
HAL Id: cea-03534312
https://cea.hal.science/cea-03534312v1

Submitted on 19 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Highly adaptive linear actor-critic for lightweight
energy-harvesting IoT applications

Jean-Frédéric Christmann, Sota Sawaguchi, Suzanne Lesecq

To cite this version:
Jean-Frédéric Christmann, Sota Sawaguchi, Suzanne Lesecq. Highly adaptive linear actor-critic for
lightweight energy-harvesting IoT applications. Journal of Low Power Electronics and Applications,
2021, 11 (2), pp.17. �10.3390/jlpea11020017�. �cea-03534312�

https://cea.hal.science/cea-03534312v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Journal of

Low Power Electronics
and Applications

Article

Highly Adaptive Linear Actor-Critic for Lightweight
Energy-Harvesting IoT Applications

Sota Sawaguchi 1 , Jean-Frédéric Christmann 1 * and Suzanne Lesecq 2

1 CEA, LIST MINATEC Campus, University Grenoble Alpes, F-38054 Grenoble, France;
sota.sawaguchi@cea.fr (S.S.)

2 CEA, LETI MINATEC Campus, University Grenoble Alpes, F-38054 Grenoble, France;
suzanne.lesecq@cea.fr (S.L.)

* Correspondence: jean-frederic.christmann@cea.fr

Abstract: Reinforcement learning (RL) has received much attention in recent years due to its
adaptability to unpredictable events such as harvested energy and workload, especially in the context
of edge computing for Internet-of-Things (IoT) nodes. Due to limited resources in IoT nodes, it is
difficult to achieve self-adaptability. This paper studies online reactivity issues of fixed learning rate
in the linear actor-critic (LAC) algorithm for transmission duty-cycle control. We propose the LAC-AB
algorithm that introduces into the LAC algorithm an adaptive learning rate called Adam for actor
update to achieve better adaptability. We introduce a definition of “convergence” when quantitative
analysis of convergence is performed. Simulation results using real-life one-year solar irradiance
data indicate that, unlike the conventional setups of two decay rate β1, β2 of Adam, smaller β1

such as 0.2–0.4 are suitable for power-failure-sensitive applications and 0.5–0.7 for latency-sensitive
applications with β2 ∈ [0.1, 0.3]. LAC-AB improves the time of reactivity by 68.5–88.1% in our
application; it also fine-tunes the initial learning rate for the initial state and improves the time of
fine-tuning by 78.2–84.3%, compared to the LAC. Besides, the number of power failures is drastically
reduced to zero or a few occurrences over 300 simulations.

Keywords: reinforcement learning; energy-harvesting; Internet-of-Things; low power; machine
learning; edge computing

1. Introduction

Energy-harvesting Internet-of-Things (EH-IoT) in wireless communications is a hot
topic today, as it potentially enables perpetual operations of nodes in wireless sensor
networks. Nonetheless, myriad uncertainties exist not only in the nature but also in the
applications. Under such uncertainties, the power-performance trade-offs, i.e., striking
the balance between energy saving and quality of service (QoS) should be addressed in an
automatic way.

One popular solution is to use reinforcement learning (RL) that adapts itself to the
environment at run-time with no a priori information about their changes (i.e., state
transition probabilities) to produce the optimal actions. Nonetheless, the hyperparameter
setting is sensitive to the environment, and, therefore, the system often fails self-adaptations.
Many researchers resort to neural network-based RLs to ensure more scalability in such a
situation. However, extra training data may be required while they are more compute- and
memory-intensive compared to linear approximation-based RLs. Ideally, we would rather
find a low-cost solution, i.e., µW-range, RL method for the upcoming µW-range IoT end
devices [1]. The current trend is moving more processing from the cloud to nodes, leading
to edge computing. Thus, the power manager of a node itself should be lightweight to be
consistent with the low power requirement induced by the low energy budget of the node.

Taking into account the potential continuous action and state spaces (e.g., energy
storage device), linear function approximations can be exploited [2,3]. The use of contin-

J. Low Power Electron. Appl. 2021, 1, 0. https://doi.org/10.3390/jlpea1010000 https://www.mdpi.com/journal/jlpea

https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/0000-0001-5864-4130
https://orcid.org/0000-0001-7353-9953
https://orcid.org/0000-0003-3238-8081
https://doi.org/10.3390/jlpea1010000
https://www.mdpi.com/journal/jlpea

J. Low Power Electron. Appl. 2021, 1, 0 2 of 19

uous spaces that can scale to discrete problems is also an advantage [4]. In a previous
work, we also investigated the linear actor-critic (LAC) method and employed a data
buffer and an energy buffer to represent the system state. However, with such a state
representation that induces power-performance trade-offs, the fixed learning rate hinders
the adaptation to new situations, e.g., workload changes, since they directly impact the
amplitude of the oscillation of the rewards or the variance of the gradients of the learned
parameters. As such, to gain robustness to drastic changes in the gradients, we incorporate
into the LAC an adaptive learning rate such as the Adam optimizer [5] (hereafter, Adam).
Adam is originally designed to tackle the sparse gradient issue in training neural networks
with large decay rates (e.g., β1 = 0.9 and β2 = 0.999). In this paper, we show that it can
provide fast reactivity to the environment with smaller decay rates. We define reactivity
as the adaptation from a previous near-optimality to a new one induced especially by
non-trivial environmental changes. Further, we attempt to evaluate convergence speed in
a quantitative manner, which is application-dependent and hardly conducted previously.
Our contributions are summarized as follows:

1. To provide better adaptability, we combined and evaluated the LAC algorithm with
Adam (LAC-A) using smaller decay factors for transmission (TX) duty-cycle opti-
mization in an application of sensor data TX in a point-to-point network.

2. With the use of smaller decay rates in Adam, we can exclude the initialization bias
correction terms to reduce the calculations, and we call the algorithm LAC-AB (LAC
with Adam Biased).

3. We defined the time of convergence quantitatively based on the mean and variance
information for evaluating the speed of convergence of different approaches.

4. Simulation results show that, for our application use case, smaller decay rates β1
such as 0.2–0.4 are better for power-failure-sensitive applications and 0.5–0.7 for
latency-sensitive applications with β2 ∈ [0.1, 0.3] in the LAC-AB algorithm.

5. We show that LAC-AB with such decay rates helps achieve more reactivity and
stability to drastic gradient changes, such as doubled workload, and enables fine-
tuning the actions to the initial state more quickly.

The rest of the paper is organized as follows. We present the state-of-the-art and
clarify the differences from our approach in Section 2. Section 3 summarizes the system
model used in our study. In Section 4, the detailed settings for the simulations of TX
duty-cycle modulation are listed. Section 5 concisely explains the basics of RL algorithm.
In Section 6, we introduce the use of Adam to deal with the reactivity issue along with the
table of the whole LAC-AB algorithm. We then give the definition of time of convergence
in Section 7. With respect to simulation studies, we firstly show the reactivity problem of
the LAC algorithm using fixed learning rate in Section 8.1. Next, Section 8.2 demonstrates
how effective the LAC-AB algorithm is compared to LAC and how we can evaluate its
convergence adequately, as presented in the following subsection. Further simulation
results are shown in Section 8.3 to study the combination of the two decay rates in terms of
convergence speed, power failure and latency. Finally, Section 9 concludes this paper with
some future work directions.

