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Abstract: In this study we reported the synthesis of three polycrystalline uranium borides UB1.78±0.02,
UB3.61±0.041, and UB11.19±0.13 and their analyses using chemical analysis, X-ray diffraction, SQUID
magnetometry, solid-state NMR, and Fourier transformed infrared spectroscopy. We discuss the
effects of stoichiometry deviations on the lattice parameters and magnetic properties. We also provide
their static and MAS-NMR spectra showing the effects of the 5f-electrons on the 11B shifts. Finally,
the FTIR measurements showed the presence of a local disorder.

Keywords: uranium borides; magnetic susceptibility; 11B NMR; FTIR

1. Introduction

Borides have been studied for their properties such as hardness, stability to radiolytic
decay, chemical inertness, and magnetism. Three main applications made them of particular
interest: (i) their consideration as an alternative intermediate storage form for actinide
elements due to their high refractory properties [1], (ii) their potential formation in sodium
cooled fast reactors because of a core melt during reaction of the B4C control rods with the
UO2 fuel [2], and (iii) their possibility as candidate constituents for multi-phase accident
tolerant fuel [3]. In the uranium-boron phase diagram, three compounds have been reported
to exist: UB2, UB4, and UB12 [4,5].

They are mostly synthesized by arc-melting elemental uranium and boron in stoi-
chiometric amounts. Nevertheless, due to boron evaporation, non-stoichiometric UBX
(X = 2 ± x, 4 ± x, or 12 ± x) phases and additional UBX or UO2 phases are often detected.
Brewer et al. [6] reported the detection of UB2 in samples containing 25 to 75 atomic %B
and UB4 in samples containing 75 to 85 atomic %B. The magnetic properties of the UBX
(X = 2, 4, 12) are intensively studied in the literature. Indeed, UB2−x is a Pauli paramagnet
and a compensated metal with closed Fermi surfaces [7]. UB4−x is a magnetic compensated
metal, but also a moderate heavy fermion where a cross-over is observed between itinerant
5f electrons at low temperatures and localized 5f electrons at high temperature with a
Curie–Weiss behavior [8,9]. Finally, UB12−x is a Pauli paramagnet and compensated metal,
with speculations of superconductivity below 0.4 K [10,11]. Nevertheless, the slight com-
position/impurities effects on the magnetism has been reported [12] but not thoroughly
discussed.

Here, we present the synthesis of UB1.78±0.02, UB3.61±0.041, and UB11.19±0.13 by arc
melting, their room temperature crystal structure by XRD and low temperature single
crystal XRD (100 K to 300 K), and their magnetic susceptibility and their local structure
determined by 11B nuclear magnetic resonance (NMR) and Fourier transformed infrared
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(FTIR) spectroscopy. We discuss our results in comparison with the literature and clarify
the differences observed based mostly on composition effects.

2. Materials and Methods

The samples were prepared by arc melting of the constituent elements, uranium
metal and boron, under a high purity argon atmosphere (6N), on a water-cooled copper
hearth. Metallic zirconium in the chamber acts as a getter for oxygen. The UBX ingots
were melted and turned several times to achieve homogenous samples. To minimise
oxidation, the samples were stored under high vacuum (~10−6 mbar). Chemical analyses to
determine the B/U ratio were done using Inductively coupled plasma mass spectrometry
(ICPMS). The oxygen content was measured via a direct combustion using the infrared
absorption detection technique with an ELTRA ONH-2000 instrument. The detection limit
for oxygen was determined by measuring a blank 10 times, and the standard deviation
of these measurements multiplied by 2.33 was considered as the detection limit. Powder
X-ray diffraction analyses were performed on a Bruker Bragg-Brentano D8 advanced
diffractometer (Cu Kα1 radiation at a wavelength of 1.5406 Å) equipped with a Ge (111)
monochromator and a Lynxeye linear position sensitive detector. The powder patterns
were recorded at room temperature using a step size of 0.01973◦ with an exposure of 4 s
across the angular range 15◦ ≤ 2θ≤ 120◦. Operating conditions were 40 kV and 40 mA. The
Rietveld refinement was implemented using the program Topas version 4.1. Single crystals
of UBx selected from the as-cast samples were measured between 100 and 300 K on a Bruker
APEX II Quazar diffractometer (Mo-Kα radiation, graphite monochromator, λ = 0.71073 Å)
to follow the lattice parameters versus the temperature. Infrared spectra were recorded on a
Bruker Alpha-P FT-IR spectrometer equipped with a “platinum” attenuated total reflection
sample module. Using the Origin 2021 software, each main peak was selected. All the
samples were analyzed on a 9.4T Bruker NMR spectrometer (11B frequency at 128.38 MHz)
adapted for the study of nuclear materials. To avoid skin-depth effects and for better RF
penetration, powders were used by crushing the bulk samples. A 1.3 mm probe was used
and the samples were spun at 40 kHz. A one pulse experiment was performed with a 90◦

