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Abstract—With the Internet of Things (IoT) an increasing
amount of sensitive data have to be communicated and hence
encrypted. Low-cost hardware attacks such as fault analysis
(FA) or side-channel analysis (SCA) threaten the implementation
of cryptographic algorithms. Many countermeasures have been
proposed against either of these attacks, however, only a few
countermeasures protect efficiently an implementation against
both attacks. These combined countermeasures usually have
a prohibitive area and power overhead, and require up to
thousands of bits of fresh randomness at each encryption. There-
fore, they may not be suited to protect lightweight algorithms
in resource-constrained devices. In this paper, we propose a
new combined countermeasure, which is particularly adapted to
protect lightweight algorithms based on shift registers. It achieves
an efficient power balancing at algorithmic level, and provides an
inherent fault detection with a better coverage than most existing
combined countermeasures. Furthermore, it has a smaller power
and area overhead than existing combined countermeasures, and
requires at most 8 random bits at each encryption.

I. INTRODUCTION

The number of connected devices has grown exponentially
over the past few years and 20 billion such devices are
expected by 2020 [1]. These devices process and communicate
an ever increasing amount of sensitive data such as credentials,
software updates, or personal information, which are usually
encrypted to preserve their confidentiality. Many devices in
the Internet of Things (IoT) are deployed in easily accessible
locations, and their operation is not supervised. Therefore,
the integrated circuits in these devices are a choice target
for hardware attacks, that aim to recover secret keys used
to encrypt data. In particular, non-destructive attacks such as
fault analysis (FA) [2]–[4] or side-channel analysis (SCA) [5]–
[8] can be performed on-site with low-cost material. For
example, faults could be induced by injecting either voltage
or clock glitches in the attacked device, and SCA usually
only requires the monitoring of the external voltage of a chip.
Therefore, protections against both FA and SCA have to be
implemented into the integrated circuits for the IoT. Many such
protections exist, which usually introduce high area, time and

power overheads. However, IoT devices are typically strongly
resource-constrained. For example, low-cost RFID tags usually
have a small area, and battery-powered sensors require a small
energy consumption. Therefore, there is a need for lightweight
hardware countermeasures, both in terms of area and energy
consumption.

Implementing a protection against both SCA and FA is not
straightforward, as some countermeasures against one attack
may facilitate or have limited resilience against the other type
of attack. For example, redundancy is usually used to detect
fault injections, but it increases the side-channel leakage and
thus facilitates SCA [9]. Another example is dual-rail with
precharge logic styles, such as WDDL [10], which inherently
provide some fault detection thanks to the differential encoding
of every bit. However, they offer a limited fault coverage, and
a fault injected on both bits of a differential pair would be
undetected. Furthermore, these logic styles usually have a high
area and power overhead, and their throughput is reduced due
to the use of a precharge signal.

Recently, several combined countermeasures based on the
principles of masking have been proposed. In ParTI [11],
masking is used together with error detection codes; in the
implementation of Private Circuits II described in [12], it is
combined with a differential encoding of every bit. Finally, in
CAPA [13] and Masks and Macs [14], information theoretic
MAC tags are masked together with the processed data. The
solutions proposed in [12]–[14] consist in splitting a variable
x into d shares xi, such that x =

∑
i xi where i ∈ {1, . . . , d}.

These approaches only cover faults injected in at most (d−1)
shares, and are vulnerable to faults affecting simultaneously
all shares, which can be induced with low-cost methods such
as clock or voltage glitches [2]. In addition, the authors of [13]
and [14] explain that error detection codes such as those
used in ParTI can only detect faults up to a given Hamming
weight, and that these codes are vulnerable against smart faults
injections where an attacker knows which codes are used.

The implementation of these masking-based combined



countermeasures is very expensive in terms of area, power
consumption and throughput, and requires up to thousands
of bits of fresh randomness for each encryption with the
protected algorithm. This cost may be prohibitive for resource-
constrained devices used in the IoT. Among these protections,
the most lightweight is Masks and Macs, where the fault de-
tection has by itself an area overhead factor of 2.53 compared
to a first-order masking of the AES that is described in [15].
When considering also the cost of masking, Masks and Macs
has an area overhead factor higher than 6.