2. Related Work

Many research works in the literature of energy management in both lower-power
IoT and EH-IoT exist. Roose et al. [6] proposed a hardware solution for a sense and
compress application. The method proposed loads tuning parameters obtained by offline
evolutionary algorithm onto statistics (sample variance)-based runtime control. It reduces
the online resources, but the runtime adaptability might not be enough in the case of
unexpected events that were not in the training dataset. A stepwise online adjustment is
one solution presented in [7] that works with a certain discrete action space, which can be
a limit for applications that require continuous spaces. The use of prediction of harvested
energy is also a downside, as it is likely to produce errors that can make decision-making
worse.

J. Low Power Electron. Appl. 2021, 1, 0 3 of 19

Energy management can be addressed through the solution of an optimization prob-
lem. For instance, the authors of [8,9] formulated the optimization problems with some
constraints and solve it using Lyapunov optimization method. However, a non-convex
problem is difficult and costly to solve, with possibly multiple optima. Bhat et al. [10,11]
introduced hardware solutions for their optimization problems with the help of relaxed
Karush–Kuhn–Tucker (KKT) conditions or of simplex algorithm for solving their linear
programming. They needed to prepare design points [11] or energy harvesting model for
predictions offline [10] in their methods. Note that our approach is independent of such
offline analysis. Vigorito et al. [12] formulated a linear-quadratic problem by defining
the ENO-Max condition in the TX duty-cycle modulation. This method is model-free and
agnostic of prior knowledge on energy harvesting. Another model-free algorithm, tabular
Q-learning [13], is designed as a dedicated hardware to address adaptive power manage-
ment. However, it cannot scale to large state–action spaces and continuous states and
actions. Note that all the aforementioned methods do not take data queues into account.

Masadeh et al. [14] presented an actor–critic RL method for TX output power control
in energy-harvesting communications system. Their actor learns the parameters for the
mean and standard deviation of a normal distribution, while the critic is constructed by a
two-layer neural network, which can be costly for resource-constrained devices. Likewise,
in [15–17], three layer neural networks are employed, which is again computation- and
memory-intensive. For the purpose of low-cost implementation, linear function approxi-
mation is adopted in [2,18]. However, these papers do not discuss the reactivity of their
algorithm to environmental changes, or covariate shift, i.e., re-optimization to a new state.
All of the above works use fixed learning rate, which cannot guarantee enough reactivity.
By contrast, we aim at devising a lightweight reactive control algorithm.

The authors of [19–21] adopted deep learning-based RL (DRL) solutions with Adam.
The effect of this adaptive algorithm, however, is to overcome the sparse gradient issue
that frequents neural networks. To this end, larger decay rates in Adam are employed,
which attains stable and fast convergence in training neural networks. Nonetheless, such
setups of decay rates essentially lead to slow adaptation to new situations since they
put less weight on recent changes and retain longer past gradient information. Besides,
initialization bias correction is required.

Differently from those existing methods, we propose applying Adam to a low-cost
LAC algorithm for fast adaptability. That is, thanks to the use of linear approximations,
we can perform Adam with smaller decay rates such as β1, β2 ∈ [0.1, 0.7], which can
make our RL more reactive. Such small decay rates are also suitable, in that LAC is fully
dependent on the latest action to learn, i.e., it is an on-policy RL. These choices of values
are further elucidated by the use of exponentially weighted moving average (EWMA) in
the literature of online workload change detection [22–24]. Comparisons among the above
state-of-the-art solutions and our approach are summarized in Table 1.

Table 1. Comparison of each algorithmic representations of the actor-critic method.

Paper Method SoB SoC Harvester Action Neural? LR

[6] Online statistics &
offline optimization - Finite - Sense & Compress

setups No NA

[7] Prediction & online
stepwise adjustment - Finite Solar Duty-cycle, TX

power No Fixed

[8] Lyapunov optimization - Finite Solar TX modulation No NA

[9] Lyapunov optimization - Finite Solar TX power No NA

[10] Online KKT &
prediction - Finite Solar Duty-cycle No Fixed

[11]
Simplex algorithm with
prediction and offline

data
- Finite Solar

Active time
(Duty-cycle),

accuracy
No NA

[13] Q-learning - Finite - Suspension mode
selection No Fixed

[14] Actor-Critic Infinite Finite Solar TX power 3 layers (3-10-5-1) Fixed

J. Low Power Electron. Appl. 2021, 1, 0 4 of 19

Table 1. Cont.

Paper Method SoB SoC Harvester Action Neural? LR

[12] Linear-Quadratic
Regulator - Finite Solar Duty-cycle No Fixed

[15] DRL - Finite Solar Duty-cycle 3 layers (4-64-64-2) Fixed

[16] Asynchronous
Advantage Actor-Critic Finite Finite Uniform

distribution

Duty-cycle, TX
power

(source and relay)

3 layers
(5-300-200-3(1)) Fixed

[17] Deep RL Infinite Finite Uniform
distribution

TX modulation
(=TX power) 3 layers (3-10-10-1) Fixed or

decaying

[2] Linear Actor-Critic - Finite Solar, wind Packet rate No
(Linear function) Fixed

[18] Multi-Agent
Actor-Critic Finite Finite Solar Duty-cycle, TX

power
No

(Linear function) Fixed

[19] Double Deep
Q-Network - Finite

Two-state
Markov
process

Uplink scheduling
policy Yes (No details) Adam

(less adaptive)

[20] Multi-Agent Double
Deep Q-Network - - - Base station and

channel selections
4-layers (50-64-32-

32-26(30))
Adam

(less adaptive)

[21] Deep Deterministic
Policy Gradient - Finite Solar Energy budget

Actor: 3(4)-60-30-1,
Critic: 3(4)-60-60-

60-60-60-1

Adam
(less adaptive)

This paper Linear Actor-Critic Finite Finite Solar Duty-cycle Linear function Adam
(highly adaptive)

3. System Model

Adaptive control in EH-IoT has already been addressed in previous works (see, e.g.,
[18]). In the current paper, we study the exact same system. However, the system is now
described to make the paper self-content.

3.1. Energy Harvesting and State-of-Charge Model

Several types of energy harvesting sources exist, e.g., solar, wind, vibration, thermal
and piezoelectric. Here, we focus on solar energy-harvesting. The scavenged power Pharv

t
is formally calculated by:

Pharv
t = η · A · TF · It (1)

with the solar irradiance It[W/m2], the size of the photovoltaic (PV) cell A[m2], the conver-
sion efficiency (rate) η, and the tracking factor (TF) of maximum power point tracking. In
the present work, we employ the harvest–use–store scheme [32,33].

A supercapacitor is considered an optimal solution as an energy storage in energy-
harvesting applications because of the well-balanced trade-offs among physical lifetime,
energy density, maximum charge cycles, and self-discharging rate [25]. Let Emax and E f ail

denote the maximum and minimum (i.e., failing-threshold) energy levels. The state-of-
charge (SoC) of the residual energy Et is represented as:

φSoC
t =

Et − E f ail

Emax − E f ail (2)

Note that a severe self-discharging is a known issue in supercapacitors. Indeed, the
self-discharge rate τ during time ∆t can be up to 20% per day [25]. With its capacity C and
voltage level Vsc

t , the leak power Pleak due to self-discharging is given by:

Pleak =
1

2∆t
C(1− τ2)V2

sc (3)

J. Low Power Electron. Appl. 2021, 1, 0 5 of 19

In our simulations, ∆t is equal to 1 min, and the discharging rate is simplified as
τ = 0.8

1
1440 , which stands for 20% per day.