pulse of 1µs with optimised recycling delays of 0.5 s to 2 s. For UB11.19 and UB3.61, the
full static spectra were obtained using the variable offset cumulative spectrum (VOCS)
technique [13,14]. The samples were referenced to 1 M H3BO3 (liq.) as an external reference
at 19.6 ppm. All the spectra were fitted using the dmfit software [15] and home-built
software [16].

3. Results and Discussion
3.1. Chemical Analyses and X-ray Diffraction

After preparation by arc melting, each sample was analyzed by chemical analyses to
define the U/B ratio and eventual oxygen content. Table 1 summarizes the results. Analyzes
of O content in the sample were successfully done and the quantity was below 200 ppm
(detection limit of the instrument). This enabled us to demonstrate the quality of the sam-
ples prepared by arc-melting. In the following section, to underline the non-stoichiometry,
we call the samples UB1.78, UB3.61, and UB11.19, implying that the composition uncertainty
is included. The atomic percentage loss in boron goes from 11, 10 to 7 at% for the samples
with formal composition UB2, UB4, and UB12, respectively. The atomic% of boron falls
within the composition range of UB2 and UB4 described by Brewer et al. [6]. Usually, excess
of 5 to 10 wt% in boron is added to reach a pure stoichiometry but, as the different phase
structure exists within a range of composition of U/B ratio [6], we did not compensate for
the boron loss. We also wanted to avoid the formation of additional phases in the samples.
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Table 1. U/B ratio obtained by ICPMS and oxygen content determined by direct combustion—
infrared absorption.

Samples UB2−x UB4−x UB12−x

U/B (at/at) 1.780 ± 0.020 3.613 ± 0.041 11.19 ± 0.13
Oxygen content (mg/g) <200 *

* Detection limit of the method.

The XRD patterns reported in Figure 1 and Figure S1 prove well crystallized samples—
narrow peaks with high intensities. One crystalline phase was detected for UB1.78 and
UB11.19, unlike UB3.68 where an admixture of 5 wt% of UB2−x was detected. The corre-
sponding lattice parameters, crystal structures, and phase compositions are reported in
Table 2. In the U–B phase diagram, UB2 crystallizes in the hexagonal crystal structure, UB12
in the cubic crystal structure, and UB4 in the tetragonal crystal structure (insets Figure 1).
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Table 2. Structural parameters.

Name UB1.78 UB11.19 UB3.61

Structure hexagonal cubic tetragonal
Space group n◦ P6/mmm Fm-3m P4/mbm

a = b/Å 3.1225 (1) 7.4715 (1) 7.0777 (4)
c/Å 3.9858 (2) - 3.9783 (2)

