiple processes can exchange
messages transparently, regardless of whether they execute on
the same compute node or not. While the available execution
units on a shared-memory domain were limited, applications
could use shared-memory as a “fast interconnect” between MPI
processes without the need to employ separate (orthogonal)
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programming models for each type of memory domain. With
the rise of large multicore processors that today comprise tens
to hundreds of cores in a single shared-memory domain with a
decreasing memory-per-core ratio, application developers more
and more adopt shared-memory programming into their MPI
applications to overcome some of the limitations of classic multi-
processing, such as data replication.

While MPI provides an interface to shared-memory pro-
gramming using remote-memory access, the prevalent program-
ming model for shared-memory programming remains multi-
threading using threading interfaces, such as OpenMP, POSIX
threads, and C++ threads. MPI is largely thread-agnostic in that
it acknowledges the existence of threads and how to ensure a
thread-safe use, but not much beyond that. Proposals to intro-
duce Endpoints [2] or Finepoints [3] highlight the increasing
interest in providing better support and performance for multi-
threaded MPI applications.

OpenMP [4] has a long tradition in HPC. OpenMP work-
sharing has long been the preferred easy-to-use parallelization
construct in bulk-synchronous applications that iteratively al-
ternate communication phases (using MPI) and computation
phases (using OpenMP). This operation mode fits very well in
the past, enabling the MPI communication to be mostly separate
from the thread parallelization. With the introduction of task-
ing in OpenMP 3.0 in 2008, task-level programming became
more critical for modern application codes, with its reliance on
tracking data dependencies and efficient scheduling through a
runtime rather than the programmer, trying to minimize waiting
time in irregular applications. Using tasks can dissolve the strict
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separation of communication and computation phases, creating
a need for tasks performing MPI communication. The use of
OpenMP taskyield [5] has proven as not reliable for MPI com-
munication in OpenMP tasks because both OpenMP and MPI
provide too weak guarantees. The framework Chameleon [6]
already takes the next step and supports the migration of tasks
to other MPI ranks in order to improve the load balance further.

MPI provides different threading levels (see Section 2.1), but
for irregular tasking applications, this may lead to a require-
ment of the highest level (MPI_THREAD_MULTIPLE) negatively
impacting performance. TAMPI, a task-aware MPI implemen-
tation [7, 8], marks a first step towards integration of MPI and
tasking parallelism. While this work shows the potential of this
kind of programming, it assumes the MPI implementation to be
explicitly aware of a tasking paradigm.

In our work, we propose a slim extension of the MPI inter-
face, which integrates into existing MPI interfaces to provide
functionality very similar to TAMPI. However, our approach
keeps MPI and tasking separate while encouraging the interop-
erability of the two paradigms. We will show that even with the
task-agnostic interface, we can write clear code and improve
performance. Furthermore, this interface is also applicable to
use cases beyond OpenMP/OmpSs tasks, such as C++ promises.

In addition to the MPI extension and the associated runtime
extension, we also explore possible compile-time analysis to
help using this new functionality in existing MPI programs.
In such programs, our compiler extension gathers information
about MPI blocking procedures and their surrounding state-
ments. It automatically transforms these blocking procedures
into non-blocking ones, using our extension of the MPI interface.
This compiler extension can help programmers integrate the
proposed interface in their code without extensive knowledge
of non-blocking MPI communication or the OpenMP tasking
model. We provide a working proof-of-concept of such compiler
extension as an LLVM pass.

This paper presents the following contributions: 1. interface
extensions to MPI that enable programmers to transfer control
over request completion to the MPI library while providing a
callback-driven notification of completion back to the applica-
tion; 2. a prototype implementation of the proposed interface
that is independent of the MPI implementation used; and 3. a
compile-time analysis to convert blocking communications into
their non-blocking counterparts relying on the proposed interface
extensions.

The remainder of this paper is organized as follows. Section 2
gives a brief introduction into MPI non-blocking communication
requests. Section 3 provides a motivational overview of desired
interpretations of MPI non-blocking communication with other
interfaces, such as OpenMP and modern C++. Section 4 proposes
interface extensions to MPI to hand over requests to the MPI
library for asynchronous local completion. Section 5 introduces
a proof-of-concept compiler transformation pass that aims at
automatically adapting MPI codes to this new interface. The
implementation details of both the interface extensions and the
compiler pass are described in Section 6. We present measure-
ments on modified codes that compare our implementation to
other approaches using Block Cholesky Factorization as a bench-

mark in Section 7. Finally, Section 8 concludes this paper and
provides an outlook on future work.

2. The Message Passing Interface

This section recaps the relevant MPI features regarding thread
support, non-blocking procedures, and progress to motivate the
proposed interface extensions.

2.1. Thread support
MPI provides several levels of thread support, where

requirements by the application and guarantees by the
MPI runtime system are communicated during initial-
ization: 1. MPI_THREAD_SINGLE, 2. MPI_THREAD_FUNNELED,
3. MPI_THREAD_SERIALIZED, and 4. MPI_THREAD_MULTIPLE.

In MPI_THREAD_SINGLE only a single application thread will
execute. In MPI_THREAD_FUNNELED multiple application threads
may execute, but only the thread that called MPI_Init_thread

will call other MPI functions. In MPI_THREAD_SERIALIZED mul-
tiple application threads may issue calls to the MPI library, but
never concurrently. In MPI_THREAD_MULTIPLE multiple applica-
tion threads may issue calls to the MPI library, with no restric-
tions on concurrency of those calls.

The application negotiates the actual thread support level by
providing the required thread support level to MPI_Init_thread.
The MPI library returns the actual supported thread support
level, which may differ from the required value provided by
the application. The application is responsible for ensuring that
all interactions with the MPI library are supported in the actual
thread support level after initialization.

Threads are not separately addressable in MPI communication.
Assuming the highest thread support level, this means a message
addressed to an MPI process can be received by any thread in
this process.

