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The GW Miracle in Many-Body
Perturbation Theory for the Ionization
Potential of Molecules
Fabien Bruneval*1, Nike Dattani2 and Michiel J. van Setten3

1CEA, Service de Recherches de Métallurgie Physique, Direction des Energies, Université Paris-Saclay, Paris, France, 2HPQC
Labs, Waterloo, ON, Canada, 3HPQC College, Waterloo, ON, Canada

We use the GW100 benchmark set to systematically judge the quality of several
perturbation theories against high-level quantum chemistry methods. First of all, we
revisit the reference CCSD(T) ionization potentials for this popular benchmark set and
establish a revised set of CCSD(T) results. Then, for all of these 100 molecules, we
calculate the HOMO energy within second and third-order perturbation theory (PT2 and
PT3), and, GW as post-Hartree-Fock methods. We found GW to be the most accurate of
these three approximations for the ionization potential, by far. Going beyondGW by adding
more diagrams is a tedious and dangerous activity: We tried to complement GW with
second-order exchange (SOX), with second-order screened exchange (SOSEX), with
interacting electron-hole pairs (WTDHF), and with a GW density-matrix (cGW). Only the cGW

result has a positive impact. Finally using an improved hybrid functional for the non-
interacting Green’s function, considering it as a cheap way to approximate self-
consistency, the accuracy of the simplest GW approximation improves even more. We
conclude that GW is a miracle: Its subtle balance makes GW both accurate and fast.

Keywords: electronic structure ab initio calculations,many-body ab initio structure, ionization potential (IP), density-
functional theory (DFT), Green’s function (GF), feynman diagram expansion, coupled-cluster method, high-precision
benchmarks

1 INTRODUCTION

Many-body perturbation theory (MBPT) (Fetter and Walecka, 1971) is currently actively used to
predict the excitation energies of molecules (Shirley and Martin, 1993; Grossman et al., 2001;
Rostgaard et al., 2010; Blase et al., 2011; Bruneval, 2012; Körzdörfer and Marom, 2012; Ren et al.,
2012; Sharifzadeh et al., 2012; Bruneval and Marques, 2013; van Setten et al., 2013; Koval et al., 2014;
Govoni and Galli, 2015; van Setten et al., 2015; Blase et al., 2016; Knight et al., 2016; Kuwahara et al.,
2016; Heßelmann, 2017; Maggio et al., 2017; Golze et al., 2018; Lange and Berkelbach, 2018; Wilhelm
et al., 2018; Golze et al., 2019; Lewis and Berkelbach, 2019; Blase et al., 2020). The boost in the
application of MBPT to molecules is being driven by the advent of physicists’ methods, most
noticeably the GW approximation (Hedin, 1965) for electron attachment and detachment energies
and the Bethe-Salpeter equation (Onida et al., 1995) for neutral excitations. The present Research
Topic acknowledges this new situation and this contribution will specifically focus on electron
detachment energies.

The arrival of the physicists’ methods that had been limited in their application to extended
systems should not hide the fact that MBPT had been already present in chemistry for several
decades, however with different approximations (Szabó and Ostlund, 1996). Indeed in the 70s,
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Cederbaum and coworkers explored the performance of MBPT
for electron attachment and detachment energies (Cederbaum
et al., 1973; Cederbaum and Niessen, 1974; Cederbaum, 1975; von
Niessen et al., 1977; Cederbaum and Domcke, 1977; Cederbaum
et al., 1978). Their approximations were based on a strict order-
by-order expansion with respect to the electron-electron
Coulomb interaction v. Here we name the second-order
perturbation theory, PT2, and the third-order perturbation
theory, PT3. Going beyond the third-order has seldom been
attempted (Ortiz, 1988) for computational reasons.

The physical approximations took another path when it was
realized that PT2 was producing divergent energies for the
homogeneous electron gas (Mahan, 2000). It was then
proposed to consider the screened Coulomb interaction W
(Hedin, 1965) instead of the bare Coulomb interaction v as
the perturbation. It turned out that the first-order correction,
namely the GW approximation (Onida et al., 2002), was very
effective for extended systems (Hanke and Sham, 1975; Godby
et al., 1986; Hybertsen and Louie, 1986).

Now that the GW approximation has permeated
chemistry, we think it is time to compare the performance
in both accuracy and speed of the different approximations
on a fair, unbiased basis. Fortunately, one of us has recently
introduced a wide benchmark, named GW100 (van Setten
et al., 2015), which consists of the ionization potentials (IP)
of 100 atoms and small to medium-sized molecules. Close to
twenty different codes have by now used this set to evaluate
their results, and in general, when all convergence
parameters are considered, the results agree well.
Reference IP energies were calculated by Krause et al.
(2015) via differences in the total energies calculated for
the neutral and positively-charged species with the CCSD(T)
approximation.

