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Abstract  23 

Purpose 24 

Erosion and its spatial distribution in three agricultural headwater catchments were 25 

assessed in the border of the volcanic plateau in Southern Brazil. We analyzed terrain, 26 

hydrological processes and land use influence to provide a comprehensive assessment of 27 

the catchments’ sensitivity to erosion.  28 

Methods 29 

Topographic attributes were acquired from a digital elevation map, WaterSed model was 30 

parametrized to simulate runoff, diffuse erosion and sediment yield, and sediment source 31 

contributions were estimated using sediment fingerprinting based on near-infrared 32 

spectroscopy. 33 

Results 34 

https://www.editorialmanager.com/jsss/download.aspx?id=365072&guid=71870518-5dfa-44c8-a29e-432e845b1b9d&scheme=1
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According to the modeled results, areas covered by crop fields, grasslands and those 35 

adjacent to the drainage network are the most sensitive to erosion. Short distances from 36 

the source to the river network and the occurrence of high magnitude rainfall events (80 37 

mm) promoted increases in connectivity for runoff/sediment transfer. Erosion simulations38 

show that areas of low infiltration, as unpaved roads, were important runoff generators 39 

during lower volume rainfall events (25 mm). Sediment fingerprinting provided 40 

satisfactory results to quantify the contributions of unpaved roads to sediment (~39%). 41 

Topsoil and stream channels were also significant sediment sources for the set of analyzed 42 

samples, corresponding to average contributions of 38 and 23%, respectively.  43 

Conclusion 44 

Areas sharing geomorphological similarities did not lead to similar sediment 45 

contributions. Vegetation cover controlled erosion in topographically sensitive areas. 46 

Unpaved roads provide a significant sediment source, followed by topsoil and stream 47 

channels. The complementary results provide useful insights to better coordinate planning 48 

environmental conservation strategies in these fragile landscapes. 49 

50 

Key-words Erosion sensitivity; Topographic attributes; GIS; WaterSed; Sediment 51 

fingerprinting; source to sink. 52 

53 

1 Introduction 54 

55 

Soil erosion is responsible for economic, social, and environmental damages 56 

occurring both on- and off-site (Boardman et al. 2019). There is an interest in 57 

understanding erosion processes to propose better management practices. These studies 58 

require long term monitoring data (Silva et al. 2021), which can be costly to acquire. Yet, 59 

there are tools to rapidly analyze an environment’s fragility. Topographic attributes’ 60 

analysis is a quick and useful tool for spatial representation of erosion susceptibility and 61 

zones prone to material loss and deposition (Moore et al. 1991; Wilson and Gallant 2000; 62 

Gruber and Peckham 2009; Vijith and Dodge-Wan 2019) for large areas with complex 63 

terrain. Advances in remote sensing (Karydas et al. 2014) and its data availability made 64 

it common to use models to estimate or predict soil erosion, providing a first look on the 65 

dynamic processes of soil degradation, runoff and erosion in an area of interest (Mitasova 66 

et al. 1996; Alewell et al. 2019; Teng et al. 2019). These approaches can be combined 67 
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with rapid monitoring techniques, such as fingerprinting (Martínez-Carreras et al. 2010), 68 

to quickly reflect the panorama of the spatial distribution of soil degradation. 69 

The analysis of topographic attributes aims to address the natural variabilities of 70 

a landscape and can be used to propose the most appropriate practices for soil and water 71 

conservation, by reducing environmental impacts of agriculture. Its applicability to 72 

catchment scales has a main role to identifying risk areas and maintaining natural 73 

resources and environmental sustainability (Berry et al. 2005). Slope and the Stream 74 

Power Index are topographic attributes widely used in hydrology to characterize the 75 

spatial patterns of soil erosion (Mitasova et al. 1996; Ahmad 2018). This terrain analysis 76 

has been used for determining erosion susceptibility (Vijith and Dodge-Wan 2019) and 77 

identifying erosion hotspots (Mhiret et al. 2018). Although they may characterize both 78 

simple and complex terrain features, they do not reflect land use, climate and soil 79 

management practices’ effects on catchment hydrology.  80 

Since the erosive process is dynamic in time and space and dependent of other 81 

controlling factors, a more detailed analysis of an environment’s fragility to erosion 82 

should be considered. Besides topography, rainfall characteristics, soil type, land use and 83 

management are also controlling factors of soil erosion, suggesting that – at the catchment 84 

scale – there is a need for a more complex analysis. For this reason, mathematical models 85 

combine a series of parameters (Merritt et al. 2003) to describe and to predict the 86 

occurrence of surface runoff and erosion according to changes in soil properties, rainfall 87 

patterns, and land use and management (Nearing et al. 2005). Empirical models (e.g., 88 

RUSLE) have been used for assessing erosion risk (Bezak et al. 2021) as they require 89 

relatively fewer input parameters, making the numeric solution objective, yet with a 90 

limited process description. Accordingly, physically-based distributed models provide an 91 

alternative tool for evaluating the spatial variability of erosion within a catchment, 92 

through the identification of erosion hotspots (Lemma et al. 2019).  93 

Although the erosion processes occurring within a catchment reflect on sediment 94 

yield, material transfer from hillslopes to river systems also depends on landscape 95 

connectivity and depositional processes (Wohl et al. 2019). The complexity of processes 96 

and parameters that affect hillslope and bank erosion makes it difficult to quantify 97 

sediment supply from a catchment to a river channel (Julien 1995). To address this, the 98 

sediment fingerprinting technique (Haddadchi et al. 2013; Walling 2013; Collins et al. 99 

2020) couples traditional sediment monitoring programs with tracing techniques to 100 

estimate sediment sources across the landscape (Evrard et al. 2011; Owens et al. 2016). 101 
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This approach provides a quantification of source contributions to sediment through the 102 

analysis of conservative bio-physico-chemical properties in potential source and target 103 

material. For this purpose, cost- and time-intensive conventional tracing properties (e.g., 104 

radionuclides, elemental and isotopic geochemistry), or simple and alternative methods 105 

as those relying on near-infrared spectroscopy coupled to statistical modelling were 106 

shown to be efficient in estimating land use source contributions to sediment yield 107 

(Verheyen et al. 2014; Tiecher et al. 2021). 108 

Still, all the hydrological and erosion processes occurring within a catchment are 109 

not assured to be incorporated in a holistic approach or model that comprehends the series 110 

of phenomena occurring on variable and continuous ranges of scales (Gentine et al. 2012). 111 