2.2. Requests
MPI provides blocking and non-blocking communication

schemes. Blocking communication functions will return when
the respective part of a message exchange is completed locally.
Non-blocking communication functions may return before the
respective part of a message exchange is completed locally. One
or more further calls to the MPI library are needed to complete
the communication operation locally.

To allow applications to query and ensure the completion
of specific communication operations initiated in non-blocking
communication, MPI provides opaque handles to so-called re-
quests.

MPI provides two flavors of such requests: 1. standard re-
quests1 that are created ad-hoc during message initiation and
discarded during completion; and 2. persistent requests, where
message parameters are defined separately before message initi-
ation and which can be reused. Persistent requests may become

1We name these requests standard to easily differentiate them from persis-
tent requests where needed. The MPI standard itself does not specifically name
them other than requests.
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active when the communication is initiated and inactive when
the associated communication operation is complete locally.

Request handles are the interface to ongoing operations that
have to be completed using extra completion functions. Both
request types—standard and persistent—can be completed using
the same set of completion functions. These are either wait or
test functions: MPI_{Wait|Test}{any|some|all}. Wait func-
tions will block until the corresponding operation is completed
locally. Test functions will return a flag indicating the comple-
tion status of the corresponding operation. If the flag indicates
completion of the corresponding operation, the request is con-
sidered in the same state as if an equivalent wait function would
have been called instead. It is erroneous for a request to appear
in two or more concurrent calls to wait or test functions other
than MPI_Test [1, p. 485].

2.3. Progress and fairness

When we talk about progress in communication, we mean
the process of bringing a message from application memory
onto the network or at the receiver side from the network to the
application buffer. Depending on available hardware capabilities
and utilization, the communication library might actively need
to control the transmission of data.

Compared to other HPC communication interfaces, such as
OpenSHMEM [9], MPI provides a weak progress guarantee.
For point-to-point communication, MPI guarantees that once
a matching pair of send and receive is initiated, one of them
will (eventually) complete. For collective communication, MPI
states that once initiated, a non-blocking collective operation
may progress independently of any computation or other com-
munication at participating processes, but it is not required to
progress. This provides much freedom of implementation for a
progress engine, for example, through RDMA hardware support,
progress threads, or even progressing pending communication
whenever the application calls into the MPI library.

While enabling the implementation on a broad range of plat-
forms, the latter approach may not provide communication-
computation overlap possibly expected by the programmer.
When a pending communication cannot progress, although
matching communication calls are posted, the application may
suffer from waiting time [10] when the communication partners
do not call into the MPI library for long periods. Hence, some ap-
plication codes, in the hope of driving pending communications
in the absence of a strong progress engine, repeatedly call into
the MPI library to ensure regular progress for their application.

Furthermore, while MPI guarantees message order for con-
secutive messages, it does not provide any fairness guarantee in
handling communication from different sources. This means a
pending send operation may stay open even though the receiv-
ing process posts matching receives that would match this open
send if other send operations from different sources match these
receives.

This extends to logically concurrent messages of the same
process with the same message envelope when multiple threads
in an MPI process initiate non-blocking communication concur-
rently.

Source Code 1: Receive data to be processed in function work_with.
other_work could execute while waiting.

#pragma omp task depend(out: data)

MPI_Recv(data, ...);

#pragma omp task depend(in: data)

work_with(data);

#pragma omp task

other_work(other_data);

Source Code 2: Introducing non-blocking communication and taskyield
can help to overlap communication with independent computation.

#pragma omp task depend(out: data)

{

MPI_Request req;

int received = 0;

MPI_Irecv(data, ..., &req);

MPI_Test(&req, received, ...);

while(!received){

#pragma omp taskyield

MPI_Test(&req, received, ...);

}

}

#pragma omp task depend(in: data)

work_with(data);

#pragma omp task

other_work(other_data);

3. Interoperability

As a motivation for the proposed interface, we sketch the
interoperability of MPI with OpenMP tasks. We start with a sim-
ple tasking code, where we have work depending on incoming
data and other work that can be processed independently, e.g.,
on local data. The execution of Source Code 1 will block in
MPI_Recv, so that no other task can execute while waiting on the
data.

Based on OpenMP 4.5, Schuchart et al. [5] suggested to use
an OpenMP taskyield based approach as sketched in Source
Code 2. In the worst case, this approach can result in deadlock
due to the limited guarantees OpenMP provides for taskyield.

With OpenMP 5.0 [4], the new feature of detached tasks was
introduced. Instead of manually delaying the completion of a
task – and therefore leaving the dependency open – the task
can finish execution, while task completion depends on a call
to omp_fulfill_event. Only if the task completes, the depen-
dencies are released and depending tasks can start execution.

Source Code 3 shows a possible integration of the new
OpenMP feature with MPI non-blocking communication. The
new MPI function MPIX_Foo takes the request handle and starts
monitoring the request for completion of the communication
in the background. Once the request is completed, the imple-
mentation will call omp_fulfill_event(ev_handle). This will
resolve the out dependency to data so that the depending task
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Source Code 3: Allow the communication task to finish, but only complete
when the MPI communication is completed

omp_event_handle_t ev_handle;

#pragma omp task detach(ev_handle) depend(out: data)

{

MPI_Request req;

MPI_Irecv(data, ..., &req);

MPIX_Foo(&req, omp_fulfill_event, ev_handle);

}

#pragma omp task depend(in: data)

work_with(data);

#pragma omp task

other_work(other_data);

can execute work_with(data). After the call to MPIX_Foo, the
task has no use for the request handle, so the function should
consume the handle and set it to MPI_REQUEST_NULL. Section 4.1
will make a concrete proposal for this function.

Other than Source Code 2, this code does not regularly call
into the MPI runtime library. As a result, we can still run into
a deadlock because MPI might not make local progress, and
therefore omp_fulfill_event is never called. We will address
this issue by an additionally proposed interface in Section 4.3.

4. MPI Interface Extensions

The interfaces proposed in this section follow two objectives:
1. the detach interface allows to use non-blocking communica-
tion as locally asynchronous communication; 2. the progress
interface allows triggering progress in MPI from another parallel
runtime.