In this article, we focus on the protection of lightweight
security primitives based on shift registers. The stream cipher
Trivium [16] is representative of these security primitives.
It was among the three finalists of the ECRYPT Stream
Cipher Project in 2008 [17], which aimed at selecting the
most efficient and compact stream ciphers. Other security
primitives such as the block cipher KATAN [18] and the hash
function QUARK [19] are built upon the design of Trivium.
These security primitives have an internal state of hundreds
of bits, which is contained in one or several shift registers
and updated at every clock cycle with simple combinational
logic. In these algorithms, the power consumption and the
area of combinational logic is negligible compared to that of
flip flops. As a consequence, both FA [3], [4] and SCA [5]–
[8] against these algorithms target the internal state contained
within the shift registers and disregard the combinational logic.
We propose a new combined countermeasure against both FA
and SCA, which is much lighter than existing combined coun-
termeasures and is particularly suited to protect lightweight
security primitives based on shift registers. It consists of
an algorithm-level power balancing without precharge that
inherently detects faults, with a better fault coverage than most
existing protections.

Our contributions. We present a novel combined counter-
measure called dynamic encoding that consists in balancing the
power consumption without precharge, at algorithmic level.
We describe how to apply this protection to shift registers
that constitute the basic building block of several lightweight
security primitives (Section II). We discuss its inherent security
against fault injections, and explain why it is more robust
than most existing fault detection mechanisms (Section III).
We propose a methodology to integrate randomness into
dynamic encoding, in order to increase its security against
both attacks (Section IV). Finally, we evaluate the area and
power overheads of dynamic encoding when applied to a shift
register and to the stream cipher Trivium (Section V), and we
assess its security against side-channel attacks with various
metrics (Section VI).

II. PRINCIPLES AND DEFINITIONS

In this section, we describe the application of dynamic
encoding to a shift register with an internal state S containing
k bits Si, with i ∈ {1, . . . , k}. All operations are performed in
GF(2). To balance the power consumption of this unprotected
shift register, each bit Si of its internal state is transformed by

a function F to a n-bit code F(Si), with n > 1. These codes
have to respect the following:

Property 1. Each bit Si of the internal state is encoded with
the same Hamming weight (HW):
∃C | ∀i ∈ {1, . . . , k}, HW (F(Si)) = C.

Property 2. Two consecutive bits of the internal state are
encoded with a constant Hamming distance (HD):
∃C | ∀i ∈ {1, . . . , k − 1}, HD(F(Si),F(Si+1)) =
HW (F(Si) + F(Si+1)) = C.

This encoding is implemented by applying F to the input
bit x of the unprotected shift register, at each clock cycle.
Similarly, the inverse function F−1 is applied to the encoded
output bit F(z) of the protected shift register, to obtain a 1-bit
output z. Therefore, for an n-bit code F(x), n parallel shift
registers contain the encoded internal state. In the remaining of
this paper, we denote with share each shift register in parallel
and a n-bit code F(x) is decomposed into n shares. Note that
these shares are not to be confused with those manipulated
with the masking countermeasure against side-channel attacks.
On the contrary to masking, dynamic encoding is not related
to secret sharing.

A well-known encoding is the differential encoding, which
is used in dual-rail logic styles. It consists, for instance, in
encoding a bit “0” into “01”, and a “1” into “10”. Though it
respects Property 1, it requires another mechanism, such as a
precharge, to fulfill Property 2. We denote this encoding as a
static encoding, as a single bit “0” (or “1”) is always encoded
the same way.

Definition. Given two consecutive bits x and y, dynamic
encoding consists in encoding these two bits with two different
codes, for any values of x and y. These two different codes
have to respect both Property 1 and Property 2.

Corollary. The codes generated by such a dynamic encoding
must be at least 4-bit long: for any bit x, F(x) ∈ GF (2n)
with n ≥ 4.