For instance, to improve the understanding of erosion processes occurring from the source 112 

to the outlet of a catchment, sediment fingerprinting has been coupled to erosion modeling 113 

in target catchments (Palazón et al. 2016; Battista et al. 2020; Uber et al. 2021). 114 

Integrating techniques to provide multiple lines of evidence may increase the robustness 115 

of the erosion processes’ assessment. 116 

Therefore, a more accurate process representation should address the variabilities 117 

by coupling the analysis of these dynamic systems (Gentine et al. 2012). While hillslope 118 

processes may be addressed by terrain analysis and erosion modelling, sediment 119 

fingerprinting could enlighten the connection between them and the drainage network. 120 

To this end, the purpose of this study is to use complementary tools to evaluate the 121 

sensitivity to erosion and its spatial distribution in three environmentally fragile 122 

headwater catchments, nested within a heterogeneous catchment located along the border 123 

of the volcanic plateau in Southern Brazil, characterized by an intensive agricultural use 124 

and without continuous hydro sedimentological monitoring. Three approaches were 125 

analyzed including i) terrain analysis, ii) erosion modeling as a dynamic erosion index 126 

and iii) sediment fingerprinting to provide a comprehensive assessment of the sensitivity 127 

of these landscapes to erosion.  128 

 129 

2 Materials and methods 130 

 131 

2.1 Study area characterization 132 

 133 

Guarda Mor catchment (Fig. 1), in Southern Brazil, is characterized by different 134 

land uses, soil types and lithology, and a complex terrain morphology. The average annual 135 
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rainfall is 1,940 mm, according to data collected from 2011 to 2020 at station number 136 

2953008 (ANA 2021). The mean annual temperature is 19°C and climate is subtropical, 137 

type Cfa 2, according to Köppen’s classification (Alvares et al. 2013).  138 

Fig. 1 Location of Guarda Mor catchment, Júlio de Castilhos’ rainfall-runoff 139 

monitoring station and ANA’s weather station number 2953008 within the state of Rio 140 

Grande do Sul. In detail, soil and sediment sampling sites at Guarda Mor catchment.  141 

Guarda Mor’s main river monitoring station (GMex) drains a surface area of 142 

approximately 18.5 km², with elevation ranging from 194 to 511 meters (Fig. 2). A nearly 143 

levelled to very undulating relief is observed in its upper and lower segments, while its 144 

middle third is characterized by a basaltic escarpment. This catchment comprises three 145 

nested sub catchments with respective drainage areas of 2.1, 4.2 and 1.4 km², referred to 146 

as S1, S2 and S3 hereafter.  147 

Located in a transition zone between the Meridional Plateau and the Central 148 

Depression of Rio Grande do Sul, GMex is characterised by a diverse geology (Wildner 149 

et al. 2008), as observed in Fig. 2. The Southern Plateau, in its upper segment, is underlain 150 

by volcanic rocks from the Serra Geral Group (Rossetti et al. 2018), including rocks from 151 

the Caxias sub-group (rhyodacite) and the Torres and Vale do Sol Formations (basalt). In 152 

the Central Depression (sedimentary basin), sandstones from the Botucatu and Caturrita 153 

Formations are found (Fig. 2). 154 

Fig. 2 Guarda Mor catchment. a Digital elevation map. b Pedological and c 155 

geological maps. d Land use classification map.  156 

This geological diversity led to the formation of several soil types (Fig. 2), which 157 

were mapped by Pedron et al. (2021). They include, according to the WRB classification 158 

System (IUSS Working Group WRB 2015), Leptosols, Nitisols, Cambisols, Gleysols, 159 

Regosols and Acrisols.  160 

To create an annual land use map, the Difference Vegetation Index, Enhanced 161 

Vegetation Index, Normalized Difference Vegetation, Normalized Ratio Vegetation 162 

Index and soil adjusted vegetation index were derived from LANDSAT-8 satellite 163 

images. Field observation and Random Forest modeling (Breiman 2001) were used for 164 

building the map. The selected images were taken in April, September and December in 165 

2019, so that seasonal changes in vegetation cover were well captured. Later, the main 166 

road segments were digitized manually using both satellite images and field observations. 167 

According to the land use classification map (Fig. 2), forests occupy 44% of this 168 

catchment’s area, followed by crop fields (39%), grasslands (11%), urban or pavement 169 
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areas (2%), unpaved roads (1%) and water bodies (1%). Forests are mostly located in the 170 

steepest portion of this catchment. In the upper segment of the headwater catchments, 171 

land use mainly consists of crop fields, where a succession of soybeans monoculture in 172 

summer and wheat or oats during winter are cultivated in a no-till system. Grasslands are 173 

areas under permanent pasture, without soil tillage nor sowing of seasonal crops. 174 

Crop fields cover 60 and 63% of the area of S2 and S3, respectively. Forests 175 

occupy 21 and 20% of the area in each sub catchment, grasslands occupy 11 and 12% of 176 

the area and unpaved roads 2 and 1%. In S2 and S3, 1-2% of the area is covered by urban 177 

or paved areas, mainly farmhouses. In S1, crop fields are also the main land use (43%), 178 

forests occupy 33%, grasslands 16%, while paved/urban areas and unpaved roads occupy 179 

each 3% of its area. In S1 and S2 (Fig. 1), there are two crossing points between the 180 

drainage network and the roads, which have a total length close to 4500 and 5000 meters, 181 

respectively. In S3, the total road extension is less than 900 meters long and no crossing 182 

point is observed with the river drainage network.  183 

 184 

2.2 Terrain analysis 185 

 186 

Topographic attributes data were acquired for GMex, S1, S2 and S3 to spatially 187 

identify the main hotspots where erosion processes are strongly relief-influenced. Using 188 

a zonal statistics tool on QGIS v. 3.8.3 (QGIS Development Team 2020), data from the 189 

topographic attributes under each land use were extracted for every sub catchment, for its 190 

comparison and analysis. 191 

An ALOS PALSAR Digital Elevation Model (DEM) (ASF DAAC 2010) was 192 

obtained with a spatial resolution of 12.5 m. It was downscaled to a resolution of 10 m 193 

for this study (Fig. 2), to avoid truncation errors during GIS’ processes and overestimation 194 

of roads and stream channel’s areas in the land use map. All maps were processed and 195 

obtained using the System for Automated Geoscientific Analyses (SAGA GIS v. 2.3.2) 196 

and QGIS v. 3.8.3 was used for organizing and preparing the final maps. 197 

From the DEM, the following primary topographic attributes were obtained: a) 198 

slope, profile and plan curvatures calculated by the method of the 9th parameter 2nd order 199 

polynom (Zevenbergen and Thorne 1987); and b) catchment area using a recursive 200 

function. Zero value for profile or plan curvature indicates the occurrence of linear or 201 

planar surfaces, respectively. Negative profile curvatures represent convex surfaces and 202 

positive values, concave areas. Plan curvatures represent surfaces of convergent (negative 203 
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values) or divergent (positive values) flow. Slope and catchment area were used as input 204 

data for calculating the secondary topographic attributes: a) Topographic Wetness Index 205 