4.1. Detaching from non-blocking completion
As the fundamental concept of the detach interface, the appli-

cation registers a callback for notification of local non-blocking
request completion. The combined execution of a detach routine,
such as MPIX_Detach, and the provided callback has the same
semantics as a call to MPI_Wait or a call to MPI_Test returning
flag=true, completing the request locally. Similar to wait and
test calls, a detach call will consider a null or inactive request as
immediately completed. In such a case, the callback might be
called immediately.

For consistent behavior, it is essential to ensure that the
application does not interfere with the completion of any de-
tached MPI requests—i.e., complete a detached request man-
ually. Therefore, a detach call will consume standard request
handles passed to it and set them to MPI_REQUEST_NULL on return,
thus taking over full ownership of the requests. This behavior is
similar to a call to MPI_Request_free, with the difference that
upon local completion of the request, the application is informed
through the invocation of the callback function.

In its simplest form, a single request is detached and handed
to the MPI library along with a function pointer to the callback
function that shall be executed on request completion of this
specific request.

typedef void MPIX_Detach_function(void *data);

int MPIX_Detach(

MPI_Request *request,

MPIX_Detach_function *callback,

void *data);

The callback function type MPIX_Detach_function takes as
the single argument, which is the pointer to data provided to the
detach call. The invocation of the callback signals the comple-
tion of the request. At this point, any non-persistent request is
deallocated.

Existing completion routines—the MPI_{Wait|Test} family
of calls—also provide a possibility to provide a status object,
which will contain additional information about the completed
message. For existing MPI functions, this means the application
provides the storage, and the MPI library writes to the status
object unless MPI_STATUS(ES)_IGNORE is provided. The status
object is caller-owned, and this behavior would be desirable to
retain. The use of MPI_STATUS(ES)_IGNORE indicates that the
programmer is not interested in status information to be returned
and can avoid the cost of collecting and filling the status infor-
mation, so we also want to support this in the detach interface.
For the existing completion routines, the programmer has full
control over the execution context of when the request is com-
pleted. Thus, it is no problem to provide a memory location on
the stack or the heap. With a detached request, the programmer
explicitly gives up control over the completion context, so status
objects allocated on the stack become problematic, as request
completion may occur outside of the execution scope where the
stack variable was defined.

To retain the ability to allocate a status object either on the
heap or on the stack, the detach interface provides an orthog-
onal set of functions and callbacks to allow for the return of a
status object to the application. However, to keep the concept
of caller-owned status objects—in this case, the detach runtime
is the caller of the completion—the MPI library will provide
storage for the status object based on the call used to detach a
corresponding request, and pass this to the callback function on
invocation. The callback executes any status-dependent code
before the runtime frees the status object on return from the
callback function. For type safety, we propose a variant of the
callback function type, and accordingly, a new detach function
to ask for the status:

typedef void MPIX_Detach_status_function(

void *data,

MPI_Status status);

int MPIX_Detach_status(

MPI_Request *request,

MPIX_Detach_status_function *callback,

void *data);

MPI_Waitsome, MPI_Waitany, and their analogous calls of the
test family allow us to wait for arbitrary completion of one or
more of multiple requests. We will typically use those func-
tions to continue execution based on which requests are finished.
For the detach interface, similar functionality can be achieved
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by detaching multiple requests using MPI_Detach_each. This
function registers a single callback for an array of requests and
an associated array of data objects. Similar to the detachment
of single requests, the registered callback is invoked for each
(hence the name) request completion. Here, the detach inter-
face deviates from the interface for wait and test. The calls to
MPI_Waitsome and MPI_Testsome may return with multiple com-
pletion for two reasons:1. to reduce the overhead of calling into
the MPI layer multiple times for each pending request (as needed
with MPI_Waitany and MPI_Testany, respectively), and 2. to re-
duce the chance of starving a single client in a client-server
scenario with one client’s requests being repeatedly favored by
the selection of a single completed request. The former situation
of additional overhead does not apply in this situation, as an MPI
implementation may implement the invocation of the callback
on a desired low level of the runtime, hence already minimizing
the overhead created by calling into the top layer interface of
MPI. The latter also does not necessarily apply to the detach
interface either, as here the runtime can (and should) ensure that
no request completion is held back indefinitely—e.g., by em-
ploying the round-robin principle—and then immediately invoke
the callback. Therefore, an MPI library can already implement a
starvation-free method of completing multiple pending requests.
In symmetry with the single request detach interface, separate
detach procedures are available for completing with and without
status information.

int MPIX_Detach_each(

int count,

MPI_Request array_of_requests[],

MPIX_Detach_function *callback,

void *array_of_data[]);

int MPIX_Detach_each_status(

int count,

MPI_Request array_of_requests[],

MPIX_Detach_status_function *callback,

void *array_of_data[]);

In some cases, the application depends on all pending re-
quests to be finished, as expressed by a call to MPI_Waitall

or MPI_Testall. The detach interface proposed here provides
a detachment mechanism with similar semantics in that just a
single callback is registered and only invoked once when all
corresponding requests are completed. Again, in symmetry to
the rest of the detach interface, separate detach procedures are
available for completing with and without status information.
However, as the callback function receiving status information
registered will need to process multiple status objects, a separate
callback function type ensures type safety.

int MPIX_Detach_all(

int count,

MPI_Request array_of_requests[],

MPIX_Detach_function *callback,

void *data);

typedef void MPIX_Detach_all_statuses_function(

void *,

int,

MPI_Status *);

int MPIX_Detach_all_status(

int count,

MPI_Request array_of_requests[],

MPIX_Detach_all_statuses_function *callback,

void *data);

The integer argument of the callback provides the length of the
status array. The value is the same as passed to the corresponding
call of MPIX_Detach_all_status.