The GW100 benchmark is hence to be the boxing ring in
which we want to scrutinize the quality of the different
MBPT approximations (PT2, PT3, GW, and beyond GW).
With GW we denote here the one-shot GW appoximation
that does not include self-consistency; in the literature it is
sometimes denoted as G0W0. However, before doing so, we
will revisit the CCSD(T) reference IPs. We observed that the
set from Krause et al. (2015) is not sufficiently precise for
this level of benchmarking: for instance the SO2 IP was more
than 1 eV off the trend. We present here a complete
recalculation of the CCSD(T) reference IPs for the
GW100 benchmark.

With this updated benchmark, we explain the success of the
GW approximation for the IP of molecules: The GW
approximation is both accurate and fast. Going beyond GW
often worsens the result.

The article is organized as follows: In MBPT: v-based or
W-based expansions, we recapitulate the different MBPT
approximations and explain them with Goldstone-Feynman
diagrams. In CCSD(T) ionization potentials for GW100,
we set up new CCSD(T) reference values of the IPs for the
GW100 benchmark set. Benchmarking the MBPT Strategies
compares the performance of the different approximations
based on a standard Hartree-Fock starting point. MBPT From

an Improved Mean-Field Starting Point shows an attempt to
approach MBPT self-consistency with tuned hybrid
functionals. Finally the conclusions are drawn in
Conclusion. Hartree atomic units are used throughout this
work. The numerical values are made available as
Supplemental Material, under the wide-spread machine-
and human-readable JSON file format.

2 MBPT: V-BASED OR W-BASED
EXPANSIONS
2.1 Green’s Function and Self-Energy in
MBPT
In MBPT, the central quantity is the one-electron Green’s
function. The Green’s function describes the time-
propagation of an additional particle in the electronic
system: an extra electron for propagation forward in time,
or a hole for propagation backward in time. The Green’s
function contains a great deal of information. For instance its
diagonal is the electronic density, and, most interesting for
us, its poles are the ionization energies (Fetter and Walecka,
1971).

Once an approximate Green’s function G0 is known, the exact
Green’s functionG can be obtained thanks to the Dyson equation:

G(ω) � G0(ω) + G0(ω)ΔΣ(ω)G(ω), (1)

where the spatial indices, later defined as p and q, have been
dropped for simplicity.

The operator ΔΣ stands for the self-energy difference. It
performs the humongous task of connecting G0 to G. If the
Hartree-Fock approximation (HF) is used for G0, then ΔΣ
coincides with the missing correlation part of the self-
energy Σc.

When a mean-field approximation is selected for G0, it can be
expressed analytically:

G0 pq(ω) � δpq
2

ω − ϵp ± iη
, (2)

where the factor of 2 accounts for spin, p and q are molecular
orbital (MO) indices, ϵp and ± iη is a vanishing imaginary number
that ensures the correct analytic behavior of G0. G0 is diagonal in
the corresponding MO basis.

In practice, we make the further approximation that the self-
energy difference is also diagonal in the MO basis:

ΔΣpq(ω) � δpqΔΣpp(ω). (3)

This approximation is believed to be very good and is common
practice in this field (Golze et al., 2019).

Recasting the Dyson Eq. 1 into

G−1
0 (ω) − ΔΣ(ω)[ ]G(ω) � I, (4)

where I is the identity operator, it becomes clear that the diagonal
approximation of ΔΣ will induce a diagonal approximation to G,
since G and therefore also G−1

0 are diagonal in the corresponding
molecular basis.
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Furthermore, the poles of G correspond to the zeroes of the
term in between the brackets in Eq. 4:

ω − ϵp � ΔΣpp(ω). (5)

This equation is named the quasiparticle equation and the
highest zero for the p index that corresponds to occupied
states is ϵHOMO � − IP. The HOMO energies reported in this
work are obtained with this procedure, which is often referred
to as the “graphical solution” of the quasiparticle equation
(Golze et al., 2019).

We can calculate the spectral weight Z associated with a pole of
G with

Zp(ω) � 1 − zΔΣpp

zω
( )

−1
. (6)

Being a weight, this quantity should range from 0 to 1 and hence
zΔΣpp

zω should be negative.
Note that the mean-field orbitals indexed by p might not be

ordered properly. That is why in practice one needs to consider
not only the mean-field HOMO, but also a few states below. This
pathological behavior is known to occur for N2 for instance (von
Niessen et al., 1977).

The challenge in MBPT is then to derive approximate
expressions for ΔΣ that are both accurate and
computationally tractable. Henceforth, we use the Goldstone-
Feynman diagram representation to describe the different
working approximations. The analytic expressions can be
found in the cited references.

2.2 HF, PT2, PT3
In this Section, we follow the traditional approach in quantum
chemistry for the so-called post-Hartree-Fock calculations (Szabó
and Ostlund, 1996; Helgaker et al., 2000).

Let us start gradually and begin with the formulation of the HF
approximation in terms of Goldstone-Feynman diagrams. In the
upper panel of Figure 1, we have presented the two Goldstone-
Feynman diagrams of HF: the Hartree and the Fock exchange
terms. The blue arrows indicate the entry and the exit points. The
black arrow is a Green’s function and the red dashed line is the
bare Coulomb interaction v. As v is assumed to be instantaneous,
we represent it horizontally (so that the vertical axis would be the
time axis).