Proof. Property 2 implies that two consecutive identical bits
are encoded differently with F . Therefore, there are at
least two codes to represent a “0”, and two other codes
to represent a “1”. According to Property 1, these four
codes must have the same HW. The codes that respect this
property are only two in GF (22), i.e., {10, 01}, and three
in GF (23), i.e., either {001, 010, 100} or {110, 101, 011}.
Starting with GF (24), there are at least four such codes, e.g.,
{0001, 0010, 0100, 1000}. The HD between any two of these
four codes is 2, and hence they also respect Property 2.

For the remaining of this paper, we only consider dynamic
encoding in GF (24) with two codes to represent a “1”
and two other codes to represent a “0”. Dynamic encod-
ing could also be realized in GF (24) with the six codes
{0011, 1100, 1001, 0110, 1010, 0101}, or in GF (2n), n > 4.
However, these solutions incur a higher overhead and we
expect them to provide no additional resistance against either



TABLE I: Examples of encoding tables, for (a) a 1-of-4
dynamic encoding and (b), (c) two different 2-of-4 dynamic
encodings

(a)

F(x, c) c = 0 c = 1
x = 1 1000 0100
x = 0 0010 0001

(b)

F(x, c) c = 0 c = 1
x = 1 1001 1010
x = 0 0110 0011

(c)

F(x, c) c = 0 c = 1
x = 1 0101 0011
x = 0 1010 1100

FA or SCA. There are several ways to choose a dynamic
encoding with four 4-bit codes. We denote as m-of-n encoding
an encoding with m bits of the same value within a given code
of length n. A 1-of-4 dynamic encoding would be, for example,
{0001, 0010, 0100, 1000}, and a 2-of-4 one would be realized
with four codes within {0011, 1100, 1001, 0110, 1010, 0101}.

Three different examples of dynamic encoding are repre-
sented in the Tables Ia to Ic, referred to as encoding tables.
Each input bit is represented by two codes, and a control signal
c is used to alternate between the two columns of an encoding
table. This control signal c is generated with a flip-flop and an
inverter, and its value changes at every clock cycle. Therefore,
incoming bits are encoded differently at times T and T+1
(modulo 2).

As a consequence, the encoding function F takes two
arguments, x and c, to produce a dynamic encoding of x.
The decoding function F−1 outputs the same result for both
values of c, as the two codes represent the same input bit.
However, we choose to keep c as an argument to F−1, in order
to improve the fault coverage, as detailed in Section III. As c
alternates between “0” and “1” at each clock cycle, it does not
have the same value when encoding a bit x with F in input
of a shift register, and when decoding F(x) at the output with
F−1, in case the length of the shift register is odd. Therefore,
F−1 takes as an argument c or c if this length is even or
odd, respectively. To simplify the notation, in the rest of this
article, we write the encoding and decoding functions as Fc

and F−1
c , independently of the length of the shift register. In

addition, we denote c as the parity of a code Fc(x), meaning
that x has been encoded with c = 0 or c = 1 if the parity of
Fc(x) is “0” or “1”, respectively. For example, in TABLE Ia,
the code “1000” has a parity of “0” and represents a bit “1”.

Many different 1-of-4 and 2-of-4 dynamic encodings exist.
Any permutation of the four codes {0001, 0010, 0100, 1000}
can realize a 1-of-4 encoding, thus there are 4! = 24
different such encodings. A k-bit shift register protected
with a 1-of-4 encoding has a total HW of k and a total
HD of 2k. Choosing four valid codes among the six codes
{0011, 1100, 1001, 0110, 1010, 0101} for a 2-of-4 dynamic
encoding is more complex, as some of these codes are com-
plementary. Two complementary codes have a HD equal to 4,
while two non-complementary codes have a HD equal to 2.

There are three pairs of complementary codes, therefore, when
selecting the four codes to realize a 2-of-4 dynamic encoding,
at least two of these codes are complementary. In order to
respect Property 2, two complementary codes can only encode
both a “0” and a “1” with the same parity, i.e. within the same
column of the encoding table. Therefore, as the parity changes
at every clock cycle, the HD between two consecutive codes
is always equal to 2. In total, there are 144 possible 2-of-
4 dynamic encodings that respect these constraints. A k-bit
register protected with such a 2-of-4 encoding has a total HW
and a total HD both equal to 2k.