α/deg 90 90 90
β/deg - - -
γ/deg 120 - -
Rwp 8.38 10.24 9.01
Gof 2.81 3.16 3.05

Composition/% 100 100 95.1 (+UB2)
Shortest U-U spacing Å 3.12 5.28 3.65

Despite the numerous studies of UB2±x, UB4−x, and UB12−x, and the known range
of non-stoichiometry, only few studies in the open literature link the effects of lattice
parameters with composition. According to the previously stated Brewer definition, each
UBX exists over a range of stoichiometry. Nevertheless, it is clear from the literature
that this lower boron content can directly be seen on the lattice parameters. The lattice
parameters of the present study and those found in the open literature are given in Table 3.
With its lower boron content, UB1.78, possesses a lower a lattice parameter compared to
UB1.79 (a = 3.1309 (5) Å, c = 3.9837 (5) Å) [17] and UB2.02 (a = 3.133 (1) Å, c = 3.9860 (1)
Å). Despite the close stoichiometry between our sample and UB1.79, the lattice parameters
are slightly different, probably due to the impurities indicated by the previous authors
(U and UB4), which might modify the overall UB2−x stoichiometry. For UB11.78, the only
reported UB12−x stoichiometry in the open literature was UB16 [18] (a = 7.475 Å), which
indeed differs from ours. Finally, the UB3.98 (a = 7.0764 Å, c = 3.9811 Å) sample synthesized
by Menovsky et al. [19] is the closest to UB4 stoichiometry that we could find in the open
literature. Compared to our present UB4−x sample, the lattice parameters a decrease
whereas c slightly increase.

Table 3. Lattice parameters of UB2±x, UB4−x, and UB12−x reported in the present study (P.S.) and
from the literature.

UB2 UBX UB4 UBX UB12 UBX

a (Å) c (Å) Ref. X a (Å) c (Å) Ref. X a (Å) Ref. X

1 3.1225 3.9858 P.S. 1.78 (2) 7.0573 3.9008 [20] 7.468 [21] 1

2 3.1302 (3) 3.9878 (3) [20] 7.0777 3.9783 P.S. 3.613 (41) 7.4715 P.S. 11.19 (13)
3 3.132 3.986 [7] 2 7.080 3.978 [21] 7.473 [22]
4 3.139 3.994 [23] 7.079 (1) 3.983 (1) [24] 7.474 [10] 3, [11]
5 3.133 3.986 [25] 2.02 7.0795 3.9794 [26] 4 7.475 [18,20] 16
6 3.084 4.020 [27] 7.0764 3.9811 [19] 3.98
7 3.136 (6) 3.988 (8) 7.08 3.98 [9]
8 3.1309 (5) 3.9837 (5) [17] 1.79 (6)

1 +UB12 diamagnetic; 2 +impurities; 3 +UB4; 4 +amorphous carbon.

In addition to the room temperature XRD, we also performed single crystal measure-
ments at low temperatures. Figure 2 shows the variation of lattice parameters and volume
with temperature. For a direct and relative comparison, we used 0.2 Å length scale for all
the lattice parameters. At room temperature, we observed a difference between the values
recorded on the powders and the four circle. For UB2−x a = 3.1444 (62) c = 4.0035 (79); for
UB12−x a = 7.4789 (15); and for UB4−x a = 7.1036 (40), c = 4.009 (42). This difference can be
explained by a higher experimental uncertainty of the four-circle at room temperature and
to the different sampling used between both measurements. Indeed, the stoichiometry in
the powder sample average out all the lattice parameters values. We could fit both lattice
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parameters and volumes using linear equations given in Table 4. For UB2−x (Figure 2a) and
UB4−x (Figure 2c), the lattice parameters are decreasing with decreasing temperatures. For
UB12−x (Figure 2b), the lattice parameters are slightly increasing with decreasing tempera-
tures. We calculated the lattice thermal expansion using the formula in ref. [28] (Figure 2b,
bottom) but did not observe a negative minimum such as in LuB12 or YB12 [29]. This steep
negative thermal expansion might exist at lower temperatures, but such analysis was not
possible with our four-circle equipment.
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Table 4. Linear fit of the lattice parameters and volumes with the temperature.