The Hartree diagram (upper left-hand diagram in Figure 1)
translates into the following integral:

vH(r) � ∫ dr′
ρ(r′)
|r − r′|, (7)

Where ρ(r) � G(rt, rt+) is the electronic density. From the
Hartree Goldstone-Feynman diagram, we can immediately see
that the Hartree potential is local in space and in time, since the
entry and exit points are identical. The exchange diagram (upper
right-hand diagram in Figure 1) is non-local in space, but local
in time, since its entry and exit points share the same y
coordinate.

In regular MBPT, one considers the electron-electron
interaction v as the meaningful order parameter that will allow
us to derive more and more complex approximations.

The second-order perturbation theory, PT2, considers all the
possible Goldstone-Feynman diagrams having two Coulomb
interactions. There are only two of those diagrams and they

FIGURE 1 | All the Goldstone-Feynman diagrams in HF (upper panel),
PT2 (central panel) and an illustrative subset of the Goldstone-Feynman
diagrams in PT3 (lower panel).
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are drawn in the middle panel of Figure 1. The first one
accounts for the propagation of an electron (or a hole)
interacting with an electron-hole pair. The second one is the
so-called second-order exchange (SOX). These two diagrams are
still rather simple and can be found in chemistry textbooks (Szabó
and Ostlund, 1996).

However, the next level, namely PT3, brings in many new
terms. PT3 considers all the possible Goldstone-Feynman
diagrams with three Coulomb interactions, which results in
the analytic terms reported in the Appendix of Ref.
(Cederbaum and Domcke, 1977). The formulas extend over
three printed pages and will not be reproduced here. We will
instead draw a few instructive Goldstone-Feynman diagrams
in the lower panel of Figure 1. PT3 contains some static
diagrams (the A-diagrams in Cederbaum’s notation), such
as the two first diagrams drawn in the PT3 panel. They can
be interpreted as corrections to the Hartree and Fock terms
due to a correction to the density and the density-matrix.
Besides these, some dynamical diagrams are displayed with
two electron-hole pairs, or one interacting electron-hole pair,
or a ladder diagram, etc.

The PT3 approximation had been implemented and tested
by Cederbaum and coworkers (Cederbaum et al., 1973;
Cederbaum and Niessen, 1974; Cederbaum, 1975;
Cederbaum and Domcke, 1977; Cederbaum et al., 1978),
but never applied to a systematic benchmark, to the best of

our knowledge. Those authors noticed that PT3 was not fully
satisfactory and proposed the rescaling of some of the terms to
form a better estimate of the IP. This empirical rescaling,
known as outer valence Green’s function (OVGF) or as
electron propagator theory (EPT), is not applied here, as
our focus is the MBPT itself.

Considering the huge number of terms in PT3, it is not
surprising that PT4 has only rarely been used (Ortiz, 1988).

2.3 W, GW, SOSEX
In condensed-matter physics, it has been realized that the one-
ring diagram in PT2 (See Figure 1) was producing an infinite
value when evaluated for a gapless system (Mahan, 2000). A
renormalized interaction was then introduced then to mitigate
this problem (Baym and Kadanoff, 1961; Hedin, 1965).

The upper panel of Figure 2 represents the screened Coulomb
interaction W within the random-phase approximation. W is
represented with wiggly lines that are not necessarily horizontal
in the diagrams, because W is not instantaneous as v is. W is an
infinite series of subsequent non-interacting electron-hole pairs.

There exists only one first-order diagram in W: the so-called
GW approximation to the self-energy, represented in the middle
left-hand panel of Figure 2. AsW contains an infinite number of
diagrams, the GW approximation cannot be rationalized with the
v-based MBPT recapitulated in the previous section. Notice the
similarity between the exchange diagram in HF (Figure 1) and
theGW diagram: The Coulomb interaction has just been replaced
by a non-horizontal W wiggly line.

This single GW diagram has been proven to yield very good
results for the homogeneous electron gas (Hedin, 1965;
Lundqvist, 1967), and for real periodic solids (Hanke and
Sham, 1975; Strinati et al., 1982; Hybertsen and Louie, 1985;
Godby et al., 1986). More recently, it has been realized that the
same good performance is reached for molecules (Shirley and
Martin, 1993; Grossman et al., 2001; Rostgaard et al., 2010; Blase
et al., 2011; Bruneval, 2012; Körzdörfer and Marom, 2012; Ren
et al., 2012; Sharifzadeh et al., 2012; Bruneval and Marques, 2013;
van Setten et al., 2013; Koval et al., 2014; Govoni and Galli, 2015;
van Setten et al., 2015; Blase et al., 2016; Knight et al., 2016;
Kuwahara et al., 2016; Maggio et al., 2017; Golze et al., 2018;
Lange and Berkelbach, 2018; Wilhelm et al., 2018; Golze et al.,
2019; Lewis and Berkelbach, 2019; Blase et al., 2020).