(TWI), following Beven and Kirkby’s (1979) TOPMODEL; b) LS Factor, based on 206 

Moore et al. (1991) method; c) and Stream Power Index (SPI), also based on Moore et al. 207 

(1991). Frequency histograms using these data were organized for each sub catchment.  208 

 209 

2.3 Soil erosion modeling 210 

 211 

The goal of this approach was to parameterize an erosion model, that considers 212 

soil surface and land use characteristics, to provide a dynamic indicative of the 213 

catchments’ erosion sensitivity in response to a storm rainfall event. Therefore, we chose 214 

the raster-based, spatially distributed and event-based WaterSed model (Patault et al. 215 

2020; Grangeon et al. 2021). It was developed to model the spatial distribution of runoff 216 

and erosion from field to catchment scale. WaterSed is an upgrade of the STREAM 217 

model, which was designed to avoid over-parameterization and uncertainties in modelling 218 

(Cerdan et al. 2002). Spatially-distributed modelling approaches are adequate for 219 

understanding sediment transport, since every sediment source is characterized by 220 

different travel times (Merritt et al. 2003). Considering potential difficulties in 221 

representing processes or interpreting physical phenomena with equations and parameters 222 

without overloading model parametrization, WaterSed model represents an interesting 223 

compromise that permits to take into account the main erosion processes (infiltration, 224 

saturation, detachment by raindrop, detachment by runoff, deposition) with an adapted 225 

parameterization that is easily obtained (see Chabert (2019) for full explanation or 226 

Grangeon et al. (submitted)). 227 

WaterSed’s consistent conceptual structure includes a hydrologic and a sediment 228 

module, details on its equations are in Landemaine (2016). WaterSed presents a simple 229 

and efficient strategy for incorporating land use and management’s effects on erosion and 230 

hydrological processes. Furthermore, it allows the incorporation of runoff’s re-infiltration 231 

process, an important feature considering the study catchment. Runoff and sediment that 232 

reach the permanent river network are directly delivered to the lowest point downstream. 233 

The model results were used to analyze diffuse erosion processes occurring under each 234 

land use through the calculation of zonal statistics. The model does not allow the 235 

simulations of channel bank erosion and sediment storage within the channel; besides, in 236 

these sub catchments, channels run over bedrock with boulders and have stable margins. 237 
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The model is run using SAGA GIS and the input data is composed of decision 238 

tables and raster maps. The maps correspond to: DEM; stream network and channel 239 

width; soil type and land use. Each land use is then associated to soil surface 240 

characteristics based on decision tables, which allowed the parametrization approach used 241 

in this study. The tables (Cerdan et al. 2002a, 2002b) are built based on expert knowledge 242 

and adjusted to local conditions, according to each land use, to associate soil properties 243 

observed in the field to infiltration rates. They include Manning’s roughness coefficient, 244 

a potential value for suspended sediment concentration (SSC), soil erodibility, infiltration 245 

rate and antecedent moisture content. 246 

Although we do not have data from hydro-sedimentary monitoring in the study 247 

catchment to calibrate and validate WaterSed, we chose to parameterize it for modeling 248 

runoff volume, sediment yield and diffuse erosion in the three sub catchments. The data 249 

that was used in this parametrization was obtained from a runoff and SSC dataset we had 250 

access to. The data was monitored on hillslopes and zero-order catchments, where 251 

WaterSed was calibrated based on a robust database of water and sediment discharges. 252 

The site is a nearby field-scale, rainfall-runoff monitoring station in Júlio de Castilhos 253 

(Fig. 1). Detailed information on the site’s characteristics and direct measurements’ 254 

obtention can be found in Londero et al. (2021a, 2021b) and Schneider (2021). Further 255 

information is presented in Tables 1 and 2 in the supplementary material.  256 

These parameters were used since both study areas are exposed to similar 257 

environmental conditions, considered to be representative of those occurring in Guarda 258 

Mor’s headwater sub catchments. Values for Manning’s roughness coefficient were 259 

defined based on Engman (1986). Default scale effect correction and recession time, flow 260 

width, critical runoff peak for rill erosion and sediment settling parameter coefficients 261 

were applied.  262 

The model also requires information on rainfall depth and duration. The rainfall 263 

events we chose to simulate are based on events that generated significant runoff and 264 

were monitored in the nearby Júlio de Castilhos station (29°13'39"S, 53°40'38"W) 265 

(Londero et al. 2017; Londero et al. 2021a), their characteristics are described in Table 1. 266 

 267 

2.4 Fine sediment fingerprinting  268 

 269 

The origin of riverbed sediment was determined by a fingerprinting method based 270 

on NIR spectroscopy (Verheyen et al. 2014; Tiecher et al. 2016; Tiecher et al. 2021) and 271 
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modeling with Support Vector Machine (SVM) to build spectroscopic models of 272 

sediment estimation (Tiecher et al. 2021). Two source groupings (by land use and by sub 273 

catchment) were considered as potential end-members to analyze the spatial variability 274 

and the main erosion processes to explain the sediment yield observed at the outlets. 275 

The first approach was based on spatial sources and the three headwater sub 276 

catchments were considered as end-members. The objective of this so-called tributary 277 

approach was to indicate which sub catchment contributed with greater amounts of 278 

sediment that reached the GMex’s outlet. The second approach considered land use 279 

source types (including topsoil, forest, unpaved roads, and stream channel) within each 280 

sub catchment, with the objective to outline which land uses or landscape components 281 

were contributing with more sediment to S1, S2 and S3’s outlets. Therefore, sediment 282 

samples were both, alternatively, used as sources and target material, whether they were 283 

considered in the first or second approach, respectively. 284 

 285 

2.4.1 Soil and sediment sampling and analysis 286 

 287 

Potential sediment sources were sampled based on visual field evidence of erosion 288 

or soil degradation and connectivity to the drainage network, in each sub catchment. The 289 

soil samples were collected from crop fields, grasslands, stream channels, forests, and 290 

unpaved roads. Due to sample similarities that led to low discrimination of sources, 291 

samples from crop fields and grasslands were grouped as topsoil source, such as 292 