Compounds UB2−x UB4−x UB12−x

Parameter a c V a c V a V

slope (1.0648 ± 1.8127) 10−5 (1.3111 ± 0.2538) 10−4 0.0043 ± 0.0016 (7.3755 ± 2.9109) 10−5 (7.1264 ± 3.0399) 10−5 (8.83 ± 3.64) 10−3 (−2.3 ± 1) 10−5 −4.82 ± 1.53) 10−3

intercept 3.1172 ± 0.0040 3.9641 ± 0.0057 33.0589 ± 0.2981 7.072 ± 0.006 3.9662 ± 0.0061 198.087 ± 0.7423 7.4814 ± 0.0021 419.0161 ± 0.2836
Adj-R2 0.5727 0.5067 0.2054 0.2942 0.2570 0.2725 0.2206 0.4076

3.2. Magnetic Susceptibility

The temperature dependencies of the magnetic susceptibilities (χ) for the three ura-
nium borides are presented in Figure 3. For UB1.78, the sample presents a temperature inde-
pendent magnetic susceptibility—Pauli paramagnetism—with χUB1.78 ≈ 0.55 m emu/mol.
A small anomaly is observed at approximately 50 K and is attributed to oxygen present
in the SQUID magnetometer capsule. The field-dependence of the magnetization (inset
of Figure 3a) is linear, and the curves measured at different temperatures have the same
slope, as expected from a Pauli paramagnet. In previous work, Chachkhiani et al. [30]
(χUB2−x = 0.56 m emu/mol) and Yamamoto et al. [7,8] (χUB2−x = 0.55 m emu/mol, Table 3
number 3) both described similar intrinsic Pauli magnetism on UB2 powders and single
crystals, respectively. The second authors additionally described an increase in the suscep-
tibility below 80 K ascribed to unknown magnetic impurities. This, together with other
experimental results (e.g., De Haas–Van Alphen) and band calculations indicate that 5f
electrons in UB2 have a very itinerant character. The close agreement of our data with UB2
single crystals shows that the physical properties are still retained in our bulk sample, de-
spite the slightly lower boron content compared to UB2 (UB1.78). In addition, and contrary
to Yamamoto et al., our sample does not present any visible magnetic impurity besides
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the slight oxygen signal (coming from the equipment). Our results therefore confirm the
temperature-independent character of the magnetic susceptibility of UB2 below 80 K and
down to 2 K.
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Figure 3. Magnetic susceptibility curves against temperature (top) and magnetization against field
(bottom) for (a) UB1.78, (b) UB11.19, and (c) UB3.61.

We find the magnetic susceptibility of UB11.19 to be nearly temperature independent,
indicative of Pauli paramagnetism with χUB11.19 = 0.76 memu/mol. The magnetization
varies linearly versus applied magnetic field (inset of Figure 3b) and the curves at different
temperatures superpose, as expected for a Pauli paramagnet. In the literature, Kasaya [31]
and Tróc [32] reported χUB12−x = 0.75 memu/mol, similar to the present study. A second
and more recent study performed jointly by Tróc et al. [10] and Samsel-Czekała et al. [11]
reported a slightly smaller value with χUB12−x ≈ 0.65 m emu/mol attributed to the pres-
ence of UB4 and paramagnetic impurities leading to a sharp increase at low temperature.
Consistently, their magnetization vs. applied magnetic field curves are non-linear at 2 and
6 K and their slopes changes up to 14 K. We did not notice such behaviours (Figure 3b).
Blum and Bertaut [21] published the smallest UB12−x lattice parameter and reported a
diamagnetic behaviour; this can be safely ruled out.