Of course, the single GW diagram is just the first of an infinite
expansion in W. However, the next diagrams become very
complex, very quickly. They are often named “vertex
corrections” in the literature. Vertex corrections appear in two
different locations in Hedin’s equations (Hedin, 1965) (or
equivalently in the diagrams): in W beyond RPA and in the
self-energy itself.

Adding more diagrams in W would incorporate the electron-
hole interaction that is present in PT3 but not in GW. Lewis and
Berkelbach have worked on this point and showed a small effect
(Lewis and Berkelbach, 2019). We will test improving GW along
that line by using a W interaction calculated within time-
dependent Hartree-Fock (TDHF), labeled WTDHF.

Adding more diagrams in the self-energy would incorporate
the SOX diagram and more. For instance, we represent in

FIGURE 2 | The first Goldstone-Feynman diagrams in the RPA screened
Coulomb interaction W (upper panel), the GW diagrams (middle left-hand
panel), the SOSEX diagram (middle right-hand panel), and the two cGW

diagrams (lower panel).
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Figure 2 the so-called second-order screened exchange (SOSEX) of
Ren and coworkers (Ren et al., 2015). It is an extension to SOX that
considers a screened interaction W together with an unscreened
interaction v. The complete second-order diagrams with two W
wiggly lines has been very recently considered in Ref. (Wang et al.,
2021). The authors conclude that it does not bring large
contributions and we will use the simpler SOSEX diagram here.

It should be added that there exist additional low-order
diagrams when the Green’s function is not calculated self-
consistently. Indeed, the two diagrams in the lower panel of
Figure 2 are first-order diagrams inW that give corrections to the
Hartree potential and the Fock exchange. Similar diagrams show
up in PT3, however with one electron-hole pair only. These two
diagrams do not appear in Hedin’s equations, because Hedin’s
derivation is obtained considering the self-consistentG. One of us
has recently studied these diagrams and highlighted a sizable
effect on the IP (Bruneval, 2019a), on the electronic densities
(Bruneval, 2019b), and on the total energies (Bruneval et al.,
2021). We shall name these diagrams γGW in this work, as they
only affect the one-electron reduced-density-matrix.

To summarize the many approximations we have presented
above, Figure 3 sketches the different diagram sets used in this
study. We see that PT3 contains PT2 and that GW has an overlap
with PT2, but misses the SOX diagram. Some diagrams ofGW are
not present in PT2, nor in PT3: the n-pair diagrams with n > 2.
GW + SOSEX entirely contains PT2, but obviously misses many
diagrams of PT3. GWTDDFT captures the 1-interacting-pair
diagram of PT3 and adds the further interacting pairs. GW +
cGW has the 1-pair inclusion in Hartree and Fock exchange. For
instance, the ladder diagram is present in PT3 only.

At this stage, there is no way to judge which approximation is
best. Ideally in a perturbation theory, the more diagrams, the
better. However, in MBPT, the perturbation is by no means
“small” and, in our opinion, only practical calculations on trusted
benchmarks are able to draw conclusions. This will be the topic of
the next Sections.

3 CCSD(T) IONIZATION POTENTIALS
FOR GW100

3.1 GW100
In this work we use the set of molecules defined in the GW100
set as our boxing ring. This set came into existence first in a
comparison between only three codes (van Setten et al.,
2015). In the meantime the developers of many other
codes have used the set to test and benchmark their
implementations, both for GW and other computational
approaches aiming at the calculation of ionization energies
and electron affinities (Caruso et al., 2016; Vlček et al., 2017a;
Maggio et al., 2017; Wilhelm and Hutter, 2017; Govoni and
Galli, 2018; Rodrigues Pela et al., 2018; Colonna et al., 2019;
Gao and Chelikowsky, 2019; Brémond et al., 2020; Förster
and Visscher, 2020; Gao and Chelikowsky, 2020; Bintrim and
Berkelbach, 2021; Duchemin and Blase, 2021; Förster and
Visscher, 2021; Wilhelm et al., 2021). At present over a
hundred data sets have appeared for the GW100 set.

The GW100 set uses established geometries and keeps
them fixed for each set of calculations. In the work on the
GW100 set using plane-wave basis sets in the PAW
formalism using the VASP code (Maggio et al., 2017), it
was noticed that for two molecules, phenol and vinyl
bromide, the structure used originally was not correct.
From this point the two new structures have been added
to the set in order to enable comparison between sets
containing only one or both versions. In this work, we use
the updated geometries, so that the total number of data
points is 100.