Poulenard et al. (2009) and Verheyen et al. (2014) also did. Each sample was composed 293 

by five sub-samples that were mixed and homogenized to compose a representative 294 

sample (Table 2). They were collected on the soil surface (0–2 cm depth), due to the 295 

higher likelihood of surface material to be mobilized by water erosion.  296 

Sediment deposited on the riverbed were sampled along the river channels at the 297 

outlets of S1, S2, S3 and at GMex, between January and June in 2019. Care was taken 298 

during the sediment sample collection process to avoid losing fine material.  299 

All samples were oven-dried with forced air circulation and at a temperature 300 

between 40 and 50°C. Then, samples were gently disaggregated and sieved at 63 µm, to 301 

minimize particle size differences between samples (Laceby et al. 2017), and between 302 

potential sources and sediment material. Afterwards, all samples were analyzed by near-303 

infrared spectroscopy. The spectra range from 12,000 to 4,000 cm-1 was scanned, using 304 

the Bruker MPA FT-NIR (Fourier transform near-infrared) spectrometer, at a resolution 305 
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of 2 cm-1. Samples were carefully placed in a Petri dish prior to scanning and background 306 

readings were regularly performed. 307 

 308 

2.4.2 Building spectroscopic models to estimate sediment source contributions 309 

 310 

To calibrate the prediction models and test the analyzed properties’ additive 311 

behavior, artificial mixtures (Poulenard et al. 2009) were prepared in the lab using source 312 

samples. The set of mixtures was designed to account for spectral diversity, and it was 313 

used for calculating the model’s confidence statistics by testing its performance. First, 314 

samples of each potential source were mixed in equal weight proportions to compose one 315 

reference sample. Then, from these, other mixtures were created by mixing them in 316 

different proportions to build the statistical model. For the tributary approach, 37 artificial 317 

mixtures were created with the sediment samples collected from each sub catchment. 318 

Their distribution can be visualized in a ternary diagram (Fig. 1 in the supplementary 319 

material). For the land use approach, 72 artificial mixtures were created covering a range 320 

from 0 to 100% of each potential source sample (Table 3 in the supplementary material).  321 

The spectra dataset was transformed by a smoothing and data derivative 322 

algorithm, Savitzky-Golay derivative, first-order polynomial (11 window points) 323 

(Savitzky and Golay 1964). By calculating the first derivative, this pre-processing 324 

calculates the change rate between absorbance and wavelength, highlighting the 325 

occurrence of bands. This was performed using the R package “prospectr” (Stevens and 326 

Ramirez-Lopez 2013).  327 

Then, for establishing a relationship between spectral data (x variable) and the 328 

contribution of a given source (y variable), SVM models (package e1071 – Meyer et al. 329 

2019) were adjusted. The SVM is a non-parametric model and was run with the kernel 330 

function, which separates the calibration data into hyperplanes and seeks to establish 331 

correlations between the dependent and independent variables when these have non-linear 332 

behavior (Ivanciuc 2007). The kernel function seeks to establish correlations between the 333 

reflectance value and the target variable, in which the model seeks to identify a 334 

interpolation function between the variables and creates support vectors, a robust 335 

procedure in statistical learning models (Ivanciuc 2007). This type of model was selected 336 

due to the occurrence of non-linear correlations between the organo-mineral components 337 

of soils/sediments and the spectral variables (Viscarra Rossel and Behrens 2010) and 338 

given the acquisition of more accurate estimates using this model in comparison, for 339 
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example, to parametric models Partial Least Square Regression (PLSR), by Tiecher et al. 340 

(2021).  341 

Data from the artificial samples was randomly separated among calibration and 342 

validation sets. Each model was calibrated with 70% of the samples (n = 26 and 51, 343 

tributary and land use approaches) and validated with the remaining 30% of the samples 344 

(n = 11 and 21, tributary and land use approaches). A total of 15 SVM regression models 345 

were independently calibrated, one for each sediment source. No boundary conditions to 346 

avoid results lower than 0 or higher than 100% were set for the models. The models were 347 

used for predicting the contribution of each potential source to the individual sediment 348 

samples.  349 

To evaluate model accuracy, the following parameters were calculated: coefficient 350 

of determination (R2), mean error (ME) and mean square root of the prediction error 351 

(RMSE). The spectral wavelengths of the sediment samples collected at the four outlets 352 

were submitted to a principal component analysis (PCA) and hierarchical clustering on 353 

principal components (package Factoshiny – Vaissie et al. 2020) for visualizing the 354 

differences in samples used in the tributary approach. 355 

 356 

3 Results and discussion 357 

 358 

3.1 Terrain analysis  359 

 360 

The spatial distribution of the TWI, SPI and LS Factor is found on Fig. 3. Results 361 

of the terrain analysis are presented by subdividing potential erosion zones in different 362 

sensitivity value classes and according to the different land uses.  363 

Fig. 3 Maps of Topographic Wetness Index (TWI), Stream Power Index (SPI) and 364 

LS Factor. 365 

In S1, 40% of the area has slopes between 8 and 20% (Fig. 4). S2 is the gentlest 366 

sub catchment, around 60% of its area has low-levelled slopes (0 to 8%). Flat slopes 367 

occupy less than 10% of S3’s area and 40% of the hillslopes range from 8 to 20%. Steeper 368 

slopes are located closer to the streams in both S1 and S3. Forests are found in steep areas 369 

of S1 and S3, as well as grasslands and crop fields, although in different proportions. 370 

Fig. 4 Frequency histograms for Topographic Wetness Index (TWI), LS Factor, 371 

Stream Power Index (SPI) and Slope of sub catchments and GMex. 372 
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Flat profile curvatures occupy 45, 47 and 44% of the area of S1, S2 and S3, 373 

respectively. Convex and concave surfaces correspond each to around 27% of their areas. 374 

Regarding plan curvatures, 96% of the area of S1 and S2, and 94% of S3’s, are occupied 375 

by planar surfaces. Divergent curvatures correspond to 1% of the sub catchments’ areas. 376 

Convergent curvatures correspond to 3% of S1 and S2’s surfaces and 4% in S3. In all sub 377 

catchments, crop fields are the land use with the most convergent surfaces (Fig. 5), except 378 

for unpaved roads in S2. The most divergent surfaces are forests in S1 and S3, followed 379 

by grasslands. In S3, the most divergent surfaces are over crop fields and grasslands. 380 

Fig. 5 Boxplots of zonal statistics analysis for topographic attributes (LS Factor, 381 