The magnetic susceptibility at room and low temperatures amounts to χUB3.61
min

~ 1.46 memu/mol and displays a broad maximum (χUB3.61
max ~ 1.58 memu/mol) in the

temperature region 110–140 K. The magnetization varies linearly versus applied magnetic
field (Figure 3c, lower), with a much larger slope than in UB1.78 and UB11.19, consistent
with the behaviour of their magnetic susceptibilities. The curves superpose from 2 to
20 K and the slope slightly changes at 50 K. From the magnetic susceptibilities published
on UB4−x, most authors have different results due to the range of non-stoichiometry (or
impurities). Our results compare well with the magnetic susceptibility of Galatanu et al. [9]
measured along the [100] direction of a single crystal, suggesting the possible occurrence
of preferential orientation along the a-axis in our bulk sample. Their lattice parameters
are similar to ours (Table 3, number 7). Additionally, our magnetization vs. magnetic
field curve complements their data, as they recorded the curves for 2 K, 100 K, and higher
temperatures. We can confirm the increase in linear slope at 50 K, which also occurs at
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100 K. Our data also agree relatively well with those of Menovski et al. [19] on UB3.98
single crystals. They nonetheless reported a sharper maximum at 114 K with no magnetic
ordering. The agreement between these previous studies and the present findings confirms
the occurrence of the cross-over maximum and the robustness of this feature despite 5 wt%
UB2−x as a second phase. Overall, UB4−x has delocalized electrons at low temperatures
with a cross-over at approximately 110 K to localized 5f electrons at high temperatures [9]
(Curie–Weiss law with an effective moment µeff ≈ 3.3µB/U). In contrast, the polycrystalline
sample measured by Wallash et al. [33] does not exhibit preferential orientation and no
maximum, and Chachkhiani et al. [30] attributed the peak in the susceptibility in terms of
antiferromagnetic ordering.

To sum up, we showed the influence of the boron content and additional boride phases
on the magnetic susceptibilities.

3.3. Nuclear Magnetic Resonance

The NMR spectra recorded in static and magic angle spinning (MAS) (40 kHz) condi-
tions, and their corresponding fits are presented in Figure 4.
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showing the central transition (CT) and the Full spectra (FS). The fits are the red lines.

The static 11B NMR spectra are defined by a typical powder pattern for a nuclear
spin I = 3/2 in the presence of first order quadrupolar interaction. The 11B MAS-NMR
spectra are characterized by central peaks and their associated spinning sidebands due to
the satellite transitions (±3/2↔± 1/2). All the NMR parameters are given in Table 5. The
shifts have, as expected, values largely above the common range expected for diamagnetic
boron (~−3 to ~20 ppm) [34,35]. As expected from their crystal structure, UB1.78 and UB11.19
present one NMR peak in both static and MAS conditions. For UB3.78, in addition to the
peaks corresponding to the central transition, we could detect the signal of UB2−x (3%), as
shown by XRD. The crystal structure of UB4 possesses three different crystal B sites. The
static NMR spectrum presents only one unresolved peak similar to the work published
by Fukushima et al. [36]. By spinning the sample, the spectral resolution increases and
we can identify two main peaks at 631.5 and ~563 ppm. Nevertheless, the deconvolution
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of the peak at 563 ppm was not possible using only one contribution due to a strong
asymmetry. This peak was therefore fitted with two contributions at 571 and 561 ppm.
Although the 11B peak at 561 ppm is clearly attributed to B3 (8j) due to its intensity being
twice the one of the two other peaks, it is less straightforward for the B1 (4e) and B2 (4h)
sites. To differentiate them, we proceeded as suggested by Creyghton et al. [37] and used
the quadrupolar parameters. In fact, these authors stated that due to their similar crystal
structures and the small c/a ratio [38,39] differences between NdB4 (0.568 [40]) and LaB4
(0.571 [41]), the quadrupolar parameters must follow the same sequence. In our case, the
c/a ratio of UB4 (0.5624 [42]) is close enough to that of YB4 (0.5654 [43]) to apply the same
principle. Therefore, as the peak at 631 ppm has the smallest CQ it can be attributed to the
B1 (4e) site similarly to YB4 [44], and the one at 571 ppm to B2 (4h). We want to further
underline that for NdB4, there is an inversion between B2 and B3 in the crystal structures
reported in the literature. In fact, the P4/mbm structures B2 has the Wyckoff Symbol 4g
and B3 8i.

Table 5. 11B NMR parameters Knight shifts (11BK), quadrupolar coupling constant (CQ), and asym-
metry parameter (ηQ) of the uranium borides compounds.