Fig. 1 represents two examples of dynamic encoding applied
to a 7-bit shift register with an arbitrary internal state. Fig. 1a
represents the application of the 1-of-4 encoding of TABLE Ia,
while Fig. 1b represents the application of the 2-of-4 encoding
of TABLE Ib. On these figures, the Hamming weight and
Hamming distance are constant for each of the protected
registers. They are respectively equal to 7 and 14 with the
1-of-4 encoding, and are both equal to 14 with the 2-of-4
encoding.

III. ON THE SECURITY AGAINST FAULT INJECTIONS

The decoding function F−1
c that is applied to the output of

the protected shift register performs fault detection. Whenever
a code cannot be decoded by F−1

c , i.e. if this code is not
among the two possible codes for a given parity, this means
that this code is faulty and F−1

c raises an error flag. A fault
injection is successful if the induced fault cannot be detected
by F−1

c , thus if the fault produces a valid code. In this section,
we discuss the security of both 1-of-4 and 2-of-4 dynamic
encodings, under several models of faults:

• Commutation faults consist in changing the value of a
bit, regardless of its initial value, as opposed to the faults
consisting in a reset to 0 or a set to 1.

• Faults can be injected over a single bit or several con-
secutive bits within one shift register.

• Similarly, faults can be injected over a single share, that
is, over a single shift register among the four parallel
shift register, or over several shares, i.e. in several shift
register simultaneously.

When the fault injection is successful, the HW of the new
code has to be preserved, which means that a commutation
from “0” to “1” inside a code has to be balanced by another
commutation from “1” to “0”, and vice versa. As a conse-
quence, set and reset faults are automatically detected by F−1

c

and only commutation faults can be successful for both 1-of-4
and 2-of-4 encodings. We discuss below the specificities of
both types of encodings regarding fault injection.

A. Faults against 1-of-4 dynamic encoding

A successful fault injection should commute exactly two
shares out of four of a code. The decoding F−1

c being
performed only for a single parity at each clock cycle, these
two shares have to be selected carefully. For example, though
“1000” is a valid encoding of “1” in TABLE Ia, it is not
recognized as such by F−1

c when c is equal to “1”. The
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Fig. 1: Examples of an arbitrary shift register protected with a 1-of-4 and a 2-of-4 encoding.
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Fig. 2: Examples of faults injected on exactly two shares for a 1-of-4 encoding. A fault targeting exactly one bit in both shares
may be undetected (in green), while faults injected on consecutive bits are always detected (in red).

selection of the two shares where the fault has to be injected
requires the knowledge of the encoding table, but also of the
current value of the control signal c. An example of such a
successful fault injection is depicted in green in Fig. 2, based
on the same arbitrary register as that depicted in Fig. 1a.

The two shares to target for a successful fault injection
are different for two different parities, i.e. the two values
of the control signal c. As this parity is different for two
consecutive codes, the targeted shares must also be different
when fault injection is performed over consecutive bits. As
a consequence, faults cannot target several consecutive bits
within any share without resulting in invalid codes. An exam-
ple of fault targeting two consecutive bits is represented in red
in Fig. 2. Though this fault is successfully injected in one of
these two consecutive encoded bits, it is detected for the other
encoded bit.

B. Faults against 2-of-4 dynamic encoding

As stated in Section II, there is at least one pair of com-
plementary codes among the four codes of a 2-of-4 dynamic
encoding; these complementary codes encode a “0” and a “1”

respectively, for a given parity. The two other codes can be
either a complementary pair as well, or not complementary.
The former case is illustrated in TABLE Ic, and the latter in
TABLE Ib. The fault detection is different depending on these
cases, as detailed below.

The encoding table contains two pairs of complementary
codes, each for a different parity. As codes are complemen-
tary for any parity, injecting a successful fault comes down to
inverting any code. In that case, faults can be injected on all
shares, and on either one or several consecutive bits in these
shares. The fault detection in that case is less robust than with
a 1-of-4 encoding. It is similar to models described in [12]–
[14], where only faults injected on at most (d− 1) shares out
of d are detected.