For a completely correct comparison of the molecules in the
GW100 set, between codes employing different basis sets, an
extrapolation to the complete basis set limits is paramount
(van Setten et al., 2015; Maggio et al., 2017; Govoni and Galli,
2018). However, the use of more complete basis sets that are
necessary for an extrapolation is limited by the numerical
scaling of the reference CCSD(T) calculations. Fortunately, for
comparisons of different methods “beyond” one-shot GW in
codes that are based on Gaussian orbitals, this is not strictly
necessary, as long as the same basis set is used consistently. The
def2-TZVPP basis set (Weigend and Ahlrichs, 2005) has
historically been used for these comparisons (Krause et al.,
2015; Caruso et al., 2016). We will hence use this basis set in
this work as well. In this work, we refrain from interpreting
small differences below 0.1 eV that could be affected by the
basis set incompleteness, so that our qualitative conclusions
would be equally valid for larger basis sets.

In their work providing CCSD(T) reference values for the GW100
molecules, Krause et al. also used the def2-TZVPP basis set (Krause
et al., 2015). Close inspection of these results however shows that in
some cases large deviations with the experimental values exist and
larger than one would hope for CCSD(T). Moreover, in a number of
these cases the discrepancy is larger than the one between GW and
experiment. In the present comparison we need especially accurate
reference energies and since also three molecular systems of the
GW100 set are missing in the data by Krause et al., we start by
revisiting the CCSD(T) reference set.

FIGURE 3 | Sets of Goldstone-Feynman diagrams considered here:
PT2, PT3, GW, GWTDHF, GW + SOSEX, GW+cGW. Some diagrams are
explicitly named to give examples.
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3.2 Update of the CCSD(T) Reference IP

The CCSD(T) benchmark values for the ionization potentials, which
have been used by all GW100 studies up to now, were done by the
authors of Ref. (Krause et al., 2015). using an unrestricted Hartree-
Fock (UHF) reference and no spatial symmetry constraints. In all
cases, stability analysis was done at the UHF level to ensure that the
UHF solution was indeed the lowest in energy, within their
convergence tolerance.

While using the lowest energy UHF solution determined via
such a stability analysis, can be a very convenient choice, it may not
lead to themost accurate CCSD(T) energy. For example, in the case
of SO+

2 , the UHF solution with the lowest energy at Hartree-Fock
level, actually can lead to a higher energy at the frozen-core
CCSD(T) level than a UHF solution with a higher energy at the
Hartree-Fock level (see Table 1). While it is true that in general, a
lower CCSD(T) energy does not necessarily mean a better one, the
lowest energy in Table 1 is the closest one to our FCI (full
configuration interaction, a numerically exact energy within the
chosen basis set) estimates (Dattani, 2021), so the lowest CCSD(T)
energy is actually the more accurate one in this case. Indeed, SO+

2
was one of the worst cases in the benchmark study of Ref. (Krause
et al., 2015), in terms of the disagreement between CCSD(T) and
experiment for the ionization energy, and it was a case where the
GW calculation matched the experimental ionization energy better
than the “benchmark” CCSD(T) calculations did.

In this work we have re-calculated the frozen-core CCSD(T)
energies for the entire GW100 set, however we chose to use
GAUSSIAN 16 (Frisch et al., 2016) (with default settings) instead
of CFOUR, and the default in GAUSSIAN is an RHF (restricted
Hartree-Fock) reference for all singlet species (in this paper, all
neutral species), and a UHF reference for all species with a higher
multiplicity (in this paper, all of the cations). This led to 46 IP
values being updated with respect to Ref. (Krause et al., 2015),
including the case of OCSe, for which Krause et al. accidentally
used sulfur instead of selenium in their calculation. The most
noticeable updates are SO2, MgO, cytosine, and uracil with
changes larger than 0.4 eV.

Our revised IPs improve very much the consistency of CCSD(T)
with the related method named equation-of-motion coupled-cluster
(EOM-IP-CCSD). Indeed, Lange and Berkelbach (Lange and
Berkelbach, 2018) have evaluated the IPs for the complete
GW100 set within this approximation and found a somewhat
good agreement with Krause et al. with an MAE of 0.09 eV.
However, this correct MAE is hiding a few terrible outliers, such
as SO2, MgO, cytosine, and uracil.

Now, comparing our updated CCSD(T) to Lange’s EOM-IP-
CCSD yields not only an improved MAE of 0.06 eV, but also fixes
all the mentioned outliers. The deviations between the updated
CCSD(T) and EOM-IP-CCSD never exceed 0.30 eV.

As our updated CCSD(T) set very much improves the
consistency across the methods and the comparison to
experiment when experimental data are available, we have
confidence that our updated values are a genuine
improvement. We remind the Reader that all the numerical
values are reported in the Supplemental Material.

4 BENCHMARKING THE MBPT
STRATEGIES

A noticeable source of misunderstanding between the different
MBPT flavors is the starting mean-field approximation used for
the non-interacting Green’s function G0 in Eq. 2. Chemists using
PT2 and PT3 typically use HF. This has several advantages: the
strict order-by-order expansion is enforced and no first-order
terms exist by virtue of the Brillouin theorem (Szabó and Ostlund,
1996). However, an HF G0 is maybe not the optimal Green’s
function.