3.2. Application Data and State-of-Buffer model

In this paper, an embedded sensor is assumed to generate data that are stored into the
TX buffer. The sensor type is not considered here, even if the sensor technology and type
of information sensed have a strong influence on the power consumption, and thus on
the required harvested energy. Data acquisition can be periodic, aperiodic, or completely
random. We assume here that the arrival of data to the TX buffer is generated based on the
Poisson distribution with the average of λ [pkts/min] [26].

We consider a TX buffer with maximum capacity Bmax. The buffer stores data that
are newly generated or that require retransmission because of sending issue. The State-of-
Buffer (SoB) φSoB

t of the current buffer level Bt is defined as:

φSoB
t =

Bt

Bmax (4)

3.3. Power Consumption and Transmission Model

Depending on the wireless protocol, different controllable variables exist such as the
duty-cycle, the output power, the modulation, the spreading factor, the bandwidth, and
the cyclic redundancy check. In this paper, we assume a continuous duty-cycle control
of a CC2500 transceiver module whose output power is fixed to +1 dBm that consumes
21.5 mA according to the data sheet [27]. Considering the nA- and mA-order of current in
deep-sleep mode and in active mode, the impact of TX duty-cycle control is much larger
than that of TX output power control.

We assume the cycle period Tcycle = 1 min that consists of the active time Tactive and the
sleep time Tsleep. The TX duty-cycle Dt is defined as the ratio of Tactive to Tcycle. Therefore,
we have Tactive = Dt · Tcycle. Taking into account ηact and ηslp that are the efficiency of the
DC-DC regulator in active and sleep mode [7], respectively, the TX power consumption
during a cycle Pcycle is expressed as:

Pcycle =
Pactive

ηactice · D +
Psleep

ηsleep · (1− D) (5)

where Pactive is the power consumption in the active mode. Tactive is comprised of the sum
of time-on-air of frame TX and acknowledgements (RX) [28]. Note that the transceiver
wake-up time overhead is therefore ignored in this paper. Tack denotes the time required to
receive an acknowledgement packet: it is assumed to be equal to the acknowledgement
frame’s time-on-air. Under these assumptions, Pactive is obtained by:

Pactive
t = Ptx · (1− Tack

Tactive) + Prx · Tack

Tactive (6)

where Ptx and Prx are the power consumption during packet transmission and acknowl-
edgement reception, respectively. While the overall power consumption of an IoT node
typically comprises sensing, processing and communication power, only the last one was
considered in our simulations. In addition, this work neglects the power consumption
overhead of the proposed actor–critic-based controller. Note that a combined path-loss and
shadowing model [29] in outdoor environment is assumed, and the packet error ratio was
constantly zero throughout the whole simulations.

4. Application Scenario

We consider the case of TX duty-cycle optimization in an energy-harvesting IoT sensor
end-node communicating with a sink node. In such a situation, the space of application

J. Low Power Electron. Appl. 2021, 1, 0 6 of 19

scenarios is quite large. The common features of the application scenario assumed in our
study are described as follows:

- The control update interval (CUI) is Tcui = 30 min.
- For the PV cell model, we set the cell area A, conversion efficiency η, and tracking

factor TF as 2.5 cm2, 10%, and 96.3%, respectively [7]. This choice is consistent with
an off-the-shelf solar cell that can harvest power from µW to mW per cm2, depending
on the lighting condition [30]. Note that we use the real-life solar irradiance data
provided by Oak Ridge National Laboratory [31].

- The self-discharge of a supercapacitor whose capacitor size is 1F is considered 20%
per day (detailed in Section 3.1). The harvest–use–store scheme is adopted [32,33] to
provide high energy efficiency.

- The wireless link quality is under the influence of path-loss and shadowing.
- The workload follows the Poisson distribution. The average rate doubles after the first

six months (where the algorithm is put through the test of fast adaptability/reactivity).
More precisely, the system receives the average of 1.0 pkt/min for the first six months,
and it impulsively becomes twice (2.0 pkt/min) afterwards.

Figure 1 illustrates this application scenario. For the solar irradiance data, we use
three kinds of datasets:

1. EHD1: Non-processed real-life one-year data from 1 June 2018 to 31 May 2019
2. EHD2: Real-life one-year data made by stacking 365 one day (1 December 2018) worth

of solar irradiance data
3. EHD3: Real-life one-year data made by stacking 365 one day (1 June 2018) worth of

solar irradiance data

In each simulation study presented below, we specify which dataset was used by the
notation, EHD1, EHD2, or EHD3. The uses of EHD2 and EHD3 is justified in Sections 7
and 8.2.

Figure 1. Overview of the application scenario.

5. Reinforcement Learning

In reinforcement learning (RL) [34], a decision maker and its surroundings exist. The
former is called the agent, while the latter the environment. The agent learns to optimize its
actions by interacting with the environment. As opposed to dynamic programming where
the agent perfectly knows the environment’s behavior as a model, no a priori information
of the environment is given in RL, which makes it practically useful in real-life, as the
environment is often too complex and transient to accurately build its model.

We denote the agent’s action and the environment’s state by at and st, respectively.
With the premise of Markov decision process, the agent decides, based on its policy π(at|st),
the action at that influences the environment and its state changes to st+1. As a result, the
agent receives from it a reward rt+1 = f (st, at, st+1) that represents how good the action
at was at the state st. The goal of RL is therefore defined as maximizing the expected
total rewards from the present to the future. The future discount factor γ is introduced

J. Low Power Electron. Appl. 2021, 1, 0 7 of 19

in general to put more weight in the near future. The expected total future-discounted
reward, more frequently called the value function Vπ at state st, is then defined as:

Vπ(st) = E[
∞

∑
k=0

γk · rt+k+1|st] (7)

Nonetheless, this value is practically impossible to calculate, since the future is unfore-
seeable. Hence, we need to accurately estimate this value.

At this point, the RL’s goal can be re-defined and is comprised of two purposes:

1. Find the optimal policy π∗.
2. Determine the estimate of the value function vπ under a certain policy;

Note that the value function v∗ under the optimal policy π∗ is defined as ∀s ∈ S , v∗ =
maxπ vπ(s) where S is the state space. We must seek these two under the following two
conditions: (1) The reward for each state–action pair is unknown. (2) The state transition
probability is unknown. Getting samples from the interactions with the environment helps
the agent capture information about the reward and state transition probability to learn the
policy and the value function. In actor–critic RL, the actor is in charge of the first purpose
and the critic the second one. Each goal can be achieved by policy gradient theorem and
TD(λ) algorithm (refer to [2]), which we opt for in this paper, or by the use of neural
networks.

6. Algorithm: LAC-AB

The LAC-AB algorithm is based on the LAC that was originally devised by Ait Aoudia
et al. [2]. One difference is that we apply Adam to the LAC to address the reactivity problem
caused by fixed learning rate, which we discuss in Section 8.1. Thus far, Adam is typically
used for sparse gradient issue in use of neural networks. The decay factors β1 and β2 are
therefore set as 0.9 and 0.999 (which we call PA (prior art) setting below), respectively. The
use of linear functions breaks free from such an issue, enabling us to set the decay factors
smaller, such as 0.1–0.7 as generally adopted in the literature of workload change detection
[22–24], so as to achieve faster adaptation. The reason is two-fold:

- Smaller values lead to more weight on recent changes, i.e., faster online adaptation.
- The gradient variance can become too large and yet carries an important information

for parameter updates that can be lost with larger values of β1 and β2.