Slope, Stream Power Index – SPI, Topographic Wetness Index – TWI and Plan 382 

Curvature) and land uses in sub catchments 1, 2 and 3. 383 

TWI ranged from around 5.5 to 21 in the sub catchments (Fig. 4). S1 and S3 have 384 

similar TWI range distribution, and S2 has a larger area of higher TWI. Stream channels 385 

have the highest median TWI values. Overall, TWI distribution among land uses is similar 386 

(Fig. 5). 387 

SPI ranged from 0 to around 290,000 in S1, to 340,000 in S2 and to 170,000 in 388 

S3. Nearly 99% of the sub catchments’ areas have values corresponding to less than 389 

10,000. Therefore, greater differences are observed in the remaining area, for which data 390 

were separated into five classes (Fig. 4) in each sub catchment and GMex. S1 shows a 391 

tendency to increased soil erosion per area, given its greater percentage of higher SPI 392 

values. In S1, the highest SPI values are found in crop fields followed by forests, 393 

grasslands and stream channels (Fig. 5). As S2 has a greater drainage area, it reaches 394 

higher SPI values. Grasslands reach the highest SPI values in S2, followed by forests and 395 

crop fields. Unpaved roads also reach the highest value in S2. While in S3, the crop fields 396 

and stream channels reach the highest values, followed by forests. 397 

LS factor ranged from 0 to 27 in S1, 0 to 18 in S2 and 0 to 19 in S3 (Fig. 5). Higher 398 

values were found closer to the drainage network. S1 and S3 show dense areas with higher 399 

values due to the combination of high steepness and slope length in these zones, 400 

explaining their high potential for erosion and material transport. Stream channels, 401 

grasslands and forests in S1 are land uses that showed some of the highest LS Factor 402 

values (Fig. 5). In S2, forests reach the highest value for this attribute. Given the LS factor 403 

range, crop fields in S3 are likely more sensitive to erosion than in S1 and S2. 404 

Most of the areas with steeper slopes in these sub catchments are occupied by 405 

forests. Dense vegetation covers, such as those observed in forests, can intercept part of 406 
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the precipitation (Sari et al. 2016). This can delay the time for soil infiltration to be 407 

exceeded and limit runoff rates. Slope analysis results show that S2 tends to have a lower 408 

punctual erosive capacity than S1 and S3. S1 and S3 share some similarities in the ranges 409 

of these indexes. Besides having a general tendency to increases in flow speed, given its 410 

steeper slopes (Wilson and Gallant 2000), the presence of shallow soils (Fig. 2) may also 411 

lead to greater surface runoff (Brosens et al. 2020). 412 

A few larger zones of planar and linear curvature, which coincide with segments 413 

of lower SPI values and high TWI values (Fig. 3), underline the occurrence of zones 414 

where runoff and sediment may accumulate. Although higher TWI values may be 415 

representative of overland flow connectivity in a catchment, isolated areas of higher TWI 416 

are also indicative of hydrological sinks and disconnectivity or discontinuity in sediment 417 

and runoff transfer, favoring sediment deposition (Jancewicz et al. 2019). S2 has larger 418 

area of higher TWI values than the other two sub catchments (Fig. 4). Yet, SPI differences 419 

among the sub catchments indicate that S2 has a higher runoff energy.  420 

On hillslopes, higher TWI values can also indicate that these areas are more prone 421 

to concentrated forms of erosion. For instance, Momm et al. (2012) used TWI to identify 422 

the location of ephemeral gullies, Mihret et al. (2018) also found TWI to be successful in 423 

predicting gully formation, along with SPI. In addition, Vijith et al. (2019) determined 424 

that slope, SPI and the LS factor were some of the most crucial variables to predict erosion 425 

susceptibility in a catchment. Mapping these variables provides a prerequisite to 426 

implementing precision conservation, for soil and water conservation (Berry et al. 2005). 427 

In Fig. 6 TWI and SPI maps over satellite images of crop fields of GMex show 428 

concentrated forms of erosion corresponding to higher values of these indexes. 429 

Fig. 6 Comparison between higher TWI (a and b) and SPI (c and d) values and 430 

satellite images in crop fields of sub catchment 1. 431 

By this analysis, the most fragile zones are associated with crop fields, grasslands 432 

and near the drainage network (Fig. 3). High index values were observed at upper 433 

catchment locations on unpaved roads, a landscape component known to be prone to 434 

runoff generation (Ziegler et al. 2000), such as crop fields are (Londero et al. 2017).  435 

 436 

3.2 Erosion modeling  437 

 438 

For each event (Table 1), only precipitation volume, rainfall duration and 439 

imbibition were altered. Increases in volume and magnitude enhanced modeling outputs’ 440 
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visualization in terms of runoff and sediment production’s spatial distribution (Fig. 7). 441 

Since we did not calibrate nor validate the model and used this analysis as a runoff/erosion 442 

sensitivity index, results should be carefully interpreted as erosion estimates. 443 

Fig. 7 WaterSed output maps for runoff and erosion in the three sub catchments, 444 

for events 1, 2, 3 and 4. 445 

The values for surface runoff (m³) and sediment yield (kg) simulated at the outlet 446 

of each sub catchment, and the maximum values for diffuse erosion (kg) observed within 447 

each sub catchment are found in Table 4 in the supplementary material. Simulated runoff 448 

and sediment yield of S2 were systematically the highest. S1 and S3 had, respectively, 449 

the overall second highest and lowest amounts of runoff and sediment yield at their 450 

outlets. The maximum erosion was observed in S2, followed by S1 and S3.  451 

The spatial distribution of runoff increases the connectivity from upper segments 452 

occurring in these catchments. The simulation of event 4 (Fig. 7), a lower volume rainfall, 453 

shows lower runoff volumes. Flow on hillslopes was less connected to streams, but 454 

unpaved roads provided significant zones of runoff generation. On the contrary, greatest 455 

volume and magnitude from event 2 reflected on an enhanced connectivity. 456 

Greater rainfall volumes led to increased sediment yield. The highest amounts 457 

were obtained for S2. Despite the event’s magnitude, the highest sediment yield for S1 458 

and S3 were not observed at their outlets, but at upper catchment locations. S1 reached 459 

higher values than S3, except for event 2. Higher values observed far from S1 and S3’s 460 

outlets can be attributed to runoff re-infiltration or sediment deposition calculated by the 461 

model (Landemaine 2016). Considering the simulated values at the outlets, results 462 

indicate S2’s greater fragility, due to higher sediment yield, runoff and sediment 463 

connectivity.  464 

As for diffuse erosion, greater rainfall volumes led to greater amounts of erosion. 465 

