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ABSTRACT 
Human stress detection is of great importance for monitoring 
mental health. The Multimodal Sentiment Analysis Challenge 
(MuSe) 2021 focuses on emotion, physiological-emotion, and 
stress recognition as well as sentiment classification by 
exploiting several modalities. In this paper, we present our 
solution for the Muse-Stress sub-challenge. The target of this 
sub-challenge is continuous prediction of arousal and valence for 
people under stressful conditions where text transcripts, audio 
and video recordings are provided. To this end, we utilize 
bidirectional Long Short-Term Memory (LSTM) and Gated 
Recurrent Unit networks (GRU) to explore high-level and low-
level features from different modalities. We employ 
Concordance Correlation Coefficient (CCC) as a loss function 
and evaluation metric for our model. To improve the unimodal 
predictions, we add difficulty indicators of the data obtained by 
using Auto-Encoders. Finally, we perform late fusion on our 
unimodal predictions in addition to the difficulty indicators to 
obtain our final predictions. With this approach, we achieve 
CCC of 0.4278 and 0.5951 for arousal and valence respectively on 
the test set, our submission to MuSe 2021 ranks in the top three 
for arousal, fourth for valence, and in top three for combined 
results.  
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1 INTRODUCTION 
The field of affective computing is concerned with the design of 
computer systems capable of analyzing, recognizing, and 
simulating human emotions. Given the modernization of the 
world and the integration of computers in our daily life, the need 
for automatic human emotion recognition is increasingly gaining 
importance. Affective computing approaches are proving to be 
valuable for educational systems [41], social robots[21], 
healthcare applications [19], and many other technologies that 
involve Human-Computer Interaction (HCI) capacities. 
“An emotion is a complex psychological state that involves three 
distinct components: a subjective experience, a physiological 
response, and a behavioral or expressive response” [13]. The 
latter two are manifested most prominently through facial 
expressions, speech, and physiological indicators such as 
electrocardiography, blood-pressure volume, etc. Humans as 
well as the computers recognize emotions by analyzing these 
signals. Therefore, significant work has been dedicated to find 
the best modalities and features for affective computing. The 
predecessor of MuSe, the Audio/Visual Emotion Challenge 
(AVEC), focused mainly on the exploitation of the audio and 
visual modalities. The MuSe challenge focuses on biological 
signals as well.  
There are generally two approaches to emotional modeling: the 
categorical and the dimensional approach. In the categorical 
approach, we define emotions as a set of discrete classes, e.g., 
Ekman’s basic emotions[7]. As for the dimensional approach, its 
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coordinates in the Euclidean space characterize the emotion. 
Russel’s model [29] is one of the most widely adopted 
dimensional representations in affective computing. It describes 
an emotion using three dimensions: valence (positivity of the 
emotion), arousal (intensity), and dominance (degree of control).  
The MuSe-stress sub-challenge targets predicting the arousal 
and valence for people in a stress-induced situation. It provides 
several features sets covering the audio, visual, textual, and 
physiological modalities. The participants are encouraged to 
explore and combine these signals and obtain an optimal 
continuous predictor. 
The first step in building a robust model is feature selection. In 
earlier work, mostly hand-crafted features were employed [30–

32]. However, deep data representations by neural networks 
proved to be effective as well [43]. Therefore, in our approach, 
we explore both low-level and high-level features for the audio, 
visual, and textual modalities. In the second step, we build our 
model using a BiGRU network to ensure capturing contextual 
information from the input signals. To enhance our model’s 
performance, we feed our model an additional input “difficulty 
indicator” on unimodal prediction and fusion stage. The 
difficulty indicator is obtained using an Auto-Encoder (AE) for 
each modality. 
The remainder of this article is organized as follows. In Section 
2, we briefly present related work. In Section 3, we give a 
detailed explanation of our approach and describe the structure 
of our model. Then, in Section 4, we provide a description of the 
dataset, features, and model training settings. In section 5, we 
present and discuss the results of our experiments. Finally, we 
present our conclusions in Section 6. 