The physicists, quite the opposite, constantly play with the
starting mean-field in order to improve the final quasiparticle
energy. This strategy, sometimes named “best G, best W”, is very
effective for periodic systems (Hybertsen and Louie, 1986; Aulbur
et al., 1999). Indeed the HF approximation is typically not
accurate for solids: the band gaps are overestimated by a lot
(Silvi and Dovesi, 1988). Contrarily, GW based on a local density
approximation (LDA) or on a semi-local approximation yields
very decent results (van Schilfgaarde et al., 2006). For molecules,
hybrid functionals (Bruneval and Marques, 2013) with a
significant amount of Hartree-Fock exchange like BHLYP
(Becke, 1993) or CAM-B3LYP (Yanai et al., 2004) are known
to often produce good results.

TABLE 1 | Energies for SO+
2 calculated with a default initial UHF guess in CFOUR

(Matthews et al., 2020), and with the lowest-energy UHF solution. As in Ref.
(Krause et al., 2015), no spatial symmetry was enforced at any time, and the
number of frozen (uncorrelated) electrons was the same as for the calculations in
Ref. (Krause et al., 2015).

Type of reference SCF CCSD(T)

UHF (default) −546.861 914 −547.532 246
UHF (lowest) −546.881 967 −547.488 601

FIGURE 4 |Box plots for GW100 HOMO energy errors for HF, PT2, PT3,
and GW from an HF G0. CCSD(T) total energy differences are considered as
the reference. Mean absolute errors (MAE) are also printed.
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As the discussion about the mean-field starting point can blur
the conclusions, we only use an HF starting point in this Section.
Discussion about an improved starting point and its connection
to self-consistency is postponed to the next Section.

Henceforth, all the self-energy calculations are performed with
the code MOLGW (Bruneval et al., 2016). It implements MBPT
self-energies on a Gaussian-type orbital basis. It also takes
advantage of the approximation of the resolution-of-the-
identity (RI) (Weigend et al., 2002; Blase et al., 2011; Ren
et al., 2012) with the automatic generation of the auxiliary
basis set as described in Ref. (Yang et al., 2007). This technical
approximation has been proven to be very accurate (Blase et al.,
2016). We systematically evaluate the MBPT self-energy for the
four highest occupied molecular orbitals in order to cure the
possible incorrect ordering of the states in the starting mean-field
approximation.

We will use box plots like in Figure 4 to summarize the error
distribution of the HOMO energies with respect to CCSD(T).
These plots, also known as whisker plots, report in a graphical
way several relevant statistical characteristics: themedian with the
orange horizontal line, the first quartile with the lower box limit
(25% of the distribution is below), and the last quartile with the
upper box limit (75% of the distribution is below). The whiskers
extend to 1.5 times the first to last quartile distance on each side.
They are used to determine the so-called outliers, which are
shown with the red diamonds. In addition to these box plots, we
also provide the mean absolute error:

MAEX � 1
100

∑100
i�1

ϵXHOMO,i − ϵCCSD(T)HOMO,i

∣∣∣∣ ∣∣∣∣, (8)

Where i runs over the 100 molecules in GW100.

4.1 Standard MBPT Methods: PT2, PT3, GW
Figure 4 shows that HF HOMO energies are too deep compared to
CCSD(T), with a large spread. PT2 improves very little compared to
HF: While the median is closer to zero, the mean-absolute error

(MAE) remains almost as large. PT3 is a significant improvement: The
median is closer to zero and the spread is reasonable. However there
exists a dozen outliers with an error over 1 eV, among which the
molecules containing fluorine are over-represented.

Turning to the GW approximation, the situation improves
significantly. Not only is the MAE reduced to 0.3 eV, but also the
spread is decreased. Furthermore, not a single outlier is identified
in the whisker plot! It is striking to see how the computationally
simpler GW outperforms PT3, even though PT3 contains many
diagrams that GW does not have.

To understand some of the problems with PT3, let us analyze
here in greater details the case of beryllium oxide. BeO is one of
the worst failures of PT3, with a 2.26 eV deviation fromCCSD(T).
In Figure 5 we represent the correlation part of the self-energy
expectation value (the right-hand side of Eq. 5) and the line
ω − ϵHF

HOMO. The intersection between these two curves defines the
quasiparticle energy.

In Figure 5, we observe a pathological behavior of PT3: its
derivative zΣc/zω is sometimes positive, which is not allowed for
the exact self-energy. Remember that Z introduced in Eq. 6 is a
spectral weight. A positive slope yields a nonphysical spectral
weight that exceeds 1. The PT3 analytic expression contains
double poles, such as the C1, D1, C6, D6 terms in the
Appendix of Ref. (Cederbaum and Domcke, 1977). These
terms can induce this pathological behavior. PT2 and GW
only contain single poles as shown for GW in Eq. 47 of Ref.
(Bruneval et al., 2016) and have the correct analytic behavior by
construction.