The zonal statistics analysis (Fig. 8) showed that crop fields are the most erodible land 466 

use in all sub catchments, especially in S2 and S3. In S1, both forests and grasslands were 467 

also prone to erosion. Paved areas and unpaved roads showed higher erosion proportions 468 

in S1 than in S2 and S3. The opposite result was observed for stream channels. 469 

Fig. 8 Zonal statistics for diffuse erosion estimates and land uses in sub 470 

catchments 1, 2 and 3. 471 

With greater catchment area, S2 showed the greatest potential for runoff, sediment 472 

yield and diffuse erosion. The maps (Fig. 7) indicate that unpaved roads can rapidly 473 

generate runoff, even during low-intensity events. For greater rainfall volumes, the most 474 
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sensitive areas are located near the headwaters, in the vicinity of the drainage network 475 

and steepest areas, similarly to the observations from terrain analysis.  476 

 477 

3.3 Sediment fingerprinting  478 

 479 

Calibration results and the associated statistical metrics showed a good 480 

performance of the different models, although validation results showed large variations 481 

in model performance. These results are shown in Table 3. Models for unpaved roads and 482 

forests were the best in every sub catchment, with R² between 0.99 and 1.00 for 483 

calibration, and between 0.71 and 0.93 for validation, indicating their good discrimination 484 

of these sources. For all models, summed predictions reached totals slightly greater than 485 

100%, in line with the overestimation observed by Poulenard et al. (2009) and attributed 486 

to differences in soil and sediment material used for model calibration and prediction. 487 

Since NIR range of soil spectra is influenced by different soil organic and mineral 488 

constituents (Viscarra Rossel et al. 2006), forest models could have presented better 489 

results due to highest organic matter content among the potential sources, resulting in 490 

better distinction and model performance (Brosinsky et al. 2014). Low organic matter 491 

content on unpaved roads may be responsible for their good discrimination, as observed 492 

by Tiecher et al. (2016, 2021). 493 

In contrast, model validation for topsoils showed R² results ranging from 0.28 to 494 

0.36. This may be due to great variability in the sample material or insufficient sampling 495 

to represent this source. Regarding stream channel contributions, Tiecher et al. (2016) 496 

associated this source’s good discrimination to the fact that soils located near the drainage 497 

network are subject to biogeochemical alterations due to oxi-reduction reactions, leading 498 

to a different mineral composition and, therefore, different spectral features.  499 

Regarding sediment source contributions in S1, topsoil, unpaved roads and forest 500 

showed variable sediment supply throughout time (Fig. 9). Stream channels displayed the 501 

lowest variations in their contributions. A single sample presented 50% of the sediment 502 

contribution originating from unpaved roads. This source supplies a mean contribution of 503 

41%. Stream channels showed almost constant contributions to sediment, with an average 504 

28% contribution. Finally, forests had the lowest sediment contribution (mean: 8%). 505 

Fig. 9 Boxplots for sediment source contribution in Fingerprinting 1 (a) and 506 

Fingerprinting 2 (b = S1, c = S2, d = S3). 507 
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S2 had the lowest average forest contribution to sediment (mean: 1%). Unpaved 508 

roads were the highest sediment source in S2, with an average of 50% and a maximum 509 

contribution of 60% in an individual sample. Average agricultural topsoil contribution 510 

was 27%. Stream channel sediment contribution varied from 15 to 38%, averaging 23%. 511 

Unlike the previous sub catchments, the main sediment source for S3 was topsoil 512 

(mean: 59%), followed by unpaved roads (mean: 24%). Stream channel had the lowest 513 

contribution to sediment (mean: 18%) compared to the other sub catchments, varying 514 

between 5 and 20%. Average forest contributions were lower than 7%. 515 

There is a variation among the main sediment sources in the three sub catchments 516 

and a significantly high contribution from unpaved roads in all of them (Fig. 9), especially 517 

in S2. Stream channels also supplied a similar contribution (~ 23%) to sediment in all 518 

catchments, although in lower proportions (18%) in S3 where the topsoil contribution 519 

was higher (59%) than in S1 and S2.  520 

Given S1’s lower topsoil contribution, crop fields might not have contributed with 521 

much sediment due to soil management based on no-till. As demonstrated by Londero et 522 

al. (2017) and Deuschle et al. (2019), no-till’s permanent biomass over the soil surface 523 

protects it against erosion, decreasing sediment yield from agricultural plots. Although 524 

vegetation cover may decrease sediment yield from crop fields, runoff may have 525 

concentrated along hillslopes, leading to greater contributions from downstream 526 

landscape components from the crop fields and grasslands, such as stream channels. 527 

The lowest contribution from unpaved roads in S3 could be due to fewer road 528 

segments within its drainage area, compared to S1 and S2, and to their location in the 529 

upper portion of the sub catchment (Fig. 1).  530 

Regarding tributary sediment contributions at GMex station (Fig. 9), on average, 531 

almost 90% of sediment originated from S1 with a low contribution from S3. Contribution 532 

from S2 ranged from 10 to 29%. Negative results found for S3 and its poor validation 533 

results outline the need for analysing more powerful tracers to achieve a better 534 

discrimination between sub catchments in the future. These contrasted results may also 535 

be attributed to the large differences in geology and soil types found downstream from 536 

the sub catchment’s outlets and the characteristics of significant sources that could not be 537 

sampled in the current research. This variation in geology and soil contributes to 538 

increasing the variation in spectral data used to develop the estimation models. In 539 

addition, the spectral data of the present study represents only the near-infrared region, 540 

which is also a factor that results in less accurate estimates of sediment sources (Tiecher 541 
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et al. 2021). In the future, a denser sampling should be performed for better characterizing 542 

sources drained by tributaries. Associated with this, spectral data in the visible and mid-543 

infrared regions should be used to improve the characterization of the organic and mineral 544 

constituents of the sediment sources. 545 

According to the PCA, sediment samples from S1, S2 and S3 are located close to 546 

each other in the first dimension, in which the percentage of explained variance in the 547 

dataset reaches 87.27%. Samples from S2 separate well from S1 and S3 in the second 548 

dimension, explaining 9.94% of the variance. However, the samples from GMex were 549 

also well separated from those of the sub catchments in both dimensions (Fig. 10), which 550 

means that other sub catchments may be contributing to the sediment load at GMex. 551 