4.2. Persistent communication
Persistent requests need special treatment, as these are also

not freed on completion by wait and test calls but rather set to
an inactive state. To model the ownership transfer, we intro-
duce in addition to the active and inactive state of persistent
requests a new detached state. The application retains access to
the handle—i.e., it is not reset on detachment—and can refer to
it later in the code. We introduce the additional start-detached
functions listed in Source Code 4 for a detached start of per-
sistent requests. Effectively, the semantic of these functions
is a combined call to MPI_Start{all}, and the corresponding
detach function afterward. The functions mark active, persistent
requests as detached. Using a detached request in any MPI func-
tion is erroneous. In our prototype, calling any detach function
with an active, persistent request will be erroneous because the
call might accidentally set the request to MPI_REQUEST_NULL.

4.3. Driving Progress
As discussed in Section 2.3, MPI provides only weak progress

guarantees and does not provide a specific call to advance pend-
ing communication. In case the MPI library uses hardware
support or a progress thread to drive asynchronous progress,
the application does not need to call into MPI itself to ensure
progress. In the style of the Deep Computing Messaging Frame-
work (DCMF) [11]. Therefore, we propose the specific proce-
dure call MPIX_Progress which programmers can employ if they
want to communicate opportune moments for the MPI library to
provide progress.

int MPIX_Progress(void *data);

This non-blocking progress function can be employed by
polling services of tasking runtimes such as OmpSS-2 to drive
progress even without particular knowledge about specific pend-
ing requests. The only requirement from an application perspec-
tive is that the completion callback will finally be called after
completion if this function is called repeatedly. If an implemen-
tation provides other means of progress than just by calling into
the MPI library, this procedure may be implemented as a no-op.
However, in case an implementation does provide communica-
tion progress when calling into the MPI library, a call to this
procedure should do exactly that. While the use of MPI_Test
or MPI_Iprobe will provide some form of progress on common
MPI implementations, it is not required by MPI and is rather a
matter of quality of implementation. This call, therefore, enables
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Source Code 4: Allow the communication task to finish, but only complete
when the MPI communication is completed

int MPIX_Start_detached(

MPI_Request *request,

MPIX_Detach_function *callback,

void *data);

int MPIX_Start_detached_status(

MPI_Request *request,

MPIX_Detach_status_function *callback,

void *data);

int MPIX_Start_detached_each(

int count,

MPI_Request array_of_requests[],

MPIX_Detach_function *callback,

void *array_of_data[]);

int MPIX_Start_detached_each_status(

int count,

MPI_Request array_of_requests[],

MPIX_Detach_status_function *callback,

void *array_of_data[]);

int MPIX_Start_detached_all(

int count,

MPI_Request array_of_requests[],

MPIX_Detach_function *callback,

void *data);

int MPIX_Start_detached_all_status(

int count,

MPI_Request array_of_requests[],

MPIX_Detach_all_statuses_function *callback,

void *data);

an easy and clear way of enabling MPI to drive the communica-
tion, as needed in the code example 2, where the repeated call
to MPI_Test allows the MPI library to provide progress. This
function could also allow us to receive the callback on a thread
with low utilization if the polling service has some knowledge
about the utilization of threads. Finally, by providing an explicit
call to drive communication progress, it will be easier for per-
formance tools to filter such general progress driving calls and
potentially optimize its wrapper implementation.

The signature of MPIX_Progress follows the callback type
polling_service_t defined and used in Nanos6. The *data ar-
gument is an opaque argument, which is passed while registering
the polling service and then provided to the callback. Although
we do not use the argument in our current implementation, we
might use the argument to restrict polling, for example, to make
progress on a specific communicator.

5. Towards a Compile-Time Automatic Transformation

This section proposes a proof-of-concept compile-time anal-
ysis and transformation to ease the use of our new inter-

Source Code 5: Basic MPI code using blocking communication.

work_with1(data);

MPI_Recv(data, ...);

other_work1(other_data1);

work_with2(data);

other_work2(other_data2);

Source Code 6: Transformation of Source Code 5 with the analysis in [13].

work_with1(data);

MPI_Irecv(data, ..., req);

other_work1(other_data1);

other_work2(other_data2);

MPI_Wait(req)

work_with2(data);

face. It aims at automatically transforming blocking and non-
blocking calls to non-blocking communications encapsulated
inside OpenMP tasks with the proposed detach semantics. For
this proof-of-concept, we mainly focus on correctness to provide
a working prototype ensuring valid application outputs.

5.1. Automatic Code Motion to Extend the MPI Non-blocking
Overlap Window

As non-blocking MPI operations are still very seldom used in
applications, previous works propose to automatically transform
MPI blocking operations into their non-blocking and persistent
counterparts [12, 13]. In the latest, blocking and non-blocking
MPI communications are optimized with a static approach based
on a data-flow analysis to find all dependencies on a communi-
cation buffer. The compilation pass then performs code motion
to move the initiation and the completion as far as possible to
increase overlapping potential. The analysis finds all statements
independent from the communication and puts them between
the initiation and the completion calls of the newly inserted MPI
procedures. Based on this analysis, all statements preceding the
communication and on which the communication depends are
packed together before the initiation call. Likewise, all state-
ments depending on the communication (directly or recursively)
are packed together after the completion call. The transforma-
tion of Source Code 5 with this analysis is presented in Source
Code 6. In the example, work_with2(data) can be moved af-
ter other_work2(other_data2) as data and other_data2 are
independent.

5.2. Adapting the Automatic Transformation to Detach Seman-
tics

We adapted the existing compiler extension to automatically
transform MPI communications to tasked communications using
the detach interface.