2   RELATED WORK 

2.1 Features 
In earlier work, handcrafted features were used in speech-based 
emotion recognition systems (SER)[30–32], e.g. Mel-frequency 
Cepstral Coefficients (MFCCs), Perceptual Linear Prediction 
(PLP), etc. Recently, with the advent of deep learning, more 
effort has been expended on creating models with as little 
human intervention as possible. Trigeorgis et al. [37] 
demonstrated that their end-to-end SER system that takes a raw 
wavelet as input outperforms traditional ones. Moreover, Zhao 
et al. [43] showed that deep representations extracted using the 
VGGish model [12] surpass expert-based knowledge features for 
the task of arousal and valence prediction in AVEC 2018. As for 
the visual modality, Face Action Units (FAU) [28] are the most 
used features for emotion recognition. In the early AVEC series, 
expert-knowledge features such as Local Binary Patterns (LBP) 
[20] and Gabor[10] were used as video baseline features for 
emotion prediction. Latterly, deep representations [25,35] 
extracted through deep convolutional neural networks (e.g. 
VGG-16 [33]) have been used. 
 

2.2 Models 
Traditional machine learning approaches such as Support Vector 
Machine Regression (SVR) [26,27,39,40] were predominantly 

used in earlier work on automatic emotion recognition. 
However, given that these models are not capable of capturing 
temporal dependencies, which is crucial for continuous emotion 
prediction tasks, they have been largely replaced by Recurrent 
Neural Network (RNN) approaches [3]. Today, Long Short Term 
Memory (LSTM) networks are used as the baseline for emotion 
recognition challenges [25,34,35]. Sun et al. [36], the winners of 
MuSe2020, proved that adding a self-attention mechanism to 
LSTM boosts its performance. Moreover, with the increased 
popularity of end-to-end learning, Convolutional Neural 
Networks (CNN) followed by LSTM-RNN are often used [38] 
[17]. The CNNs extract the features most relevant for the desired 
task and LSTM ensures capturing dynamic temporal 
relationships. To further improve performance, some researchers 
are incorporating data difficulty information into their models. 
Han et al. [11] showed that adding the uncertainty as an output 
along the prediction of emotions improves the performance of 
the model for the task of emotion recognition. Zhang et al. [42] 
exploited difficulty indicators of the data to update the weights 
of the model in a manner where more effort is provided with 
high difficulty data; their work outperforms state-of-the-art.  
 

2.3 Multimodal Fusion 
Since emotions can be recognized through several modalities, the 
fusion of multimodal information plays an important role. There 
are three established approaches to combine different modalities: 
early fusion, late fusion, and model fusion. Early fusion consists 
of feeding the features of all modalities to a single model at once, 
whereas late fusion combines the predictions of several models. 
Model-level fusion is a compromise between the latter two 
where the fusion happens between the intermediate 
representations of the multimodal features. In AVEC 2018, 
Huang et al. [14] showed that late fusion is better at predicting 
valence and arousal than early fusion. Sun et al. [36] chose late 
fusion with an LSTM network that captures dynamic 
information as a fusion model. Moreover, Chen et al. [2] 
proposed the joint use of early and late fusion using 
Bidirectional Deep Long Short-Term Memory networks 
(BDLSTM). The results showed that early and late information 
may be complementary [2]. 

3   METHOD 
In this section, we explain our approach in detail. Our method 
focuses on exploiting several modalities for continuous emotion 
prediction and optimizing the fusion of the signals. We train a 
unimodal predictor for each modality. We use a fusion model to 
combine the results of the unimodal predictors. To enhance the 
prediction performance, we add an extra feature called “difficulty 
indicator”. We obtain the difficulty indicator of the modality by 
training an AE on the corresponding features set and calculating 
its Reconstruction Error (RE). As shown in Fig. 1, we feed the RE 
error of the unimodal features to the unimodal predictor. Then, 
we feed the outputs of each unimodal predictor along with the 
respective REs to the fusion model. Our approach is built with 
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three training stages: Auto-Encoder (3.1), Unimodal Predictions 
(3.2) and Fusion Model (3.3) training.  
 

 

Figure 1: Diagram of the proposed solution. 𝑿𝒊 refers to the 
ith unimodal features set. 𝑿�̃� refers to their reconstruction 
using the auto-encoder. RE refers to the averaged 
reconstructed error. 𝒚�̃� refers to the unimodal prediction 
using the ith features set and 𝒀 ̃refers to the multi-modal 
end prediction. 
 