Fig. 10 Individuals factor map from Principal Components Analysis for sediment 552 

samples for the outlets of sub catchments 1, 2 and 3, and GMex. 553 

A hierarchical cluster analysis separated the samples from GMex in a first cluster, 554 

and from S1, S2 and S3 in a second one. This shows there is a significant difference 555 

between sediment samples collected at GMex and at the upstream catchments. Again, this 556 

highlights the need to monitor unsampled regions within GMex, where the contribution 557 

of additional sources may dilute that of the three sub catchments considered here. 558 

 559 

3.4 The complementarity of tools to understand the erosive process 560 

 561 

Terrain analysis and erosion modeling simulations’ distribution of erosion-prone 562 

areas in the sub catchments demonstrates that they are mainly located in crop fields and 563 

near the streams, especially under grasslands and forests. Sediment fingerprinting results 564 

further increased the knowledge on these catchment’s terrain and erosion modeling 565 

analysis, as it provided additional information on the significant contribution of unpaved 566 

roads on sediment contribution. 567 

The most fragile areas to erosion are those located near the drainage network, 568 

similarly to what Capoane (2019) observed when assessing the erosion susceptibility of 569 

a Brazilian catchment. There appears to be some disconnectivity between landscape 570 

components and the drainage network among the sub catchments. Hotspots located near 571 

the drainage channels can accumulate upstream runoff and run-on and connect them to 572 

the river channel (Bracken and Croke 2007). Hydrological connectivity is most likely to 573 

exist where distances from hillslope to channel are shorter (Bracken and Croke 2007). 574 

Those spots can also be associated with the formation of rill and gully erosion, which act 575 
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as pathways for runoff to concentrate and be delivered with high transport and erosive 576 

energy to the drainage network.  577 

Forests are found in areas with steep slopes and higher values for LS Factor and 578 

SPI, and they could be considered as very fragile. Erosion modeling outputs showed that 579 

forests in S1 were slightly more erodible. Yet, according to modelling, forests have a 580 

lower erosion potential and sediment fingerprinting showed that this land use provided 581 

very low sediment contributions in all sub catchments. This demonstrates the role of 582 

vegetation control on catchment degrading processes (Qiu et al. 2014). 583 

Sediment fingerprinting results, such as those obtained by Tiecher et al. (2018) in 584 

an agricultural catchment of Southern Brazil, showed high sediment contributions from 585 

topsoil and stream channels. Topsoil contribution was the highest in suspended sediment 586 

samples (Tiecher et al. 2018), so future studies in this catchment should also collect and 587 

analyze samples in the water column taken in the rivers during flow events.  588 

Sediment contribution from stream channels could be due to runoff leaving crop 589 

fields and grasslands with sufficient energy to erode riverbanks and to transport sediment 590 

from these sources. As this source was not simulated by WaterSed, it is difficult to directly 591 

compare results obtained with the different methods, which leads to uncertainty. Other 592 

uncertainties are related to the unsampled area between the sub catchments’ and GMex’s 593 

outlets, which would incorporate the different soils found within this catchment. 594 

S1 is likely the sub catchment with the most sensitive zones to erosion, according 595 

to terrain analysis. According to erosion modeling, it had the second greatest simulated 596 

sediment yield and runoff, whereas tributary sediment fingerprinting results showed it 597 

supplied the highest sediment contribution to GMex. Regarding S3’s sediment 598 

fingerprinting, the greater contributions originated from topsoil, as higher SPI and LS 599 

Factor values were observed in its crop fields. This is a major distinction compared to 600 

observations in S1 and S2, where the greatest sediment contribution was from unpaved 601 

roads. So, for S3, it can be concluded that terrain analysis provided a good representation 602 

of the erosion processes caused by overland flow across topographically fragile areas. 603 

Based on these attributes, S1 and S3 showed a somewhat similar 604 

geomorphological organization, with the same dominant soil classes. Sediment samples 605 

collected at their outlets were also grouped together by the PCA, demonstrating a similar 606 

data variance. Yet, they behave differently when considering erosion modeling and 607 

sediment fingerprinting results, with S1 sharing more similarities with S2 than S3, 608 

demonstrating the impact of land use to control the sensitivity to erosion. Although S2 609 



19 

apparently had the highest disconnectivity caused by sinks, evidenced by terrain analysis, 610 

erosion modeling showed that this sub catchment had the greatest potential for runoff 611 

exported at the outlet. And the highest simulated sediment yield values were observed at 612 

its outlet, in contrast to the observation of maximum sediment yield at upper locations in 613 

S1 and S3, where significant sediment deposition occurred before reaching the outlet. 614 

In S1 and S2, sediment contributions from topsoil and stream channels were found 615 

to be high, although a great proportion of sediment originated from unpaved roads. This 616 

confirms previous results obtained when calculating the sediment budget in a small 617 

catchment of Southern Brazil, where, despite occupying a minor proportion of the surface 618 

area, roads provided a significant sediment source contribution, supplying around 36% of 619 

the sediment to the river system (Minella et al. 2014). Also in Southern Brazil, Thomaz 620 

and Peretto (2016) found unpaved roads to have contributed with 70 to 87% of SSC in a 621 

headwater catchment. Unpaved roads have great potential for generating deleterious 622 

environmental impacts (Silva et al. 2021), such as increased runoff generation (Ziegler et 623 

al. 2000) and SSC in rivers, especially in small order streams (Thomaz et al. 2013).  624 

From terrain analysis, we can interpret erosion sensitivity from a topographic 625 

point of view, but this is not the only erosion controlling factor in these catchments. 626 

Therefore, we benefit from combining approaches as we add information on more 627 

controlling factors to increase our understanding of complex natural phenomena. 628 

Modelling incorporates the climate, soil and land use influence over erosion, as well as 629 

its spatial distribution. In S1, for instance, there are steep slopes and high LS Factor and 630 

SPI values near the drainage network and the erosion modelling results corroborate with 631 

them, showing greater diffuse erosion in grasslands and forests, which occupy that area. 632 

Yet, although terrain analysis would not reflect a great erosion sensitivity from unpaved 633 

roads, modelling does show their importance as areas of limited infiltration that generate 634 

runoff even during low magnitude rainfall events, promoting constant runoff and 635 

sediment mobilization. 636 

Still, there is great complexity regarding the connection between hillslope and 637 

river channel in terms of sedimentation (Walling 1983). The greatest diffuse erosion in 638 

S3 was from crop fields, as topsoil was the main sediment source of that catchment. Yet, 639 

while modeling outputs for stream channel and unpaved roads were not as significant, 640 

they are important sediment sources in S1 and S2, for instance. Sediment fingerprinting 641 

reflects the integration of all erosion processes occurring in a catchment and, although 642 
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modelling added insights to the understanding of soil erosion, it may not be sufficient to 643 

reflect the connectivity of a catchment (Wohl et al. 2019, Uber et al. 2021). 644 