The encoding table contains only one pair of complemen-
tary codes, for a given parity. As previously, faults injected
against complementary codes have to be performed on all
shares of these codes. However, this is only valid for one
value of the parity; the two codes are not complementary for
the other parity. Fault injection on the two non-complementary
codes has to target exactly two shares out of four, with the



same conditions as with a 1-of-4 encoding. Therefore, two
consecutive faults on two consecutive codes have to target
alternatively exactly two and four shares. As a consequence,
faults against several consecutive bits in a given number of
shares are detected.

C. Conclusion on faults in dynamically encoded shift registers

An overview of state-of-the-art fault injection techniques is
given in [2]. On the one side, a fault on exactly two shares
out of four could theoretically be injected with expensive
equipment such as two synchronized lasers with small spot
sizes. This also requires a good knowledge of both the physical
implementation of the countermeasure and the value of the
control signal c. On the other side, a fault on all shares
could be injected, depending on the physical implementation,
with a single laser or EM probe, or with clock or voltage
glitches. The attack is facilitated if successful faults can be
injected on several consecutive bits within each register, as
this requires a lower precision of the injection mechanism.
Therefore, the case where two pairs of complementary codes
are used to realize a 2-of-4 encoding should be avoided, since
the complexity of attacks in that case is much lower than that
of attacks against either 1-of-4 encoding or the other type of
2-of-4 encoding.

Most of existing combined protections based on mask-
ing [12]–[14] detect only faults injected on at most (d − 1)
shares out of d. This is also the case for dual-rail logic styles,
which are based on a static differential encoding. Similarly,
spatial redundancy is vulnerable if a similar fault is injected
in all the parallel redundant datapaths. Furthermore, all these
countermeasures generally do not add any particular protection
against faults injected on several consecutive bits. Based
on these observations, dynamic encoding of shift registers
provides a better fault coverage than most existing protections,
when considering an attack model that is in line with real
injection capabilities.

IV. RANDOM DYNAMIC ENCODING

The dynamic encoding of a shift register consists in bal-
ancing the total HD and HW, to balance the theoretical power
consumption. However, on a real silicon implementation, there
might be a mismatch in the propagation times and capacitances
in the four datapaths. These imbalances result in a slightly
different power consumption and timing in each datapath,
which could be exploited by attackers to perform a successful
SCA.

In order to compensate these effects, we propose a random
dynamic encoding that changes the encoding table at each
execution. As stated previously, there are 24 possible 1-of-
4 encodings and 144 possible 2-of-4 encodings. At every
initialization of the protected shift register, a new encoding
table is either generated or chosen among several tables stored
in memory, based on a random number. This random number
is 5-bit long when choosing among only 1-of-4 encodings,
and up to 8-bit long for all possible encodings. By randomly
choosing the encoding table at each initialization of the
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Fig. 3: Unprotected stream cipher Trivium.
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Fig. 4: Dynamic encoding applied to Trivium. Blue circles
represent the encoding of the register inputs with Fc, and grey
diamonds represent the decoding of register outputs with F−1

c .

protected shift register, the remaining side-channel leakage is
randomized and is thus harder to exploit by attackers.

In addition, the complexity of fault injections further in-
creases when encoding tables are generated randomly at
each initialization of the protected register. In that case, the
encoding table is not known to an attacker, and thus the choice
of which shares to target for fault attacks has to be performed
randomly. As the encoding table changes at each execution,
the reproducibility of a successful fault injection is reduced.

V. IMPLEMENTATION OF RANDOM DYNAMIC ENCODING

We apply random dynamic encoding to two use cases, being
respectively a 128-bit shift register and the stream cipher
Trivium [16]. Both protected implementations can use any of
the 24 possible 1-of-4 encodings at each initialization. In the
first case, we assess the implementation cost and security of
this countermeasure when it is applied only to sequential logic.
In order to obtain the implementation cost and side-channel
leakage of protected sequential logic only, the encoding and
decoding functions Fc and F−1

c are excluded from the analysis
on the protected shift register. In the second case, we evaluate
the cost and efficiency of random dynamic encoding in a
representative instance of a lightweight security primitive,
which is composed of both sequential and combinational logic.
In that case, the additional logic that performs the encoding
and decoding, that randomly generates encoding tables, and
that encodes the initial internal state of Trivium, is included
in both the cost and the security analysis.