We target to produce a code similar to Source Code 7. This
target minimizes code transformations while maintaining a
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Source Code 7: Transformation of Source Code 5 with the new analysis.

omp_event_handle_t ev_handle;

work_with1(data);

#pragma omp task detach(ev_handle) \

depend(out: data)

{

MPI_Request req;

MPI_Irecv(data, ..., &req);

MPIX_Detach(&req, omp_fulfill_event,

ev_handle);

}

other_work1(other_data1);

other_work2(other_data2);

#pragma omp taskwait depend(inout: data)

work_with2(data);

reasonable level of parallelism. In OpenMP, tasks are cre-
ated dynamically when a #pragma omp task is encountered.
It means that the task in Source Code 7 cannot run without
work_with1(data) being done. Once the task is created, it
runs independently and concurrently to the parent thread’s code.
Hence, the communication tasks in Source Code 7 may run
concurrently to the functions other_work1(other_data1) and
other_work2(other_data2). Finally, work_with2(data) is in-
serted after a #pragma omp taskwait, which imposes to wait for
all pending tasks to be done before executing this instruction.
Therefore, with Source Code 7 semantics, all work related to the
communication task will execute in order, while independent
computation can run concurrently to the communication task.

The algorithm presented in [13] was designed to transform
blocking communications into non-blocking communications
while maximizing the overlapping window. This work modified
the algorithm to insert a detached communication task instead
of the plain non-blocking initiation call and insert a taskwait
directive instead of the completion call.

Now dealing with OpenMP task semantics, an insertion point
for an initiation MPI call is a statement that matches one of the
following:

• The statement is the first statement of the current function

• There is a control flow dependency

• The statement is an MPI call

• The statement is detected to implement an OpenMP
taskwait directive

Any previously created task might use a taskwait as a syn-
chronization against the MPI communication. Thus, our trans-
formation needs to obey the OpenMP synchronizing semantics.

The same condition applies to the algorithm that searches
an insertion point for the completion procedure. We have to
stop iterating over the statements if we encounter a #pragma

omp taskwait. In our new transformation, instead of inserting
the completion call, we insert a #pragma omp taskwait with a
depend clause matching the associated communication task. The
taskwait is sufficient to synchronize the communication task.

Source Code 8: Example of control flow limitation.

for (int i=0; i < n; ++i) {

MPI_Send(data[i], ...);

other_work(other_data);

}

Source Code 9: Source Code 8 after applying the transformation.

for (int i=0; i < n; ++i) {

#pragma omp task detach(ev_handle) \

depend(in:data[i])

{

MPI_Request req;

MPI_Send(data[i], ..., &req);

MPIX_Detach(&req, omp_fulfill_event,

ev_handle);

}

other_work(other_data);

#pragma omp taskwait depend(inout: data[i])

}

5.3. Limitations and Propositions to Achieve Performance
While building this static transformation pass, we emphasized

more on preserving the semantic and avoiding deadlocks. Con-
sequently, this automatic transformation is very conservative and
suffers from the same limitations as enumerated in [13].

Merging completion calls. Control flow dependencies severely
limit our transformation pass as it is based on strict rules on the
domination and post-domination of blocks of code to ensure a
transformation’s validity. As an example, the code shown in
Source Code 8 displays a case where our analysis pass cannot
perform well since both the initiation and completion calls have
to stay inside the loop to preserve the number of communication
calls. In this situation, the pass will generate one communication
task per iteration, which can be detrimental to performances, as
shown in Source Code 9.

Some of those constraints can be relaxed, specifically on the
placement of completion calls, or #pragma omp taskwait direc-
tives. In this specific example, since there are no dependencies
on the communication buffers between the iterations, the com-
pletion call or the task wait directive can be placed right after the
loop without compromising the code’s semantic. This transfor-
mation is correct as long as the #pragma omp taskwait has the
same dependency as the communication task it is linked to, thus
ensuring that all of the communication tasks started inside the
loop are properly completed. Once safely moved out of the loop,
it might be possible for the taskwait directive to be moved further
down to extend the overlapping interval. Such situations still
need to be correctly identified by our static analysis to perform
such transformations automatically.

Improving OpenMP lowering analysis. Working at the Interme-
diate Representation (IR) level, which is the representation upon
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Source Code 10: Transformation of Source Code 5 to full tasks and Detach
semantics.

omp_event_handle_t ev_handle;

#pragma omp task depend(out: data)

{

work_with1(data);

}

#pragma omp task detach(ev_handle) depend(out: data)

{

MPI_Request req;

MPI_Irecv(data, ..., &req);

MPIX_Detach(&req, omp_fulfill_event,

ev_handle);

}

#pragma omp task depend(out: other_data1) \

depend(in: other_data2)

{

other_work1(other_data1);

other_work2(other_data2);

}

#pragma omp task depend(in: data)

{

work_with2(data);

}

which the compiler performs analyses and code transformations
also cause several limitations. In the IR, OpenMP pragmas are
lowered to internal functions and structures, making it very dif-
ficult to generate OpenMP codes at this level without a proper
understanding of the IR generation mechanisms. As a result, we
currently cannot provide an automatic transformation pass to put
both communications and computations in tasks that match the
code displayed in Source Code 10.

The first task contains all statements necessary for the exe-
cution of the MPI communication. The communication task
contains the initiation and the detach functions and directly
depends on this preceding task. The third task contains all the
statements which are entirely independent of the communication.
This new task will share no dependencies with the previously de-
scribed tasks and can be executed while the communication task
is performed. The last task has all the statements that directly
or indirectly require some of the communication arguments and
depends on the communication task.

When strictly comparing the code snippets in both examples,
Source Code 7 provides the same parallelism semantics as the
code in Source Code 10.

As described in Section 5.2, work_with1(data), the commu-
nication task and work_with2(data) will run in order, while
other_work1(other_data1) and other_work2(other_data2)

can run concurrently to the communication task. Source Code 10
displays the same behavior in a full task semantics. The first,
second and lasts tasks will run in order due to their respective
dependencies of data, while the third task, having no common
dependencies with the other tasks, can run concurrently.

Note that if the semantics is the same for the two presented
code snippets, generating the computing tasks semantics may

provide better parallelism. Indeed, if some other work is real-
ized by the master thread outside of the code snippet in Source
Code 7, this work will be serialized with work_with1(data) and
work_with2(data). Having these functions in their own task
would allow more concurrency. However, since generating such
code is more difficult, and our primary concern with this proof-
of-concept being correctness and not performance, we limited
our transformation to target a simpler code, similar to Source
Code 7.