3.1 Auto-Encoder: 
Auto-encoders (AE) are neural networks that encode the inputs 
into a new dimensional space and then reconstruct the input 
from the encoded values. In the case of a basic auto-encoder with 
one hidden layer, an input example 𝑥 𝜖 ℝ𝑑 will pass through the 
hidden layer ℎ(𝑥) 𝜖 ℝ𝑝 where: 

ℎ(𝑥) = 𝑔(𝑊1𝑥 + 𝑏1)  #(1)   
and 𝑔(𝑧) is a non-linear activation function. Then, the model 
will decode the hidden representation ℎ(𝑥)  to produce a 
reconstruction of the input �̃� 𝜖 ℝ𝑑: 
 

�̃� = 𝑔(𝑊2ℎ(𝑥) + 𝑏2)#(2)   

The training of the AE consists in finding the parameters 
{𝑊1, 𝑊2, 𝑏1, 𝑏2} that minimizes the Reconstruction Error (RE) 
which is described in the following loss function: 

𝑅𝐸 = ℒ(𝑊1, 𝑊2, 𝑏1, 𝑏2) = ∑ ‖𝑥 − 𝑥 ̃‖
2

𝑥 𝜖 ℝ𝑑 #(3)   

Typically, an AE is used to solve the high dimensionality 
problem since an increase in dimensions raises the required 
complexity of the model and demand in data and computation 
capacities. However, more recently, AEs are being used to detect 
anomalies/novelties [18] e.g. unexpected or unusual events. In 
this case, the RE determines whether the input to the AE is a 
novelty. This is achieved by comparing the RE to a set threshold, 
the sample is considered a novelty if its RE surpasses the 
threshold. AE is also used for classification [23]. Hence, an AE is 
trained for each class and the RE is used as a class membership 
indicator. More recently, Zhang et al.[42] used RE in dynamic 
difficulty awareness training (DDAT). DDAT relies on the 
assumption that a model will perform better if it is provided with 
the learning difficulty of the data. They train a model that 
reconstructs the input and predicts emotions in a multi-task 
learning framework. They calculate the RE of the inputs and use 
it as a difficulty indicator to update the model. The RE is re-

injected into the model to update its weights accordingly. Similar 
to [42], we train an AE for each feature set. Given that the RE 
represents the difficulty of the task for the regressor (the 
unimodal predictor in our case), the AE and the regressor are 
designed with the same architecture. This architecture is detailed 
in section 3.2. We define the difficulty indicator as the averaged 
mean squared error between the input and its reconstruction 
.We use this indicator in two stages:   1. Unimodal predictions 
stage: we feed the features and their corresponding RE to the 
prediction model, and 2. the fusion stage: we feed the predictions 
+ RE to the fusion model. These stages are further explained in 
sections 3.2 and 3.3. 

3.2 Unimodal prediction  
For each modality, we train a separate regressor for arousal and 
valence continuous prediction. As shown in Fig. 1, we feed each 
regressor the feature set along with the RE calculated from the 
AE of the respective feature set. We assume the RE represents 
the difficulty of the data, and that this information will help the 
model perform better. Temporal information is of great 
importance for emotion recognition. Therefore, we utilize a 4-
layered Recurrent Neural Networks (RNN) followed by a feed 
forward layer for the architecture of our model. We evaluate two 
types of RNNs: a LSTM and a GRU networks.  
LSTM is a type of recurrent neural network that allows us to 
capture temporal information. It can process sequential inputs 
by using its internal state (memory). In contrast to conventional 
RNN, LSTM has a cell variable 𝑐𝑡 and three gates: input gate 𝑖𝑡, 
output gate 𝑜𝑡, and forget gate 𝑓𝑡 . These gates help the LSTM 
overcome the vanishing gradient problem that the RNN suffers 
from. Moreover, it allows it to better handle long input 
sequences. The equations of the forward pass of an LSTM are the 
following: 

𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)#(4)  
𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)#(5)  

𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)#(6)   
𝑐𝑡 = 𝑓𝑡 ⊗  𝑐𝑡−1 +  𝑖𝑡 ⊗  𝜎ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)#(7)    

ℎ𝑡 = 𝑜𝑡 ⊗  𝜎ℎ(𝑐𝑡)#(8)   
Where 𝑥𝑡 is the current passed input, ℎ𝑡 the current hidden state, 
𝜎𝑔 and 𝜎ℎ are the sigmoid and hyperbolic tangent functions and 