Compound Name 11BK (ppm) FWHM (ppm) CQ (kHz) hQ

UB1.78 B1
303.6 a –

298.4 a 0.2 a
291.6 b 16.8

UB3.61

B1 (4e) 631.5 14.2 390 b 1 b

B2 (4h) 571 14 560 b 0.9 b

B3 (8j) 561.2 18 560 b 0.8 b

UB11.19 B1
164.3 a –

774.7 a 0.8 a
155.4 b 21.2

AlB2 [18] −10 ± 5 1.08 0
ZrB2 [18] −29 – –
MgB2 [45] 40 ± 10 1.67 0

YB4 [44,46]
4e 34.7 1.14
4h 12.6 1.46
8j 5.4 1.04

LaB4 [37,47]
4e 42 0.69 0
4h 47 1.1 0
8j 18 0.8 0.5

NdB4 [37,46]
4e 3300 (±10–15%)) 0.84 0
4h 2300 (±10–15%) 0.89 0.5
8j 2600 (±10–15%) 1.244 0

ZrB12 [18] 10 1.083 0.98
YB12 [18] 25 1.08 0.93

The parameters were obtained a static and b 40 kHz.

We compared in Table 5 the NMR parameters of the UBX with their isostructural
MBX: UB1.78 with the Pauli paramagnets AlB2 and ZrB2 [18] and the superconductor
(Tc = 39 K [46]) MgB2 [48]; UB3.61 with the diamagnetic YB4 [44,46], the diamagnetic at
room temperature [49] LaB4 [37,47], and the antiferromagnetic (at 7 K) [49] NdB4 [37,46];
finally, UB11.19 with the metallic ZrB12 [18] and YB12 [18,50]. All the UBX possess higher
shifts than their MBX counterpart, most probably linked to the hybridization between the
U5f and B2p orbitals. All the CQ values in the UBX are smaller compared to their MBX
counterparts, but they have similar asymmetry parameters.

To conclude the NMR observations, we found that despite the sample’s lower boron
content, only the expected number of 11B NMR peaks were detected. Due to the quadrupo-
lar nucleus, the disorder might not be excluded as it can be expressed in the linewidth
(Table 5). This result contrasts with the uranium carbides where additional 13C (spin 1/2)
signals were detected as a fingerprint of the non-stoichiometry [51].
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3.4. Infrared Spectroscopy

The FTIR spectra of the uranium borides are presented in Figure 5 and the main peaks
positions are given in Table 6. According to the factor group analysis, the expected IR active
modes for the idealized crystal structures at the Brillouin zone centre are (A2u + E1u) for
UB2, (3A2u + 9Eu) for UB4, and (3T1u) for UB12 [52]. All these optical phonons represent
vibrations of the boron sublattice only.
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Table 6. Values of the main FTIR bands (cm−1). For UB4 extracted from the literature, dd corresponds
to doubly degenerate mode. For ZrB12, the numbers in bold are the active IR bands defined by the
authors, with a star are the active IR bands defined by the Bilbao crystallographic database, and in
italic are the active Raman bands. The frequencies presented for UB12 from ref. [52] correspond to
Raman modes.

Present Study Literature

UB1.78 UB3.61 UB11.19 UB4 [53] ZrB12 [54] UB12 [54] UB2 [23] MgB2

1 388 395 394 dd 315 T1u 0 E1u 393 E1u [55] 322/327 #

2 – 438 350 T2u 198.3 A2u 481 A2u 394/405 #

3 463 456 453 dd 358 T1u 206.6 E2g 598
4 500 – 513 399 T1g 478.1 B1g 794 E1u [56] 335 #

5 680 – 693 dd 608 Eu 498.2 A2u 401 #

6 778 778 778 dd 722 A2g 518.8
7 796 796 795 dd 796 Eg 639.9 621 E1u [57] 320 #

8 907 – – T2u 661.6 A2u 390 #

9 1002 – – T1g 693.6
10 1083 1077 1073 T1u 729.1
11 1162 1162 1162 T2g 801.7 748
12 1360 1354 – T1u 854.2