In-depth OpenMP dependencies analysis. With better support
for OpenMP directives lowering in the IR, we can also improve
the static analysis to check all task dependencies. For now,
our transformation inserts a #pragma omp taskwait for each
communication to ensure correctness. However, it is possible
that such taskwait directive may not be necessary. If the original
code already contains OpenMP tasks and taskwait directives,
the existing constructs may use the same dependencies as the
inserted communication task. If the dependencies are similar,
then the communication tasks will be automatically ordered with
the other tasks without inserting an extra taskwait.

Moreover, task dependencies may reference array specific
cells through the use of a variable or an iterator. At compile time,
this can be error-prone. The same variable may represent several
values (cells) at runtime yet be considered the same dependency
in the IR due to the same address being used. For the dependency
analysis to be thorough and ensure that all dependencies are
correctly discovered, all variables used in task dependencies
should be coupled with some polyhedral analysis to confirm
dependency domains are the same. This analysis is not trivial
and is our ultimate goal regarding the automatic transformation.
Another complication for this analysis will be to consider the
memory access pattern performed by an MPI communication
call. For trivial MPI datatypes, this seems feasible, but MPI also
allows to define dynamic and irregular memory access patterns
by defining derived datatypes at runtime.

6. Implementation

In this section we discuss three aspects of our implementation
regarding the detach interface and the automatic transformation:
1. a core library, implementing the functions proposed in the pre-
vious section, 2. how we handle persistent requests in this core
library, and 3. the implementation of the compiler transformation
using a small wrapper library.

6.1. MPI detach interface
We provide a proof of concept implementation2 for the pro-

posed interface. The code is independent of a specific MPI im-
plementation but needs to be built against the MPI library in use.
It can be either compiled into the application or built as a library
and linked into the application. The implementation is thread-
safe and can be used in two modes to drive progress: 1. with an
external polling service, and 2. with an internal progress thread.

2https://github.com/RWTH-HPC/mpi-detach
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As mentioned in Section 4.3, MPI currently provides no ex-
plicit interface to drive progress. We therefore proposed and
implemented the call to MPIX_Progress as a context-free call
into the MPI communication layer. This call can then be called
by the runtime at regular intervals to ensure progress.

This call can come from an external polling service, as pro-
vided by OMPSS-23 or Boost.Asio4. In this case, the required
threading level for MPI depends on the behavior of the polling
service. When considering the MPI threading level, we must in-
clude all MPIX functions proposed in this paper in the set of MPI
functions. MPI_THREAD_FUNNELED or even MPI_THREAD_SERIAL

might be sufficient if the polling service is only active on the
master thread and the application also only communicates on
the master thread.

This call can also come from a progress thread spawned by
our library. If the progress thread is used, the necessary thread-
ing level is MPI_THREAD_MULTIPLE. If the environmental vari-
able MPIX_DETACH is exported and set to progress, the library
will start a progress thread to poll on MPIX_Progress and make
progress for the detached requests. This progress thread takes
advantage of internal knowledge and suspends itself if no de-
tached request is in the queue. A conditional variable controls
the suspension of the polling thread. The detach functions sig-
nal to this conditional variable when requests are enqueued.
This is done via condition variables that are modified when
requests are queued or completed. As long as there are de-
tached requests in the queue, the progress thread will repeat-
edly call MPIX_Progress. However, if the application also uses
non-blocking communication outside of the detach runtime, the
progress thread might be suspended by the detach runtime while
these other requests are still pending and could benefit from a
progress thread. In such a scenario, a polling service might be
advantageous.

The implementation of the various proposed detach functions
directly test for completion of the communication when called.
In case the corresponding completion is already returned from
the MPI library, the provided callback is called immediately.
Otherwise, the provided requests are enqueued. The implemen-
tation uses two distinct queues for 1. for single requests and
2. for multiple requests with wait-all semantics.

During lazy initialization, i.e., when one of the detach func-
tions is first called, the library decides whether to launch a
progress thread. The progress function tests all requests in
the queue for completion and calls the corresponding call-
back in case of completion. If the polling thread is used,
MPI_THREAD_MULTIPLE is necessary because of the MPI_Test

calls performed by the polling thread. To avoid the polling
thread becoming a possible bottle-neck, the application devel-
oper needs to make sure that the callback does not cause exces-
sive execution on this thread but rather schedules work to be
executed by the application threads.

In the current implementation, the detach-each functions be-
have like repeated calls to the detach functions. Here, the im-

3http://pm.bsc.es/ompss-2
4https://www.boost.org/doc/libs/

plementation tests each request individually using MPI_Test, for
both variants with and without a status object.

The detach-all functions need to be handled differently, as
the call to the callback depends on the completion of all pro-
vided requests. In the case that no status is requested, we can
easily compress the vector of requests by removing finished
requests from the vector of requests. For this purpose, we use
MPI_Testsome. In the case that the application requests the
status, the use of MPI_Testsome would mean rather complex
book-keeping of indexes and re-mappings. As proof of concept,
the implementation uses MPI_Testall in this case. This call
provides all required statuses when all requests are finished.

6.2. Handling persistent requests

Compared to standard requests, handling persistent requests
requires some special treatment. As the detach function would
need to react differently to the two types of requests, the imple-
mentation needs to be able to distinguish between them. Any
non-persistent request is set to MPI_REQUEST_NULL before the de-
tach function returns. Persistent requests cannot be reset but are
returned as-is to the application. An MPI implementation can in-
fer from inside knowledge whether a request is persistent or not.
However, our prototype implementation only acts as a shim layer
on top of MPI using the PMPI interface, and it, therefore, does
not have access to such low-level information. Unfortunately,
MPI does not provide a function to check whether a request is
persistent. Also, there is no possibility to attach an attribute to
a request, as it is possible for communicators, windows, and
datatypes. Such an attribute system would enable our prototype
to intercept the init functions for persistent requests and attach
an attribute to the request, allowing state-less tracking of per-
sistent requests. In our implementation, we would need a map
to store persistent requests at creation time and lookup every
request passed to the library in this map. Full integration into
the MPI library would provide the potential for optimization in
this regard. To avoid this issue, we decided to provide a separate
interface, which starts and detaches persistent requests in one
function. To avoid the need to track the creation of persistent
requests, we disallow the use of the detach functions for active
persistent requests.