TABLE II: Implementation results

Design Cell area (GE) Average power (µW )
R UNPROTECTED 986 103

R RAND ENC 3930 414
T UNPROTECTED 2808 241

T RAND ENC 12764 1024

Trivium is a lightweight hardware-oriented stream cipher
adapted for resource-constrained applications in the IoT. It has
an internal state of 288 bits contained within three non-linear
feedback shift registers and is initialized with a secret key and
a known initialization vector (IV) that are both 80-bit long.
A schematic of an unprotected Trivium is shown in Fig. 3.
In the dynamically encoded Trivium, the encoding function
Fc is applied to the input of each of the three encoded shift
registers, and the decoding function is applied to every output
of these encoded registers, which is represented in Fig. 4. The
additional logic to encode the key and IV before they are
loaded, as well as the logic necessary to generate a random
encoding table at each initialization of the protected Trivium,
is not represented in this figure.

In the following, we call R UNPROTECTED and
T UNPROTECTED the unprotected implementations of re-
spectively the shift register and Trivium, while R RAND ENC
and T RAND ENC denote the implementations protected by
random dynamic encoding.

We perform the synthesis of these designs with Synopsys
Design Compiler and the layout with Cadence Innovus. We
use the 28 nm FDSOI library from STMicroelectronics, with
a typical Process-Voltage-Temperature corner at an operating
voltage of 0.9 V and a frequency of 330 MHz. The average
power consumption of each implementation is obtained with
10 back-annotated post-layout simulations over 100 clock cy-
cles with different keys and IVs for Trivium, and with different
initial values for the shift register. The implementation results
are reported in TABLE II. As the protected shift register
has four times more flip-flops than the unprotected one, its
surface and power consumption are also four times higher. The
overhead is slightly higher than 4 when protecting Trivium,
with an increase by 4.55 times of the surface, and by 4.25 of
the power consumption. This additional implementation cost
comes from the encoding and decoding functions, the random
generation of encoding tables at each initialization, and the
loading of encoded key and IV at initialization.

Note that unlike most combined countermeasures based
on masking, random dynamic encoding does not introduce
additional clock cycles during the encryption. Therefore, its
energy overhead is equal to its average power overhead, and
the energy consumption of a protected Trivium is 4.25 times
that of an unprotected implementation.

VI. RESISTANCE AGAINST SIDE-CHANNEL ANALYSIS

The resistance to SCA is evaluated with back-annotated
post-layout simulations. These simulations do not include any
kind of noise, which represents an ideal case for attackers.

TABLE III: Maximum absolute values of the NED, NSD, and
correlation coefficient

Design NED NSD Correlation
R UNPROTECTED 0.2272 0.0381 0.9989

R RAND ENC 0.0 0.0 0.0073
T UNPROTECTED 0.1705 0.0271 0.8950

T RAND ENC 0.0203 0.0032 0.0035

This analysis is performed for the four implementations de-
scribed in Section V. For all evaluated designs, no specific
constraint is applied to the placement or routing during the
physical implementation and thus datapaths are imbalanced.
This reflects an implementation of dynamic encoding at the
algorithmic level only, with a standard implementation flow.

A. Energy per clock cycle

We evaluate the variations of the energy per clock cycle
to assess the efficiency of power balancing. For all designs,
1000 simulated power traces, each over 100 clock cycles,
are obtained with different initialization parameters. For each
clock cycle, we evaluate the Normalized Energy Deviation
(NED) and the Normalized Standard Deviation (NSD) over
the 1000 traces. The closer these metrics are to 0, the more
balanced is the energy consumption. The maximum NED and
NSD, taken over all clock cycles, are given in TABLE III.

In the case of Trivium, applying dynamic encoding reduces
the NED and NSD by respectively 8.4 and 8.5. The energy
per clock cycle of the protected shift register is constant,
and thus both the NED ans NSD are null in that case.
This indicates that this countermeasure efficiently balances the
energy consumption of sequential logic, without even requiring
a specific placement or routing.