Further, with such smaller rates, we can reduce some computations by excluding
the bias correction terms (refer to [5]) that are accounted in Adam. Hence, the LAC-AB
algorithm is a LAC algorithm using Adam with no initialization Bias correction terms.

Figure 2 illustrates the structure of the LAC-AB and Algorithm 1 shows its whole
algorithm concerning our application example. However, it is trivial to transfer this
algorithm to other application use cases. The state is composed of the State-of-Buffer (SoB)
and State-of-Charge (SoC), which take into account the “quantity” of the in and out of data
and energy. The value function is assumed to be linearly proportional to the multiplication
of 1− φSoB and φSoC (Line 6), which indicates that the value of the state is higher when less
SoB and more SoC are confirmed. Adam is employed with no initialization bias correction
terms in actor update (Lines 11–13) with adaptation-aware setups. The linear relationship
is also assumed between (mean) action value and the multiplication of φSoB and φSoC (Line
14), which means that smaller action values (i.e., less performance) is enough when the
SoB level is less, and higher values can be provided when the SoC level is higher. The final
action is generated based on the Gaussian distribution (Line 15) to guarantee explorations
and to find an optimal action. Note that the algorithm mostly contains multiply and
add operations; only two divisions, one squared root operations and a Gaussian random
number generator are used.

J. Low Power Electron. Appl. 2021, 1, 0 8 of 19

Figure 2. Overview of the actor and critic in LAC-AB algorithm.

Algorithm 1. LAC-AB: LAC algorithm using Adam with no initialization bias correction

Require:
/∗ Inputs ∗/
- State-of-Buffer ψSoB

t+1 and State-of-Charge ψSoC
t+1

/∗ Hyper-parameters for Actor-Critic ∗/
- Learning rates β and α for Actor and Critic, respectively
- Discount factor γ ∈ [0, 1] for past reward Rt+1
- Recency weight λ ∈ [0, 1] in the TD(λ) algorithm
- Exploration space σ (standard deviation for the Gaussian policy)
- Decay rates β1 ∈ [0, 1] and β2 ∈ [0, 1] for EWMA in Adam
- ε to avoid division by infinitesimally small values in Adam

Ensure:
- Action at ∈ [amin, amax]
- Actor and Critic parameter ψt and θt

1: Initialize at time t = 0:
- Empty data buffer ψSoB

0 = 0 and fully-charged energy buffer ψSoC
0 = 1

- ψ0 and θ0 are random numbers ranging [0, 1]
2: for each t ∈ [0, ∞] do

/∗ Observe the current state ∗/
3: Rt+1 = (1− φSoB

t+1) · φSoC
t+1 . For minimizing SoB and maximizing SoC

4: Vt = θt · (1− φSoB
t) · φSoC

t . Less SoB and more SoC are better states (better values)
5: ˆVt+1 = θt · (1.0− φSoB

t+1) · φSoC
t+1

/∗ TD-error for Actor-Critic ∗/
6: δTD

t+1 = R(t + 1) + γ ˆVt+1 −Vt . Advantage function: A(s, a) = Q(s, a)−V(s) (Q(s, a): state-action value
function)
/∗ Critic: TD(λ) algorithm ∗/

7: zt+1 = γλzt + (1− φSoB
t+1) · φSoC

t+1 . Calculate the eligibility trace zt+1
8: θt+1 = θt + αδt+1zt+1 . Update the critic parameter

/∗ Actor: Policy gradient theorem using Adam with no initialization bias corrections ∗/
9: gt+1 = δt+1 · at−µt

σ2 · φSoB
t · φSoC

t
10: mt+1 = β1 ·mt + (1− β1) · gt+1 . Estimate the first-order moment
11: vt+1 = β2 · vt + (1− β2) · g2

t+1 . Estimate the second-order moment
12: ψt+1 = ψt + βt+1 · mt+1√

vt+1+ε . Update the actor parameter
/∗ Next TX duty-cycle selection ∗/

13: µt+1 = ψt+1 · φSoB
t+1 · φSoC

t+1 . Less SoB, smaller action values; More SoC, higher action values
14: µt+1 ← Clamp µt+1 to [amin, amax]
15: at+1 ∼ N (µt+1, σ) . Gaussian policy for action generation
16: at+1 ← Clamp at+1 to [amin, amax]
17: Return at+1
18: end for each

J. Low Power Electron. Appl. 2021, 1, 0 9 of 19

7. Definition of Convergence

The convergences of TD(λ) algorithm in linear function approximations and policy
gradient theorem are proven, but it is tricky and often application-specific to determine
when they have converged. For instance, in [35], the authors defined the time of conver-
gence in an episodic task as when the returns of the first 10 consecutive episodes are all
within 5% of the average of the final 150 episodes. Meanwhile, other work have compared
several methods and/or setups and analyzed the convergence only by the visual qualitative
measurements [17,20].

In this study, we analyzed two kinds of convergence: the convergence for the initial
state (i.e., for the first six months) and the convergence for a new state (i.e., for the last
six months). We call the time of those convergence the time of fine-tuning (ToF) and the
time of reactivity (ToR), respectively. Since the optimization process may greatly differ
for each simulation due to the Gaussian policy as well as other stochastic factors, such as
workload, scavenged energy, and wireless conditions, and the variance of the trace also
appears to converge, as shown in Figure 3, the convergence analysis was conducted for
the average trace of a concerned variable. Figure 4 shows the idea of how to analyze the
convergence using two time-windows. We augment the approach used in [35] and define
them as follows:

1. All the mean values (e.g., actor parameter values ψt) taken over all the simulations at
the same time points in a x-day sweeping window are all within 5% error band of the
average of all the mean values in the last x-day window under almost the same state
(e.g., under the same workload scenario in our test study here).

2. The variances of the mean values taken over all the simulations at the same time points
are confirmed to be not different, i.e., the homogeneity of variance is tested and con-
firmed by means of Levene’s test [36], more precisely Brown–Forsythe [37] test, with
the confidence interval of y% (note that we cannot say “the same” mathematically).

Figure 3. Transitions of actor parameter ψ using LAC-AB (β1, β2 = 0.4) for EHD1, EHD2, and EHD3.

J. Low Power Electron. Appl. 2021, 1, 0 10 of 19

Figure 4. Overview of convergence analysis.

Note that we run the sweeping window from the first day towards the end with step
size of a time point, which is equal to Tcui = 30 min, until the convergence is admitted.
The reason for evaluating the homogeneity of variance is that the sequences of the mean
values may be different in terms of variance between the two windows, which can defy
the convergence. The use of Brown–Forsythe test is because we cannot expect the mean
values to follow normal or symmetric distribution, and it is not as sensitive to violations
of the normality assumption as alternative tests such as Hartley’s Fmax test [38]. Further,
we observe the daily (e.g., weather) and seasonal effects that also heavily impact the
optimization (see Section 8.2); therefore, we crafted an artificial one-year trace data by
stacking one-day trace data upon one another 365 times. The use of such data trace is
considered acceptable because the RL algorithm adopted is on-policy and is incapable
of learning features or correlations between the current day and any past days. In other
words, the algorithm is agnostic of time-independent information.