⊗  denotes element-wise multiplication. 𝑊, 𝑈  and 𝑏  are the 
weight matrices and biases. 
The GRU is a simplified version of the LSTM. It has only two 
gates: the update gate 𝑧𝑡  and the reset gate 𝑟𝑡[4]. It has less 
parameters than the LSTM. It typically has a comparable 
performance to the LSTM [5,24].  
A forward pass of a sample 𝑥𝑡 through the GRU is described in 
the following equations: 

𝑧𝑡 = 𝜎𝑔(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)#(9)  
𝑟𝑡 = 𝜎𝑔(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)#(10)  

ℎ̂𝑡 = 𝜎ℎ(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊗ ℎ𝑡−1) + 𝑏ℎ)#(11)    

ℎ𝑡 = (1 − 𝑧𝑡) ⊗ ℎ𝑡−1 +  𝑧𝑡 ⊗ ℎ̂𝑡##(12)  
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Where 𝑥𝑡 is the current passed input, ℎ𝑡 the hidden state at time 
t, 𝜎𝑔 and 𝜎ℎ are the sigmoid and hyperbolic tangent functions 

and ⊗ denotes element-wise multiplication. 𝑊, 𝑈 and 𝑏 are the 
weight matrices and biases. 
We also explore using bidirectional LSTM and GRU, where the 
inputs are processed in both directions. After passing through 
recurrent layers, we further encode the outputs through a feed-
forward layer. 

3.3 Fusion Model 
In our solution, we adopt late fusion strategy. We feed our fusion 
model the predictions from each modality and the RE of the 
respective modality, as shown in Fig. 1. We assume that the RE 
not only indicates the difficulty of the data but may also denote 
the level of reliance on each unimodal feature set. Our fusion 
model consists of a four-layered bidirectional RNN. 

4  EXPERIMENTS 

4.1 Corpus Description 
The dataset used for the MuSe-Stress sub-challenge is the Ulm-
TSST database[34]. It consists of 69 German-speaking 
participants, aged between 18 and 39 years, in a stress inducing 
setup following  
the Trier Social Stress Test procedure [15]. Each participant is 
asked to present orally for approximately five minutes in front of 
two interviewers. Video and physiological recordings are taken 
during the presentation. The total duration of the database is 5h: 
47min: 27s. Arousal and valence are annotated by three raters 
and the fusion of the annotations is done using the RAAW 
method[34]. The given modalities are audio, video, transcripts in 
addition to the physiological signals Electrodermal Activity 
(EDA), Electrocardiogram (ECG), respiration and heart rate 
(BPM).  

4.2 Features  
The MuSe2021 provides a range of extracted acoustic, visual, and 
textual features for the participants to use. In our approach, we 
used the following parameter sets. 

4.2.1 Acoustic Features 
eGeMAPS features: We explore using the extended Geneva 
Minimalistic Acoustic Parameter Set (eGeMAPS) [8] which can 
be extracted using the free openSMILE toolkit[9]. It consists of 
low-level acoustic descriptors including frequency, energy, and 
spectral parameters. To extract these features, the audio signal is 
divided in overlapping 6 seconds windows. We normalize the 
eGeMAPS features. 
DeepSpectrum: We also experiment with DeepSpectrum 
features[1]. DeepSpectrum is a deep CNN pre-trained with the 
spectrograms of audio signals. 4096 features were extracted 
using this model.  

4.2.2 Visual Features 

VGGFace: VGGFace[22] is the output result from a deep CNN 
used for face recognition. The VGGFace features correspond to 
the 512-output vector after detaching the last layer of the model. 
FAU: Using the Multi Cascaded Convolutional Neural Networks 
(MTCNN), 17 facial action unit intensities are obtained from the 
center and left sides of the face. 

4.2.3 Textual Features 
Bert : For the textual modality, Bidirectional Encoder 
Representations from Transformers (BERT) [6] features are 
provided. The high-level contextual embedding proved to deliver 
state of the art results for several Natural Language Processing 
(NLP) tasks. Since Ulm-TSST is a German database, BERT is pre-
trained on German texts. 