As a conclusion, based on the GW100 IP benchmark set, GW
is clearly the winner by knock-out on the boxing ring: It shows the
best MAE, the narrower distribution of errors, and no outlier. It
has, by construction, the correct analytic behavior. Furthermore,
the structure of the GW self-energy that contains only electron-
hole pairs is perfectly suited for the RI approximation. An N4

scaling is then achieved with the contour deformation integration
technique (Mejia-Rodriguez et al., 2021) and numerical methods

FIGURE 5 | BeO quasiparticle equation graphical solution of Eq. 5 for
the different self-energy approximations. HF is used for G0.

FIGURE 6 | Box plots for GW100 HOMO energy errors for GW and
beyond starting from an HF G0. CCSD(T) total energy differences are
considered as the reference. Mean absolute errors (MAE) are also printed.
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with better scaling have also been proposed (Foerster et al., 2011;
Vlček et al., 2017b; Wilhelm et al., 2018; Duchemin and Blase,
2021). In comparison, PT2 also has N4 scaling due to the
infamous “atomic orbital to molecular orbital integral
transform” step and PT3 has N5 scaling due to the quintuple
MO summations (Cederbaum and Domcke, 1977).

4.2 Beyond GW
Now a legitimate question would be whether one could improve
the GW approximation by adding some of the diagrams shown in
Figure 3.

The simplest addition to GW would be to add the SOX
diagram of Figure 1. This idea has already been tested by
Marom et. al. (Marom et al., 2012) and was not successful
according to them. In Figure 6, we confirm their conclusion:
the results are better than PT2, but worse than GW alone.

Intuitively, it seems that the effect of the SOX diagram is too
strong. That is why the GW + SOSEX proposal is appealing. The
SOSEX diagram would temper the bare SOX. And this is precisely
what it does: the spread of GW + SOSEX is narrower than that of
GW + SOX. However, the results in Figure 6 show that the
median and the MAE are still far from zero and that GW alone is
still better.

Now let us test the possibility to incorporate the interacting
electron-hole pairs, by using the TDHF screened Coulomb
interaction WTDHF. This contribution gives a significant push
upwards, so that the median is close to zero. Unfortunately,
many outliers appear, mostly the ionic dimers of GW100, such
as LiH, LiF, BeO, MgO, FH, KH. Please note that boron nitride,
BN, had to be excluded from the benchmark here. Indeed the
TDHF calculation failed because of a negative excitation
energy. In other words, the HF self-consistent solution
reached by MOLGW is not the lowest HF energy. A
stability search could solve the problem (Seeger and Pople,
1977), but this implementation is not currently available in
MOLGW.

Finally, we evaluate the effect of the first-order correction to
the Hartree and Fock exchange terms, as depicted in Figure 2.
In agreement with previous work on a smaller benchmark
(Bruneval, 2019a), we observe a significant improvement over
the GW approximation. The MAE becomes very good and the
distribution is well centered around zero. The only worrying
point is the existence of two outliers: TiF4 and MgO. While the
TiF4 HOMO was already much too negative in GW@HF
(−0.62 eV compared to CCSD(T)), MgO is more intriguing.
It was very good with GW (−0.08 eV compared to CCSD(T))
and deteriorates very much with GW + cGW. BeO, which is
chemically similar to MgO, is quite different in terms of its
deviation, with a deviation of only 0.01 eV for GW + cGW with
respect to CCSD(T).

Of course, we did not explore all the possible combinations
of diagrams beyond GW. However, we can state that with GW
being already very good, it is a difficult task to improve over
it. Adding diagrams may destroy the subtle balance, which
makes GW so successful. Among all the additions we
considered, only GW + cGW can be considered as a
systematic improvement.

5MBPT FROMAN IMPROVEDMEAN-FIELD
STARTING POINT

It is attractive to calculate Green’s functions self-consistently for
several theoretical reasons. First, this is a systematic way to
include more diagrams (Fetter and Walecka, 1971). The
Green’s function lines in Figures 1, 2 would already include
an infinite series of interactions. Second, Baym and Kadanoff
(Baym and Kadanoff, 1961) showed that self-consistency enforces
the fulfillment of several conservation laws, including the number
of electrons itself.

However for practical reasons, self-consistent calculations are
rarely carried out and one rather uses a one-shot approximation
on top of a mean-field calculation. In the previous Section, we
only used an HF mean-field for comparison reasons.

Now with the idea of approximating the self-consistent
Green’s function, we can consider using an improved non-
interacting Green’s function G0. For molecules, it has been
identified (Bruneval, 2016; Rangel et al., 2016; Bruneval,
2019a) that hybrid functionals with boosted Hartree-Fock
exchange have the best HOMO compared to CCSD(T). Then
one can reasonably hope these hybrid functionals would also be
good approximations to the self-consistent G.

Here we use PBEh(0.75), a global hybrid functional which
mixes the PBE exchange energy and the Hartree-Fock exchange
energy in a 1:3 ratio (25% PBE, 75% Hartree-Fock). In the box
plot reported in Figure 7, we show that the HOMO energies
obtained with PBEh(0.75) are quite close to the CCSD(T)
references: The distribution is nearly perfectly centered around
zero and the MAE is reasonably low (0.35 eV).