6.3. Compiler Transformation using a wrapper library

The adapted algorithm to automatically insert detach seman-
tics is implemented as a compilation pass in the LLVM compiler
[14]: the code is represented as an intermediate representation
(IR), which allows us to be completely independent of the source
language. LLVM defines many analysis passes whose results
can be reused in other optimizations and user-defined passes.
These passes provide us the list of loops, the dominator and
post-dominator trees for a given function, and the use-def and
def-use chains of each value. This information is required to
identify which statements are related to the communications
calls and which statements are independent of them.

As we explained in Section 5.2, the lowering of OpenMP prag-
mas in LLVM produces a quite complex set of IR statements.
Automatically generate such codes to create new OpenMP task,
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Source Code 11: Transformation of Source Code 5 with the new analysis
using the wrapper library.

omp_event_handle_t ev_handle;

work_with1(data);

MPITask_Recv_Detach(data, ...);

other_work1(other_data1);

other_work2(other_data2);

MPITask_Wait_Detach(data);

work_with2(data);

Source Code 12: Example of wrapper functions used in Source Code 11.

int MPITask_{Recv/Send}_Detach(data, ...){

omp_event_handle_t ev_handle;

#pragma omp task detach(ev_handle) \

depend({out/in}: *data)

{

MPI_Request req;

MPI_{Irecv/Isend}(data, ..., &req);

MPIX_Detach(&req, omp_fulfill_event, ev_handle);

}

}

int MPITask_Wait_Detach(data){

#pragma omp taskwait depend(inout: *data)

}

and taskwait pragmas requires much effort and much time to
acquire the necessary expertise. To circumvent this difficulty,
we chose to use a wrapper library. This wrapper library pro-
vides two sorts of wrappers. First, communication initialization
wrapper functions, which take the arguments from the original
communication call and contain the OpenMP task, including
the communication initialization call with the detach interface.
Second, a wait wrapper function, which contains the taskwait
directive to be called to sync with the detach task.

This wrapper library eases the transformation to produce the
desired program with the detach interface. Instead of generating
a complex set of IR statements, it is now possible to just insert
the calls to the corresponding wrapper functions (see Source
Code 11 for the generated code and Source Code 12 for the
corresponding wrapper functions).

The original algorithm and compilation pass we modified
were already designed to insert new function calls in the ana-
lyzed program. Thus, the compilation pass has been modified to
insert our wrapper functions once the insertion points are found,
instead of the MPI initiation and completion procedures.

7. Experiments

We test the implementation of our implementation of asyn-
chronous local completion as well as the automatic code trans-
formation with distributed Block Cholesky Factorization using

OpenMP tasks with fine-grained dependencies. The different
versions of the code highlight the possible performance improve-
ments as well as improved readability when using MPI detach
with an OpenMP tasking code. We perform two sets of perfor-
mance studies using this code. During the experiments, we also
fixed a race condition in the detached task implementation in the
LLVM/OpenMP runtime.

7.1. Code

Cholesky Factorization separates a Hermitian, positive-finite
matrix into the product of a triangular matrix and its conjugate
transpose (A = LL∗). The Blocked Cholesky Factorization splits
the matrix A of size n × n into b × b equally sized blocks. In
each iteration k, the algorithm first solves the kth block on the
diagonal using potrf, the second step updates the b−k−1 blocks
below using trsm, then the remaining triangle of blocks below
the diagonal is updates by calls to gemm and finally calls to syrk

update the diagonal. Only the last two steps are independent,
while the other steps have data dependencies. Solving the k + 1st
block with potrf depends on the result of syrk for this block
from the kth iteration.

Schuchart et al. [5] provided two MPI-distributed and taskified
versions of Block Cholesky Factorization. In this distributed
implementation, the blocks are evenly distributed to the MPI
processes. Data dependencies involving blocks on different
processes result in MPI communication for exchanging these
blocks. One version funnels all MPI communication related to
a step through a single communication task (singlecom); the
other version has fine-grained dependencies and performs non-
blocking communication in tasks (taskyield). The latter version
uses OpenMP taskyield and MPI test similar to Source Code 2.

We extend the taskyield code and integrate our MPI detach
implementation into the code (detach). The necessary changes
to the code are conceptually already presented by the transition
from Source Code 2 to Source Code 3, where we use MPI_Detach
instead of MPI_Foo. The used codes are available in the mpi-
detach branch of our fork5.

To investigate the challenges for an automatic code transfor-
mation, we go one step back from the singlecom version and
implement the necessary exchange of blocks using blocking MPI
communication (blocking). This version represents an applica-
tion with non-trivial control flow and blocking communication.
The hand-written MPI-detach code illustrates the goal of the
automatic code transformation.

7.2. Environment

We run the experiments on dual-socket nodes of Claix-18,
which are equipped with two 24 core Intel Skylake Platinum
8160 CPUs and 192GB memory. The nodes have hyper-
threading disabled, and sub-NUMA clustering enabled. The
operating system is CentOS 7.9.

For the experiments, we use the Clang compiler from the
LLVM 11 release. This version of clang includes fixes for two

5https://github.com/RWTH-HPC/cholesky_omptasks
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Figure 1: Node scaling measurements of distributed Block Cholesky Factorization

race conditions in the OpenMP runtime6, that we identified
during our initial experiments.

All versions of the code use the Intel MKL in version
19.0.1.144 for the math kernels.

7.3. Run configurations
We perform two scaling measurements. Each measurement

point represents ten repetitions, and we plot the average and
the standard deviation of the measured time. The nature of the
decomposition code only allows powers of two for the number
of MPI processes.