4.3 Model Training 
We implement our solution using the Pytorch toolkit [44] . For 
each features set, our unimodal predictors, AEs, and late fusion 
model share the same architecture: four-layered bi-directional 
RNN with 64 hidden neurons followed by a feedforward layer. 
The choice between BiLSTM and biGRU as recurrent layer is 
determined based on the results on the validation set. We utilize 
the Adam optimizer and varied learning rates (0.001, 0.005, 
0.0005). As a form of regularization, we apply dropout and 
evaluate with several rates (0.1, 0.2, or 0.5). We train the model 
for 100 epochs at most and apply early stopping if the validation 
performance does not improve after 15 epochs. For the loss 
function, we use the Concordance Correlation Coefficient (CCC) 
loss [16] which is defined as: 

ℒ = 1 − 𝐶𝐶𝐶#(13)  
  

𝐶𝐶𝐶 =
2𝜌𝜎�̂�𝜎𝑦

𝜎�̂�
2+𝜎𝑦

2+(𝜇�̂�−𝜇𝑌)2
#(14)   

where 𝜇�̂� and 𝜇𝑌 are the mean of the prediction �̂� and the label 
𝑌,and  𝜎�̂� and  𝜎𝑦 are the corresponding standard deviations. ρ is 

the Pearson Correlation Coefficient (PCC) between �̂� and 𝑌.  

5  RESULTS 

5.1 Ablation study 
We conduct an ablation study to determine the best type of 
recurrent layer for our model. We explore four types of models: 
LSTM, GRU, biGRU, and biLSTM using the standard approach 
where only unimodal features are inputted to the model. All of 
the four models are 4-layered networks with 64 hidden neurons. 
We present the results of the performance of each model in 
Table 1 and Table 2 for arousal and valence respectively. 
Generally, the BiGRU and BiLSTM models outperform both 
LSTM and GRU models. These results show that both past and 
future information is relevant for emotion prediction. Since 
BiGRU and BiLSTM have close performances and BiGRU have 
less parameters, we choose to continue with BiGRU model for 
better generalization on the testing set. We also experiment with 
3 loss functions on the BiGRU model: “CCC”, “MSE”, and “L1” 
loss. Generally, CCC gives better performance as shown in Table 
3 and Table 4. The results agree with the findings in [36,37].  
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Table 1: CCC performance comparison between recurrent 
models for unimodal predictions on arousal dimension on 
the validation set. 

Features LSTM BiLSTM GRU BiGRU 

eGeMAPS 0.4714 0.5466 0.4739 0.5322 

VGGface 0.1809 0.3561 0.1283 0.2293 

FAU 0.3260 0.3637 0.3641 0.3688 

Bert 0.2250 0.3166 0.2349 0.2681 

DeepSpectrum 0.3339 0.2617 0.2538 0.2185 

Table 2: CCC performance comparison between recurrent 
models for unimodal predictions on valence dimension on 
the validation set. 

Features LSTM BiLSTM GRU BiGRU 

eGeMAPS 0.5926 0.5597 0.5671 0.5646 

VGGface 0.5650 0.5671 0.5414 0.6481 

FAU 0.5480 0.5952 0.5531 0.5143 

Bert 0.3025 0.2538 0.2828 0.4473 

DeepSpectrum 0.5548 0.5678 0.5532 0.5630 

 

5.2 Reconstruction Error and Unimodal 
Predictions 
In Table 5 and Table 6, we present the performances achieved on 
the validation set for the arousal and valence prediction where 
we feed the model unimodal features only compared to unimodal 
features and RE. The results show improvement for almost all 
the modalities for both tasks. This indicates that the difficulty 
information helps the model perform better. Our results are 
consistent with those of [42]. 

Table 3: CCC performance on the arousal obtained by 
using different loss functions on the validation set. 

Features MSE L1 CCC 

eGeMAPS 0.3038 0.3306 0.5322 

VGGFace 0.0772 0.0159 0.2293 

FAU 0.3083 0.4354 0.3688 

Bert 0.3277 0.3160 0.2681 

DeepSpectrum 0.0666 0.1201 0.2185 

Table 4: CCC performance on the valence obtained by 
using different loss functions on the validation set. 