At this point, there is a cross-road between chemistry and
physics methods again. When performing a perturbation theory
based on a mean-field different from HF, the Brillouin theorem
breaks down (Szabó and Ostlund, 1996) and first-order terms,
named PT1, appear (Ren et al., 2011). Should we include those

FIGURE 7 | Box plots for GW100 HOMO energy errors for HF, PT2,
PT2+PT1, PT3, andGW, starting from a PBEh(0.75)G0. CCSD(T) total energy
differences are considered as the reference. Mean absolute errors (MAE) are
also printed.
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terms? In a strict order by order expansion, the answer would be
affirmative. We have tested this inclusion in the case of PT2 based
on PBEh(0.75), as reported in Figure 7. Looking at the two box
plots for PT2 and PT2+PT1, we conclude that the effect of the
PT1 term is not significant.

Then we consider that the PBEh(0.75) Green’s function G0 is
an approximation to the self-consistent G. As a consequence, no
first-order terms appear in PT2 and some Goldstone-Feynman
diagrams should be removed from the original PT3. The static
diagrams (“A” diagrams in Cederbaum’s notation) are
corrections to the Hartree and Fock exchange terms (See
Figure 1). If PBEh(0.75) gives the correct Green’s function, it
would also give the correct density and density-matrix, and then
it would yield the correct Hartree and Fock exchange
contributions.

Hence, Figure 7 reports the box plot of PT3 without the static
diagrams. The outcome is very bad, which means that providing
PT3 with a better starting point actually worsens the final result.
This statement clearly advocates against PT3.

Now turning to GW@PBEh(0.75) in Figure 7, we obtain the
best result of this study: The errors are evenly distributed
around zero, no outliers are spotted, and the MAE is very low
(0.15 eV). The accuracy is even better than that reached by the
genuine self-consistent GW calculations of Caruso and
coworkers (Caruso et al., 2016). It is often stated that self-
consistent GW has quasiparticle peaks that are too weak (Holm
and von Barth, 1998). We conjecture that this might be a
reason why mean-field Green’s functions are superior in
the end.

Finally, we make an attempt at combining a better non-
interacting Green’s function with the additional diagrams we
tested in Section IVB. In Figure 8 we report the box plots for
the HOMO errors with respect to CCSD(T) for GW + SOSEX,
GWTDDFT, and GW + cGW based on the PBEh(0.75) Green’s
function. The GW + SOSEX somewhat improves compared to

GW + SOSEX@HF. But it is still deteriorating the results
compared to the simpler GW approximation. Next, we test
GWTDDFT where W was obtained from time-dependent DFT
using the same functional as for G0. Again the results are
disappointing.

Last, we consider GW + cGW. If G0 was the self-consistent
GW Green’s function, the cGW diagrams would vanish.
Remember that the cGW diagrams are not present in
Hedin’s equations, which are obtained for a self-consistent
G. Figure 8 shows that it is indeed the case: GW + cGW is very
similar to GW. Besides MgO, which behaves badly again, the
similarity between the error distribution of GW and GW + cGW

is compelling.

6 CONCLUSION

In this study, we have conducted a comprehensive benchmark of
the MBPT performance for the calculation of the IP of molecules.
Our boxing ring was the GW100 set introduced by one of us (van
Setten et al., 2015) a few years ago. Our reference was the
CCSD(T) total energy difference, often coined as the “gold
standard” in quantum chemistry. But before the competition
could even start, we realized the CCSD(T) reference energies
needed a thorough update. Indeed CCSD(T) energies strongly
depend on the prior HF step, especially for the cations. We
updated almost half of the reference IPs with respect to the
existing list in Ref. (Krause et al., 2015).

Based on the same HF starting point, we evaluated the 100
HOMO energies of GW100 for PT2, PT3, GW, and several
methods beyond GW. Among the classical approximations,
GW is clearly the winner. Then our attempts to improve over
GW by adding more diagrams have been unsuccessful,
besides the GW + cGW diagrams that add corrections to
the Hartree and Fock exchange expectation values.

Then starting from an improved mean-field (here we chose
PBEh(0.75)), deteriorates the classical approximations, PT2 and
PT3. Contrarily, GW improves with a more realistic starting
mean-field. Our champion is then GW@PBEh(0.75) with a
claimed MAE of 0.15 eV.

Of course, other accurate diagrammatic techniques exist, such
as the algebraic diagrammatic construction (ADC) (Schirmer
et al., 1983) or equation-of-motion coupled-cluster (EOM-CC)
(Lange and Berkelbach, 2018). However they do not box in the
same weight class. The miracle of GW is the fact that its in a
featherweight class: GW, when combined with the resolution-of-
the-identify, has an attractive N4 scaling. GW now routinely runs
on molecular systems with several hundreds of atoms (Vlček
et al., 2017b;Wilhelm et al., 2018; Bruneval et al., 2020; Duchemin
and Blase, 2021).
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