We set x = 5 throughout this paper, which corresponds to, for example, 240 data
samples in a window in the case of Tcui = 30 min, to ensure that the convergence is not
merely temporal, and y = 5. Note that this quantitative way of evaluating the convergence
is application-specific and applicable to our case. Although this is an attempt to provide
the convergence time and its comparison, the performance itself may be sufficient at an
earlier point for the practical use.

8. Simulation Results

The models shown in Section 3 and adaptive decision-making algorithms proposed in
Section 6 were all coded in C++ and different simulation studies were conducted. Note that
we used the real-life solar irradiance datasets provided by Oak Ridge National Laboratory
[31]. We now present the results of these simulations in the following sub-sections.

8.1. Divergence and Reactivity Problem

Our application scenario involves the TX duty-cycle optimization, which is in essence
the same as the one addressed by the LAC algorithm in [2]. Their reward function rep-
resents the multiplication of SoC and packet rate that is equivalent to the duty-cycle as
a performance factor. The evolutions of ψ and TD-errors over a year obtained by simply
applying their approach are illustrated in Figure 5. Such a representation of the reward
function may entice the agent to greedily increase the duty-cycle for more rewards, which
ends up causing power failures. More precisely, a sufficient energy reserve during the
daytime helps such an increase, while, at some point, the blown-up duty-cycle cannot
quickly be reduced anymore by the time the whole energy runs out due to a constant
exploration range. In this case, the upper bound of the TX duty-cycle is way too large for
the system as well as the application; in other words, no proper upper bound for braking
duty-cycle explosion exists in the existing method. Note that, with the use of either Adam
or a much smaller learning rate for the case of five-year dataset, the same divergence was
observed. To resolve this issue, we suggest the use of SoB both as a performance and an
upper bound index.

J. Low Power Electron. Appl. 2021, 1, 0 11 of 19

RL algorithms are supposedly self-adaptive to environmental changes. Such changes
can be characterized by their periodicity and speed. To counteract them, the system can
modulate its action(s) and/or the CUI. We fix the CUI as 30 min and consider an impulsive
workload change (from 1.0 pkt/min to 2.0 after the first six months) to shed light on the
reactivity issue of fixed learning rate. The set of hyperparameters for each algorithm is
listed in Table 2. Note that these values are used for all simulation study throughout
the paper. The traces of ψt values and TD-errors averaged over 90 successful runs are
illustrated in Figure 6. The power failures (in total 10 out of 10 unsuccessful cases, since
one power failure was observed in each of those cases) are highlighted as red crosses at
each time point, just showing when they occurred. As the CUI is fixed, the gradient (or its
variance) becomes larger after 1 December, i.e., the workload doubles up as the SoB term
is included in the reward, which leads to larger actor updates for ψ due to fixed learning
rate. TD-errors also fluctuate in a certain range without divergence. This is because the
SoB index provides the upper bound for how much performance is necessary. Note that
we observed ψ values since the convergence speed is slower than TD(λ) algorithm and
the TD-error follows the same trend as ψ values. Hence, in the case of the fixed CUI, the
learning rate needs to be adapted at run-time. In the next subsection, we introduce a
widely-used adaptive learning method, i.e., Adam, to the LAC algorithm by arranging the
decay rates and show its effectiveness for reactivity alongside with fine-tuning adaptation
to the initial state.

Figure 5. Divergences of ψ (left) and TD-errors (right) over one year with the state-of-the-art LAC
method (red crosses indicate the power failure points).

Figure 6. Transitions of ψ (left) and TD-errors (right) in case of the LAC algorithm using fixed
learning rate with the SoB as a performance upper bound (red crosses represent when power
failure(s) occurred).

8.2. Effectiveness and Convergence of LAC-AB

As observed in the previous section, the existing LAC method is limited in adaptability
due to fixed learning rate. Thus, we introduce Adam to LAC to deal with this problem

J. Low Power Electron. Appl. 2021, 1, 0 12 of 19

and call it LAC-A algorithm. In addition, as explained in Section 6, it would be possible to
exclude the use of initialization bias correction terms in Adam, which leads to the LAC-AB
algorithm. In this section, we use 300 simulation results and compare these approaches
with different decay rate setups in terms of convergence, latency, and power failures. Note
that the latency in this work is defined as the time from when a packet arrives in the data
buffer until when it is successfully transmitted to the sink node.

First, we use the EHD1 dataset and make a comparison among LAC-A with PA setting,
LAC-A, and LAC-AB with different decay rates, through which we show more suitable
setups for LAC-A/LAC-AB and the improvement in terms of latency, reactivity, and the
number of power failures. The hyperparameters for this analysis are listed in Table 2. The
transitions of ψt for the three modes (LAC with PA setting, LAC-A, and LAC-AB) with
β1 = β2 = 0.4 are depicted in Figure 7. The use of Adam rescales the gradient between
before and after the workload change; however, this does not necessarily help avoid the
power failures. While the number of failures increased to 28 times in PA setting compared
to 10 in the case of LAC (fixed learning rate) (Figure 6), the system yielded no failures with
0.4 for both decay factors. This suggests that too large decay rates may cancel the gradient
direction that is calculated as a result of Gaussian policy. Moreover, we observe that
smaller decay rates in Adam help achieve fine-tuning of the learning rate, faster reactivity
and even less gradient variation, since they allow for faster online tracking of changes in
gradients, the rewards, or even the SoB and the SoC. The decay rate 0.4, for example, is
relatively small and may permit no initialization bias corrections. Table 3 summarizes the
latency and the number of power failures for each case above. The latency is evaluated
before and after the workload change. As expected, the latency values of both LAC-A and
LAC-AB with β1 = β2 = 0.4 are the same in the order of 10−2 (e.g., 3.52 min), except for
the standard deviation of the latency in the first six months, whose error is only 0.03 min
(0.3%). As such, for the rest of the paper, we leverage and focus on the LAC-AB algorithm
for achieving faster adaptations while reducing the computation and memory footprint.

Table 2. Hyperparameters for actor–critic + Adam.

Algorithm α β γ σ λ ε

LAC 0.1 2.0× 10−6 0.9 5.0× 10−4 0.9 1.0× 10−6

LAC-A 0.1 3.0× 10−4 0.9 5.0× 10−4 0.9 1.0× 10−6

LAC-AB 0.1 3.0× 10−4 0.9 5.0× 10−4 0.9 1.0× 10−6

Figure 7. Transition of actor parameter ψ using Adam and EHD1 dataset: (left) LAC-A (β1 = 0.9, β2 = 0.999); (middle) LAC-A
(β1 = β2 = 0.4); and (right) LAC-AB (β1 = β2 = 0.4).

J. Low Power Electron. Appl. 2021, 1, 0 13 of 19

Table 3. Latency (min) and power failures for the three different algorithms and setups.