These complementary methodologies led to results with contrasted levels of 645 

information, including basic and advanced techniques. They address different individual 646 

erosion processes, from local to landscape observations and from the dynamic response 647 

of hydrological and erosion processes during individual rainfall events to their integration 648 

controlling the sediment yield at the catchment outlet. Despite the results model outputs, 649 

the consistence and the added value of their insights provides evidence that there is 650 

potential for validating the sediment fingerprinting results once erosion model outputs are 651 

validated based on continuous river flow and sediment monitoring data. 652 

 653 

5 Conclusions 654 

 655 

Combining terrain, erosion modelling and sediment fingerprinting analyses 656 

provided complementary insights into sediment dynamics in the region along the border 657 

of the Southern Brazilian basaltic plateau. Terrain analysis and erosion modelling 658 

outlined the specific fragility of crop fields, grasslands and areas located near the drainage 659 

network, characterized by high connectivity to the river system, increasing 660 

material/sediment transfer. When modeling greater rainfall intensity events, these areas 661 

appeared to expand. Geomorphological similarities in sub catchments did not lead to 662 

similar sediment contributions. This demonstrated the impact of vegetation cover to 663 

control erosion in topographically sensitive areas. Unpaved roads supply important 664 

sediment sources, followed by topsoil and stream channels, while forests showed 665 

negligible contribution. Combining different environmental diagnosis techniques was 666 

effective to outline the fragility of those areas where overland flow may accumulate and 667 

lead to accelerated processes of soil degradation. Despite its limitations, sediment 668 

fingerprinting provided very useful results that were confronted with those obtained from 669 

the more classical terrain analysis and erosion simulations through the quantification of 670 

sediment contributions from contrasted tributaries. The obtained information should be 671 

useful to the public managers to guide the implementation of effective soil erosion control 672 

measures across the landscapes of this environmentally fragile region of South America. 673 
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 944 

Tables 945 

 946 

Table 1. Rainfall events characteristics. 947 

 948 

Rainfall event Rainfall (mm) 
Duration time 

(minutes) 

Previous 

rainfall (48 

hours) 

1 08 October 2015 35 84 43.68 

2 19 November 2015 80 222 14.07 

3 14 December 2015 36 522 46.62 

4 29 December 2015 25 168 16.8 

 949 

Table 2. Number of potential sediment source samples and sediment samples. 950 

 951 

Catchment/ 

Sources 

Source samples 
Sediment 

samples 

Crop 

fields 

Unpaved 

Road 

Stream 

Channel 
Grassland Forest Total 

Riverbed 

sediment 

S1 8 9 9 7 6 39 7 

S2 14 9 6 6 6 41 6 

S3 6 6 6 6 6 30 6 

GMex - - - - - - 6 

Total 28 24 21 19 18 110 15 

 952 

Table 3. Support Vector Machine models calibration and validation performance for 953 

measured and predicted artificial mixtures composition. 954 

 955 

 Sources Performance 

indicator 

Calibration Validation 

GMex S1 R² 1 0.58 

RMSE 2.75 25.46 

ME 0.34 -8.28 

S2 R² 1 0.93 

RMSE 3.11 12.63 

ME 0.59 7.65 

S3 R² 1 0.37 

RMSE 2.95 26.59 

ME 0.52 2.38 

S1 Topsoil R² 1 0.36 

RMSE 3.31 20.01 

ME 0.19 3.43 

Stream 

channel 

R² 1 0.37 

RMSE 2.66 20.5 
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ME 1.32 0.52 

Unpaved roads R² 1 0.92 

RMSE 2.58 6.52 

ME 0.84 2.76 

Forest R² 0.99 0.9 

RMSE 2.38 15.65 

ME 0.57 -3.5 

S2 Topsoil R² 1 0.32 

RMSE 3.42 21.54 

ME 0.45 3.23 

Stream 

channel 

R² 1 0.37 

RMSE 2.6 19.63 

ME 0.95 1.4 

Unpaved roads R² 0.99 0.8 

RMSE 2.66 9.03 

ME 0.58 4.4 

Forest R² 0.99 0.29 

RMSE 2.57 24.76 

ME 0.7 -5.92 

S3 Topsoil R² 1 0.28 

RMSE 3.38 22.06 

ME 0.22 7.68 

Stream 

channel 

R² 1 0.39 

RMSE 2.63 18.76 

ME 0.96 -0.1 

Unpaved roads R² 1 0.93 

RMSE 2.53 5.04 

ME 0.05 0.92 

Forest R² 0.99 0.71 

RMSE 2.74 23.23 

ME 0.91 -6 

 956 

Figure Captions 957 

 958 

Fig. 1 Location of Guarda Mor catchment, Júlio de Castilhos’ rainfall-runoff monitoring 959 

station and ANA’s weather station number 2953008 within the state of Rio Grande do 960 

Sul. In detail, soil and sediment sampling sites at Guarda Mor catchment 961 

Fig. 2 Guarda Mor catchment. a Digital elevation map. b Pedological and c geological 962 

maps. d Land use classification map 963 

Fig. 3 Maps of Topographic Wetness Index (TWI), Stream Power Index (SPI) and LS 964 

Factor 965 

Fig. 4 Frequency histograms for Topographic Wetness Index (TWI), LS Factor, Stream 966 

Power Index (SPI) and Slope of sub catchments and GMex 967 
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Fig. 5 Boxplots of zonal statistics analysis for topographic attributes (LS Factor, Slope, 968 

Stream Power Index – SPI, Topographic Wetness Index – TWI and Plan Curvature) and 969 

land uses in sub catchments 1, 2 and 3 970 

Fig. 6 Comparison between higher TWI (a and b) and SPI (c and d) values and satellite 971 

images in crop fields of sub catchment 1. 972 

Fig. 7 WaterSed output maps for runoff and erosion in the three sub catchments, for 973 

events 1, 2, 3 and 4 974 

Fig. 8 Zonal statistics for diffuse erosion estimates and land uses in sub catchments 1, 2 975 

and 3 976 

Fig. 9 Boxplots for sediment source contribution in Fingerprinting 1 (a) and 977 

Fingerprinting 2 (b = S1, c = S2, d = S3) 978 

Fig. 10 Individuals factor map from Principal Components Analysis for sediment 979 

samples for the outlets of sub catchments 1, 2 and 3, and GMex 980 
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