The first measurement series fills a single node with 48
threads, which are equally distributed to a varying number of 1
to 16 MPI processes. We run this series with an n × n matrix of
size n = 32 768 and b × b blocks of size b = 256. This results in
16 384 blocks.

The second measurement series uses a fixed number of 12
threads per MPI process and scales from 1 to 32 nodes. We run
this series with a matrix of size n = 65 536 and blocks of size
b = 256. This results in 65 536 blocks. As the complexity of
the problem is O(n3), the expected execution time for the second
series is eight times the execution time of the first series.

The reported number of threads is the number of dedicated
cores associated with the process by the batch system, e.g., by
using taskset.

For easier evaluation and reproducibility, we used the Jülich
Benchmarking Environment (JUBE) [15] in version 2.2.2 to
configure and run the measurements in the jube directory5.

7.4. Results
Figures 1 and 2 show the collected results. We distinguish the

time spent in the compute kernels in MKL (calc(mkl)) from the
remaining time (noncalc). We expect the same execution time
for the compute kernels independent of the build configuration,
as we always use the same MKL routines. There is no redundant
computation caused by the distribution. This expectation is held

6LLVM patches D79702 and D80480

within the scope of measurement errors. The plotted bars show
time averaged over the executing threads and 10 repetitions. The
white error bar shows the standard deviation in the calculation
time across all threads; this is a result of an imbalance in the dis-
tribution between processes and an imbalance in the scheduling
on the available threads. The black error bar shows the standard
deviation of the overall execution time.

We do not measure the time of the polling thread explicitly,
but the polling thread will always share a core with a calculating
thread due to the process placement. So, the polling thread is
included in the execution time of the measured threads.

For the node scaling experiment in Figure 1, we can see the
influence of memory accesses across NUMA domains when
executing with just one MPI process. With two MPI processes,
we still fill one socket with threads and can see a slight impact
of sub-NUMA clustering. For most configurations, the runtime
overhead increases when splitting to more than 4 thread. For
both reasons, we chose the configuration with four MPI pro-
cesses per node for the strong scaling experiment. We can see
that the overhead of the detach code has the lowest overhead
across all configurations.

For the strong scaling experiment in Figure 2, we show two
representations of the data. In Figure 2a, we plot the average ex-
ecution time of each single thread or, respectively, the wallclock
time of the code, where we expect an inversely proportional
decrease of the calculation time (calc). In Figure 2b, we plot
the aggregated overall execution time of all threads, where we
expect constant calculation time independent of the number of
processes or threads. When zooming in, we saw a slight increase
in the calculation time for 128 processes.

For a low number of processes, the single communication
task in singlecom introduces more overhead, than the blocking
communication. With more than eight processes the tasking
overhead is amortized and the singlecom code shows less run-
time overhead than the blocking code.

In the first plot, we observe a constant and low per thread over-
head for the detach code among 4 to 32 processes, and a slight
increase for higher process counts. In the second plot, we can
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Figure 2: Strong scaling measurements of distributed Block Cholesky Factorization

observe how this constant per thread overhead rapidly amounts
to significant overhead for the overall execution. Nevertheless,
the detach code outperforms the other codes.

The numbers for the automatic code transformation are in-
cluded to demonstrate, that the code runs and terminates. The
results also successfully verify against a serial version of the
algorithm.

7.5. Discussion

Overall the scaling experiment shows that an implementation
of the algorithm based on our proposed extension can outper-
form any portable implementation based on currently available
interfaces. We think, that an integration of the interface into an
MPI implementation and an integration of a polling service in
the OpenMP implementation can further improve the possible
performance. This is subject to further investigation.

Performance with the automatic transformation. As explained
in section 5.3, the static transformation pass was first and fore-
most built around the validity of transformations, and struggles
to offer satisfying performances for the Cholesky benchmark.
Specifically, we identified two improvements that will help reach
the same level of performance than the hand-tuned version. First,
all communication calls in the benchmark are in loops. This
means our automatic transformation generates a taskwait for
individual communication in the loop, instead a unique taskwait
for the whole loop. All these synchronizations prevent the com-
munication tasks to be efficiently overlapped.

Moreover, the original tasked version without the MPI detach
interface presents computational parts already put into tasks. The
dependencies of these tasks are similar to the ones generated for
the communication tasks. With an in-depth dependencies analy-
sis, the computational tasks could be matched to the generated
communication tasks, hence avoiding a general synchronization
point through a taskwait, and we could have better concurrency.
The ultimate goal will be to reach the same dependency graph
as shown in the detach code.

8. Conclusions

Initially driven from a C++ application use case, we proposed
a new interface for MPI in this paper to integrate MPI com-
munication into an asynchronous control flow of an MPI appli-
cation. Our proposed interface provides a clear separation of
distributed memory communication provided by MPI and the
various asynchronous execution concepts such as OpenMP tasks
or C++ promises. We presented a proof of concept implementa-
tion, which works as a PMPI wrapper library. By integrating the
interface into a Block Cholesky Factorization code, we demon-
strated the applicability of the approach. Other than a taskyield
based approach of non-blocking communication in OpenMP
tasking programs, non-blocking communication in combination
with the proposed detach functions is completely conforming
with the OpenMP specification. Integration into an MPI imple-
mentation has potential for further optimization and therefore
reduced overhead. We work together with the MPI forum to
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introduce an interface for asynchronous MPI communication
into a future MPI standard.

Furthermore, we presented a proof of concept implementation
for automatic code transformation to convert an MPI applica-
tion using blocking communication into an application encap-
sulating MPI communication into OpenMP tasks. While the
transformation aims to improve the computation communication
overlap, this prototype focuses on performing sound transfor-
mations. Therefore the very conservative transformations do
not yet provide a performance gain. The prototype nevertheless
helped identify the kind of analysis necessary to finally reach
performance gains like in a hand-tuned application using the
proposed detach functions for asynchronous communication.
Investigating these necessary additional analyses and ensuring
their soundness is left for future work.
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