Algorithm LAC-A LAC-AB

β1/β2 0.9/0.999 0.4/0.4 0.4/0.4

Latency (Mean/Std)
First 6 months 3.40/10.54 3.52/11.11 3.52/11.14

Last 6 months 6.21/11.07 6.06/10.76 6.06/10.76

of power failures/# of failed simulations 28/28 0/0 0/0

Nonetheless, in the case of the latter two modes, the ψ traces of the last half a year
constantly decrease, which makes it harder to judge the convergence, whereas that of the
first half remains almost constant. We use the EHD2 and EHD3 datasets where the seasonal
and weather changes are removed and the randomness of real-life solar irradiance is still
retained. The analysis with the use of those datasets can be supported by the fact that the
LAC algorithm is an on-policy RL and no other algorithm for capturing correlations of
any two different days is used. We obtained the traces of ψ for EHD2 and EHD3 depicted
in Figure 3 as well as that for EHD1. We can claim qualitatively that the ψ of LAC-A
using β1 = β2 = 0.4 for EHD1 dataset converges after the workload change despite its
constant decrease, because the value converges to 2.25× 10−2 for EHD2 (corresponding to
December) and to 2.0× 10−2 for EHD3 (corresponding to June) and the trace in-between
can be explained by interpolation. This observation explains that the difference in the
ratio of variations of the SoB and the SoC at each control interval gives rise to different
optimization process. It can also be seen that the seasonal and weather-induced fluctuations
in energy-harvesting may blur the optimization process. Hence, the analysis of ToF and
ToR was conducted using EHD2 and EHD3. This way, we can also infer the range of
convergence time for whenever the state changes.

8.3. Decay Rates Study for LAC-AB

For β1 and β2, various combinations can be made, and, therefore, we need to grasp the
tendency of which ones work better. To this end, we used EHD1 to evaluate the number of
power failures and EHD3 to assess the convergence speed. We conducted 300 simulations
for each set based on β1, β2 ∈ [0.1, 0.7] with a 0.1 step, because no use of bias correction
terms implies the use of lower values. With respect to ToF/ToR analysis, we used the
average values over 300 simulations, since the randomness in each uncertainty such as
Gaussian policy, workload, harvested energy, and wireless link quality still makes the
optimization process unclear and yet can be mitigated by taking the average. Afterwards,
we applied the ToF and ToR definition in Section 7 to these results. Note that the ToF and
ToR can be measured also with EHD2 dataset, but the outcome is quite similar to EHD3’s,
and, therefore, removed for brevity. The results are depicted in Figure 8. The number of
power failures (Figure 8, left) tends to decrease as β1 value goes down to [0.1, 0.4] with at
most one failure. With β1 ∈ [0.1, 0.4], both ToF and ToR become faster when using lower
β2 ∈ [0.1, 0.3]. This can be explained by the fact that the sudden change in gradients, i.e.,
SoB and/or SoC will be mitigated by the quick rescaling of variance, i.e., smaller decay
rate such as β2 = 0.1. By contrast, opting for β2 = 0.1 and even 0.2 severely deteriorates
the performance of energy management when using larger β1 such as 0.6–0.7. For this
range of β1, we obtain better outcome in both power failure and convergence speed with
β2 ∈ [0.3, 0.4] . All the above results considered, the choices must be made by considering
the trade-offs between power failure and convergence speed.

J. Low Power Electron. Appl. 2021, 1, 0 14 of 19

Figure 8. Power failure and Convergence speed analysis of LAC-AB for different sets of (β1, β2) using EHD1 and EHD3 datasets,
respectively: (left) number of power failures; (middle) ToF; and (right) ToR.

The analysis on the latency in the two different workload periods was also conducted,
as illustrated in Figures 9 and 10. As can be seen, the results show the opposite trends. For
the first six months, the latency has a tendency to decline as β1 increases, ranging from 3.4
to 3.6 min and from 10 to 12 min for the mean and standard deviation, respectively, except
for β1 ∈ [0.5, 0.7] with β2 ∈ [0.1, 0.2]. By contrast, the rising trends are observed during
the period of doubled workload, where the mean and standard deviation of latency fall
between 6.0 and 6.2 min and between 10.65 and 11 min, respectively. Again, the exceptions
occur with β1 ∈ [0.5, 0.7] with β2 ∈ [0.1, 0.2]. These phenomena are explained by the
effectiveness of high adaptability to each situation; higher adaptability by smaller decay
rates is more suitable when the state such as SoB varies greatly (e.g., during the last six
month), and less when the state is relatively constant (e.g., during the first six month).

Figure 9. Latency analysis of LAC-AB during the first sxi months for different sets of (β1, β2) using
EHD1 dataset: (left) mean; and (right) standard deviation.

J. Low Power Electron. Appl. 2021, 1, 0 15 of 19

Figure 10. Latency analysis of LAC-AB during the last six months for different sets of (β1, β2) using
EHD1 dataset: (left) mean; and (right) standard deviation.

The experiments thus far led us to choose one of the best values of β2 for each β1 ∈ [0.1, 0.7]
for further investigations: β2 = 0.1 for β1 ∈ [0.1, 0.4], β2 = 0.2 for β1 ∈ [0.5, 0.6], and
β2 = 0.3 for β1 = 0.7. We ran 300 simulations and obtained ToF and ToR for both EHD2
and EHD3 dataset, since we can expect from the results in Figure 7 that the convergence
speed may differ depending on the season. Figure 11 shows the ToF and ToR for the chosen
sets of decay rates with the baseline values of those of the LAC algorithm using fixed
learning rate. Obviously, the convergence speed improved compared to the case of LAC.
With β1/β2 = 0.3/0.1, for instance, the ToF and ToR reduced to 7.15 and 0.02 days for
EHD2 (or 1 December dataset) and 7.48 and 7.67 for EHD3 (or 1 June dataset), respectively,
compared to 83.40 and 47.52 days for EHD2 and 60.17 and 45.77 days for EHD3 in using
fixed learning rate in LAC algorithm. Across all the combinations, the worst ToF and ToR
are still 13.06 and 5.67 days for EHD2 and 13.12 and 14.44 for EHD3, respectively. In other
words, the fine-tuning and reactivity speed have improved by at least 78.2–84.3% and
68.5–88.1%.

Figure 11. ToF and ToR of LAC-AB algorithm.

With respect to the latency and power failure, Figure 12 depicts these metrics for the
chosen decay rate combinations in comparison to the LAC algorithm without Adam. The
EHD1 dataset was used to obtain the results consistent with the real-world situations. The
differences in the mean values of latency are not outstanding across all cases, but the mean

J. Low Power Electron. Appl. 2021, 1, 0 16 of 19

standard deviation for the first six months tends to decrease as the decay rates become
larger, especially until β1 reaches 0.4, while that for the last six months shows the opposite
trend. Nonetheless, too large decay rates as well as fixed learning rate are more likely to
bring about power failures. With smaller decay rates, the controller reacts more quickly to
environmental stochasticity, leading to larger variations in latency, i.e., duty-cycle in case of
less drastic changes as in the first six months, and yet with no or a couple of power failures,
compared to 38 times in case of using fixed learning rate.

To summarize, we advise setting small decay rates such as β1 ∈ [0.2, 0.4] and β2 = 0.1
for power-failure-sensitive applications and larger β1 ∈ [0.5, 0.7] with relatively smaller
β2 ∈ [0.2, 0.4] for latency-sensitive ones, although these values may vary according to target
applications. With any of these setups, the number of power failures can be drastically
reduced to zero or a few, and the reactivity speed falls around within a day up to 15 days
and the initial convergence is attainable in about 5–13 days for our application use case
where the CUI is 30min. To cope with reactivity to new situations, it would be another
solution to reset and re-learn from scratch by detecting the environmental change as in [23]
that requires the detection algorithm. However, our solution can achieve faster ToR than
ToF, and therefore it is simpler and yet effective without such a mechanism.