B. Correlation coefficient

The correlation coefficient is used when performing a Cor-
relation Power Analysis (CPA). Unlike the NED and NSD,
the correlation is calculated with the instantaneous power
consumption at each sample point. Therefore, it captures more
accurately the side-channel leakage in short power peaks
and glitches and assesses the vulnerability of a design to a
practical CPA. For each design, 100,000 power traces with
different initialization parameters are simulated. These traces
cover the first 85 clock cycles of the execution of Trivium,
since published side-channel attacks against Trivium require
the measurement of side-channel information during 78 to 81
clock cycles [5]–[8]. The correlation is calculated for the first
byte of the key-dependent intermediate values, as described
in [8]. For the shift registers, it is calculated for the first
8 input bits, over the first 85 clock cycles as well. For all
implementations, the Hamming distance is used as the power
model.

The maximum absolute values of the correlation coefficients
over the whole length of the traces are displayed in TABLE III.
While correlations for both unprotected implementations are
high, we observe a significant reduction of the maximum
correlation coefficient for both protected implementations. In
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Fig. 5: Correlation coefficient over 85 clock cycles, for a byte of key. The correct key hypothesis is displayed in red.

addition, Fig. 5 represents the evolution of the correlation
coefficient for the 256 possible hypotheses for the targeted
byte of the key, the correct hypothesis being displayed in
red. The correlation for the correct key hypothesis cannot
be distinguished from other key hypotheses in the case of
the protected Trivium. This denotes an absence of correlation
for protected implementations, and thus the impossibility to
perform a CPA with the existing power model.

C. Leakage assessment with Welch’s T-test
The correlation coefficient only evaluates the possibility to

perform existing state-of-the-art attacks, with a given power
model and specific intermediate values. In addition, we per-
form a leakage assessment with a non-specific Welch’s T-test,
which does not depend on particular intermediate values or
leakage models. It assesses general information leakage, re-
gardless whether this leakage is practically exploitable or not.
This test evaluates whether two sets of power traces come from
the same distribution; if they do not, it means that these sets
are distinguishable, and thus that there is information leakage.
The non-specific T-test, also called fixed-versus-random T-test,
consists in creating these two sets of traces the following way:
one set is generated with fixed parameters, e.g. the key and
IV in the case of Trivium, and the other is generated with
random parameters, e.g. random IVs for Trivium. Each of
these datasets contains 100,000 simulated power traces, over
85 clock cycles. According to [20], whenever the T-test value
goes beyond the threshold value of ±4.5, there is information
leakage with a confidence higher than 0.99999.

The results of these tests are represented in Fig. 6. These
results indicate a high leakage for both unprotected implemen-
tations. There is no information leakage for the shift register
protected by random dynamic encoding. This leakage is highly
reduced when this countermeasure is applied to the sequential
logic of Trivium, even though the combinational logic is not
protected at all in that case. A small side-channel leakage is
observed after 40 clock cycles, which might be caused by this
unprotected combinational logic. As published side-channel
attacks against Trivium are based on the analysis of informa-
tion leakage during the first clock cycles of the initialization,
this countermeasure protects efficiently the implementation of
Trivium against existing attack models.

VII. CONCLUSION

We presented dynamic encoding, a new combined counter-
measure that protects the implementation of security prim-
itives against both SCA and FA. It provides a better fault
coverage than most existing combined countermeasures, and
simulations indicate a good resistance against side-channel
analysis. Dynamic encoding is particularly efficient when
encoding tables are generated randomly at every execution.
Applied to Trivium, random dynamic encoding has area and
power overhead factors of 4.55 and 4.25 respectively, does
not introduce delays during the encryption, and requires at
most 8 bits of randomness at every execution of the al-
gorithm. Therefore, it is less expensive than other existing
combined countermeasures. Future work includes the study
of the application of this countermeasure to combinational
logic, in order to protect other lightweight security primitives
such as PRESENT or ARX-based designs. In addition, this
countermeasure will be evaluated on an ASIC to assess its
resilience against side-channel attacks in presence of noise,
and the practical detection of faults.
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