Features MSE L1 CCC 

eGeMAPS 0.4465 0.4414 0.5646 

VGGFace 0.5354 0.3980 0.6481 

FAU 0.4011 0.2885 0.5143 

Bert 0.3658 0.3095 0.4473 

DeepSpectrum 0.5262 0.4984 0.5630 

Table 5: CCC performance comparison for unimodal 
predictions on arousal dimension on the validation set 

 

Inputs 

Model 

Unimodal Features Unimodal Features 

+ RE 

eGeMAPS 0.5322 0.5829 

VGGFace 0.2293 0.3926 

FAU 0.3688 0.3668 

Bert 0.2681 0.3457 

DeepSpectrum 0.2185 0.2498 

 
Table 6: CCC performance comparison for unimodal 
predictions on valence dimension on the validation set 

 

Modalities 

Model 

Unimodal Features Unimodal Features 

+ RE 

eGeMAPS 0.5646 0.6353 

VGGFace 0.6481 0.6798 

FAU 0.5143 0.5307 

Bert 0.4473 0.4655 

DeepSpectrum 0.5630 0.5676 

 

5.3 Multimodal predictions 
First, we conduct fusion on the unimodal predictions only. We 
try several combinations for fusion, as shown in Table 7. We 
observe that fusing several modalities boosts the performance 
significantly (eGeMAPS+ VGGFace, eGeMAPS+ VGGFace + 
FAU). We can also find that for the visual modality, using low-
level (FAU) and high-level features (VGGface) results in better 
performance. We notice that adding the textual modality causes 
a drop in the performance; this can be explained by the fact that 
textual information in interviews may not reflect true emotions. 
We also observe that adding DeepSpectrum features does not 
improve the performance. This could be the result of the high 
dimensionality of this features set (4096 features). Second, we 
apply our proposed approach by fusing the best combination of 
the unimodal predictions (eGeMAPS + VGGFace + FAU) and 
RE’s of the corresponding features sets. As shown in Table 8, we 
achieve better results by adding the RE’s of features sets as extra 
features at fusion stage. We hypothesize that the addition of this 
information at the fusion level leads the model to rely more on 
the unimodal predictions that are most reliable. 
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Table 7: CCC performance of multi-modal features on the 
arousal and valence dimension on the validation set. 

Modalities Arousal Valence 

eGeMAPS + VGGFace 0.6205 0.7024 

eGeMAPS + VGGFace+ Bert 0.6031 0.6811 

eGeMAPS + VGGFace+ DeepSpectrum 0.6199 0.7320 

eGeMAPS + VGGFace+ FAU 0.6469 0.7653 

Table 8: CCC performance on arousal and valence using as 
fusion model inputs, unimodal predictions only (first row) 
and unimodal prediction along with RE (second row) on 
the validation set 

Inputs Arousal Valence 

 Fused Unimodal predictions 0.6469 0.7653 

Fused Unimodal predictions + RE 0.6554 0.8036 

 

Table 9: Best submission results of our approach on the 
validation and test sets. 

Partition Emotion Baseline Proposed 

 

Val 
 

Arousal 0.5043 0.6554 

Valence 0.6966 0.8036 

Combined 0.6005 0.7295 

 

Test 
 

Arousal 0.4562 0.4278 

Valence 0.5614 0.5951 

Combined 0.5088 0.5115 

 
Our final submissions are shown in Table 9. Our proposed 
approach significantly outperforms the baseline on the 
validation set for arousal and valence predictions. On the test set, 
our method outperforms the baseline system on the valence with 
CCC 0.5951 vs 0.5614. As for arousal, we achieve CCC of 0.4278 
vs 0.4562 for the baseline. The difference between our 
performance on the validation and test set indicates that there 
may be an overfitting on the validation set. It can also imply that 
the two sets may have different distributions. Our submissions 
rank fourth for the valence prediction, in the top three for 
arousal prediction, and in the top three for combined 
performance in the Muse-Stress 2021. 

6  CONCLUSION 
In this paper, we presented our solution for the sub-challenge 
MuSe-Stress of MuSe 2021. We explored the performance of 
high-level and low-level features for continuous emotion 
prediction. We compared the performance of uni and bi-
directional GRU and LSTM and chose BiGRU as our main model 
to extract temporal dynamic information from the data. To 
further enhance our model’s performance, we train an AE for 
each feature set and calculate its corresponding RE to represent 
the data’s difficulty. Our results showed that adding the RE as 
input for the uni-modal prediction as well as for the fusion 
improves the model’s performance. These findings confirm that 
the RE reflects relevant information.  

However, as a limitation in this work, our model likely overfit 
the validation set. The gap for the CCC performance between the 
validation and test sets show that our model required additional 
data to generalize. This may be addressed using data 
augmentation methods. Moreover, because RE helps to focus on 
relevant feature sets, we think that using RE could bring more 
robustness to the fusion model toward corrupted modalities. In 
the future, we would like to test this hypothesis by adding noise 
to feature sets or directly to raw data. 
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