Figure 12. Latency and number of failed simulations of LAC-AB algorithm.

9. Conclusions and Future Direction

In this paper, we propose LAC-AB, the integration of the LAC algorithm and Adam
with smaller decay rates and no initialization bias correction terms in order to grapple with
drastic environmental changes and avoid power failures. This idea is of importance because
the recent trend in EH-IoT requires µW-range low-cost systems with high adaptability
to the changing environment. The consideration of the SoB would act as an index for
necessary and sufficient performance and help achieve scalability to wide applications.
The introduction of Adam overcomes the reactivity issue caused by fixed learning rate
in LAC algorithms. For quantitative analysis of convergence, we attempted to define the
time of convergence for the ToF and ToR based on the mean and variance of the optimized
parameter. First, we proved that, along with the effectiveness of SoB as a part of state,
the conventional decay rates of β1 = 0.9 and β2 = 0.999 are not suitable and no use of
initialization bias correction with smaller rates is acceptable. Then, we performed extensive
simulations to obtain the best possible sets of β1, β2. Finally, our simulation results show
that our proposal enables improving both the fine-tuning and reactivity, yielding 13.06 and
5.67 days for EHD2 and 13.12 and 14.44 for EHD3 for ToF and ToR, respectively, as the
worst case among the best possible combinations of β1, β2, compared to 83.40 and 47.52

J. Low Power Electron. Appl. 2021, 1, 0 17 of 19

days for EHD2 and 60.17 and 45.77 days for EHD3 in the case of LAC algorithm using
fixed learning rate. This corresponds to improvements of fine-tuning and reactivity of at
least 78.2–84.3% and 68.5–88.1%, respectively. Importantly, the number of power failures
is zero or a few times over 300 simulation cases in the LAC-AB algorithm, compared to
38 times for the LAC algorithm without Adam. Hence, our proposal augments LAC with
more adaptability at low cost for lightweight IoT applications.

The proposed algorithm mostly involves multiply and add operations along with
only two divisions, one squared root operation and one Gaussian random number genera-
tion. Ongoing research is being conducted to turn these computations into only multiply
and add operations with the use of fixed-point quantization, and therefore, to make our
algorithm more lightweight. Preliminary work suggests that the approximated version of
our proposed algorithm exhibits similar behavior and would even allow the design of a
dedicated hardware component.

Author Contributions: Sota Sawaguchi conducted the initial formal analysis and he developed
the proposed algorithm under the supervision of Dr. Jean-Frédéric Christmann and Dr. Suzanne
Lesecq. Then, he proposed the software implementation and performed the tests reported in the
present paper. S. Sawaguchi wrote the initial draft of the paper that has been reviewed and edited
by Dr. Jean-Frédéric Christmann and Dr. Suzanne Lesecq. All authors have read and agreed to the
published version of the manuscript.

Funding: This study has been partly funded by the OCEAN12 ECSEL project (ECSEL Project ID
783127-2).

Data Availability Statement: Data used in this study can be found on [31].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lallement, G.; Abouzeid, F.; Cochet, M.; Daveau, J.; Roche, P.; Autran, J. A 2.7pJ/cycle 16MHz SoC with 4.3nW power-off ARM

Cortex-M0+ core in 28nm FD-SOI. In Proceedings of the ESSCIRC 2017—43rd IEEE European Solid State Circuits Conference,
Leuven, Belgium, 11–14 September 2017; pp. 153–162, doi:10.1109/ESSCIRC.2017.8094550.

2. Ait Aoudia, F.; Gautier, M.; Berder, O. RLMan: An Energy Manager Based on Reinforcement Learning for Energy Harvesting
Wireless Sensor Networks. IEEE Trans. Green Commun. Netw. 2018, 2, 408–417, doi:10.1109/TGCN.2018.2801725.

3. Ortiz, A.; Al-Shatri, H.; Li, X.; Weber, T.; Klein, A. Reinforcement learning for energy harvesting point-to-point communications.
In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016;
pp. 1–6.

4. Van Hasselt, H.; Wiering, M.A. Using continuous action spaces to solve discrete problems. In Proceedings of the 2009 International
Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009; pp. 1149–1156, doi:10.1109/IJCNN.2009.5178745.

5. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.

6. De Roose, J.; Xin, H.; Andraud, M.; Harpe, P.J.A.; Verhelst, M. Flexible and Self-Adaptive Sense-and-Compress for Sub-MicroWatt
Always-on Sensory Recording. In Proceedings of the ESSCIRC 2018—IEEE 44th European Solid State Circuits Conference
(ESSCIRC), Dresden, Germany, 3–6 September 2018; pp. 282–285, doi:10.1109/ESSCIRC.2018.8494270.

7. Ju, Q.; Zhang, Y. Predictive Power Management for Internet of Battery-Less Things. IEEE Trans. Power Electron. 2018, 33, 299–312,
doi:10.1109/TPEL.2017.2664098.

8. Qiu, C.; Hu, Y.; Chen, Y.; Zeng, B. Lyapunov Optimization for Energy Harvesting Wireless Sensor Communications. IEEE Internet
Things J. 2018, 5, 1947–1956, doi:10.1109/JIOT.2018.2817590.

9. Hu, Y.; Qiu, C.; Chen, Y. Lyapunov-Optimized Two-Way Relay Networks With Stochastic Energy Harvesting. IEEE Trans. Wirel.
Commun. 2018, 17, 6280–6292, doi:10.1109/TWC.2018.2858226.

10. Bhat, G.; Park, J.; Ogras, U.Y. Near-optimal energy allocation for self-powered wearable systems. In Proceedings of the 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Irvine, CA, USA, 13-16 November 2017; pp. 368–375,
doi:10.1109/ICCAD.2017.8203801.

11. Bhat, G.; Bagewadi, K.; Lee, H.G.; Ogras, U.Y. REAP: Runtime Energy-Accuracy Optimization for Energy Harvesting IoT Devices.
In Proceedings of the 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6 June 2019; pp. 1–6.

12. Vigorito, C.M.; Ganesan, D.; Barto, A.G. Adaptive Control of Duty Cycling in Energy-Harvesting Wireless Sensor Networks. In
Proceedings of the 2007 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications
and Networks, San Diego, CA, USA, 18–21 June 2007; pp. 21–30, doi:10.1109/SAHCN.2007.4292814.

J. Low Power Electron. Appl. 2021, 1, 0 18 of 19

13. Debizet, Y.; Lallement, G.; Abouzeid, F.; Roche, P.; Autran, J. Q-Learning-based Adaptive Power Management for IoT System-on-
Chips with Embedded Power States. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS),
Florence, Italy, 27–30 May 2018; pp. 1–5, doi:10.1109/ISCAS.2018.8351385.

14. Masadeh, A.; Wang, Z.; Kamal, A.E. An Actor-Critic Reinforcement Learning Approach for Energy Harvesting Communications
Systems. In Proceedings of the 2019 28th International Conference on Computer Communication and Networks (ICCCN),
Valencia, Spain, 29 July–1 August 2019; pp. 1–6, doi:10.1109/ICCCN.2019.8846912.

15. Murad, A.; Kraemer, F.A.; Bach, K.; Taylor, G. Autonomous Management of Energy-Harvesting IoT Nodes Using Deep
Reinforcement Learning. In Proceedings of the 2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), Umea, Sweden, 16–20 June 2019; pp. 43–51, doi:10.1109/SASO.2019.00015.

16. Qian, L.P.; Feng, A.; Feng, X.; Wu, Y. Deep RL-Based Time Scheduling and Power Allocation in EH Relay Communication
Networks. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China,
20–24 May 2019; pp. 1–7, doi:10.1109/ICC.2019.8761525.

17. Li, M.; Zhao, X.; Liang, H.; Hu, F. Deep Reinforcement Learning Optimal Transmission Policy for Communication Systems With
Energy Harvesting and Adaptive MQAM. IEEE Trans. Veh. Technol. 2019, 68, 5782–5793, doi:10.1109/TVT.2019.2911544.

18. Sawaguchi, S.; Christmann, J.F.; Molnos, A.; Bernier, C.; Lesecq, S. Multi-Agent Actor-Critic Method for Joint Duty-Cycle and
Transmission Power Control. In Proceedings of the 2020 Design, Automation Test in Europe Conference Exhibition (DATE),
Grenoble, France, 9–13 March 2020; pp. 1015–1018.

19. Li, D.; Xu, S.; Zhao, J. Partially Observable Double DQN Based IoT Scheduling for Energy Harvesting. In Proceedings of the 2019
IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; pp. 1–6,
doi:10.1109/ICCW.2019.8756797.

20. Zhao, N.; Liang, Y.; Niyato, D.; Pei, Y.; Jiang, Y. Deep Reinforcement Learning for User Association and Resource Allocation in
Heterogeneous Networks. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi,
United Arab Emirates, 9–13 December 2018; pp. 1–6, doi:10.1109/GLOCOM.2018.8647611.

21. Qiu, C.; Hu, Y.; Chen, Y.; Zeng, B. Deep Deterministic Policy Gradient (DDPG)-Based Energy Harvesting Wireless Communica-
tions. IEEE Internet Things J. 2019, 6, 8577–8588, doi:10.1109/JIOT.2019.2921159.

22. Biswas, D.; Balagopal, V.; Shafik, R.; Al-Hashimi, B.M.; Merrett, G.V. Machine learning for run-time energy optimisation
in many-core systems. In Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE), Lausanne,
Switzerland, 27–31 March 2017; pp. 1588–1592, doi:10.23919/DATE.2017.7927243.

23. Das, A.; Merrett, G.V.; Tribastone, M.; Al-Hashimi, B.M. Workload Change Point Detection for Runtime Thermal Management of
Embedded Systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2016, 35, 1358–1371, doi:10.1109/TCAD.2015.2504875.

24. Shafik, R.A.; Yang, S.; Das, A.; Maeda-Nunez, L.A.; Merrett, G.V.; Al-Hashimi, B.M. Learning Transfer-Based Adaptive
Energy Minimization in Embedded Systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2016, 35, 877–890,
doi:10.1109/TCAD.2015.2481867.

25. Dekimpe, R.; Xu, P.; Schramme, M.; Flandre, D.; Bol, D. A Battery-Less BLE IoT Motion Detector Supplied by 2.45-GHz Wireless
Power Transfer. In Proceedings of the International Symposium on Power and Timing Modeling, Optimization and Simulation
(PATMOS) 2018, Platja d’Aro, Spain, 2–4 July 2018; pp. 68–75, doi:10.1109/PATMOS.2018.8464144.

26. Sangare, F.; Xiao, Y.; Niyato, D.; Han, Z. Mobile Charging in Wireless-Powered Sensor Networks: Optimal Scheduling and
Experimental Implementation. IEEE Trans. Veh. Technol. 2017, 66, 7400–7410.

27. Texas Instruments. CC2500 Low-Cost Low-Power 2.4GHz RF Transceiver. 2019. Available online: http://www.ti.com/lit/ds/
swrs040c/swrs040c.pdf (accessed on 6 April 2021).

28. Urard, P.; Romagnello, G.; Banciu, A.; Grasset, J.C.; Heinrich, V.; Boulemnakher, M.; Todeschni, F.; Damon, L.; Guizzetti, R.; Andre,
L.; et al. A self-powered IPv6 bidirectional wireless sensor amp; actuator network for indoor conditions. In Proceedings of the 2015
Symposium on VLSI Circuits (VLSI Circuits), Kyoto, Japan, 17–19 June 2015; pp. C100–C101, doi:10.1109/VLSIC.2015.7231339.

29. Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005, doi:10.1017/CBO9780511841224.
30. 2019. Available online: https://www.panasonic-electric-works.com/cps/rde/xbcr/pew_eu_en/ca_amorton_solar_cells_en.pdf

(accessed on 6 April 2021).
31. Oak Ridge National Laboratory (RSR) Daily Plots and Raw Data Files. Available online: https://midcdmz.nrel.gov/apps/

sitehome.pl?site=ORNL (accessed on 6 April 2021).
32. Yuan, F.; Zhang, Q.T.; Jin, S.; Zhu, H. Optimal Harvest-Use-Store Strategy for Energy Harvesting Wireless Systems. IEEE Trans.

Wirel. Commun. 2015, 14, 698–710, doi:10.1109/TWC.2014.2358215.
33. Christmann, J.F.; Beigne, E.; Condemine, C.; Vivet, P.; Willemin, J.; Leblond, N.; Piguet, C. Bringing Robustness and Power

Efficiency to Autonomous Energy-Harvesting Microsystems. IEEE Des. Test Comput. 2011, 28, 84–94, doi:10.1109/MDT.2011.101.
34. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2018.
35. Devlin, S.; Yliniemi, L.; Kudenko, D.; Tumer, K. Potential-based Difference Rewards for Multiagent Reinforcement Learning. In

Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems, AAMAS’14, Paris, France,
5–9 May 2014; pp. 165–172.

36. Gleser, L.J.; Perlman, M.D.; Press, S.J.; Sampson, A.R. Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling;
Springer: Berlin/Heidelberg, Germany, 1960; pp. 278–292.

http://www.ti.com/lit/ds/swrs040c/swrs040c.pdf
http://www.ti.com/lit/ds/swrs040c/swrs040c.pdf
https://www.panasonic-electric-works.com/cps/rde/xbcr/pew_eu_en/ca_amorton_solar_cells_en.pdf
https://midcdmz.nrel.gov/apps/sitehome.pl?site=ORNL
https://midcdmz.nrel.gov/apps/sitehome.pl?site=ORNL

J. Low Power Electron. Appl. 2021, 1, 0 19 of 19

37. Brown, M.B.; Forsythe, A.B. Robust Tests for the Equality of Variances. J. Am. Stat. Assoc. 1974, 69, 364–367,
doi:10.1080/01621459.1974.10482955.

38. Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 5th ed.; CRC Press: Boca Raton, FL, USA, 2011.

	Introduction
	Related Work
	System Model
	Energy Harvesting and State-of-Charge Model
	Application Data and State-of-Buffer model
	Power Consumption and Transmission Model

	Application Scenario
	Reinforcement Learning
	Algorithm: LAC-AB
	Definition of Convergence
	Simulation Results
	Divergence and Reactivity Problem
	Effectiveness and Convergence of LAC-AB
	Decay Rates Study for LAC-AB

	Conclusions and Future Direction
	References