A2u 982.4
Eg 1010.1 971

A1g 1078.3 1039
T2g 1084.4 1088

# calculated values for MgB2.

To further analyze the data, we considered the calculated phonon spectra of UB2 and
extracted the frequency of the optical modes (Table 6) [23]. Jossou et al. [23] calculated the
doubly degenerate E1u mode (B and U planes sliding along x, y) and the A2u (B and U
planes moving against each other) modes at 393 and 481 cm−1, respectively. These results
are similar to the values obtained for the modes at 388 cm−1 and 465 cm−1. The difference
might be due to different lattice parameters (Table 3 number 4) and characteristics of the
different stoichiometries. The additional peaks can be attributed to a loss of the local
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symmetry and the Raman forbidden modes can be relaxed, which indicates a reduction
of symmetry [58]. The high frequency modes manifested as broad intense bands centred
at 1002 cm−1, 1162 cm−1, and 1360 cm−1 might be a combination of multiple modes
located near the 463 cm−1 mode [58,59]. It is worth comparing UB1.78 with MgB2 as, due
to its supraconductivity [48], its optical properties have been extensively studied. The
values of the IR active phonon modes in UB2 are relatively similar to the one reported
experimentally [58,59] and theoretically [55–57] for MgB2 (Table 6).

We compared UB12 with the modes previously calculated for ZrB12 [54] (Table 6), as
they should qualitatively give similar FTIR spectra. We believe that the correct IR active
modes are the 3T1u. The first T1u mode at 206.6 cm−1 is not visible in our IR spectrum, but
the two other T1u modes, at 729.1 cm−1 and 854.2 cm−1, might correspond to the modes
at 778 cm−1 and 795cm−1 (Table 6). Similar to the FTIR from the MB12 series [54], silent
modes appear on our spectrum as the local distortions can break the local symmetry, and
the selection rules are then lifted. This peculiar behaviour seems typical for metal borides.
Thus, the modes at 1073 cm−1 and 1162 cm−1 can be attributed to the Raman forbidden
modes Eg/A1g and T2g, respectively. It must be noted that based on the present data, an
unambiguous attribution is not possible.

To our knowledge, Lopez-Bezanilla [53] calculated the only phonon spectra on UB4.
The author reported 12 out of the 31 optical modes and did not discuss their nature. A
recent work by Surucu et al. [60] on LaB4 reported all the optical modes and determined
a phonon range of 264–1072 cm−1, which therefore implies that a larger range will be
expected for UB4. For this compound, we therefore cannot go much further in the spectral
analysis but noted that the observed optical modes in the IR spectrum represent the whole
frequency range of the calculated phonon spectrum (315–796 cm−1) (Table 6). The mode at
1007 cm−1 has a similar value as the forbidden Raman mode B1g predicted for V = 199 Å at
~1000 cm−1 (see ref. [61]). Finally, it is worth noting that the characteristic bands observed
for UB2−x (388 cm−1 and 465 cm−1) are also detected on the UB4−x spectrum, in agreement
with the XRD and NMR results.

From this FTIR study and the detection of additional modes, we can observe the ex-
pected structural defects that are lifting the selection rules stated from the idealized structure.

4. Conclusions

In the present study, we revisited the binary system U-B via its three samples with nom-
inal composition UB2, UB4, and UB12. Within the uncertainty of the chemical and oxygen
content analyses, purity of the samples and their U/B ratio were well characterised. The
data supported the view proposed by Brewer et al. about their range of non-stoichiometry
described in the literature. The composition definition of each sample is essential to link
the properties and likely to explain the difference observed in literature with the lattice
parameters. The X-ray diffraction patterns show the purity of the samples for UB12−x and
UB2−x, whereas a minor content of UB2−x could be found for UB4−x. Furthermore, their
high intensity peaks show long range order on the arc melted as cast samples. In the low
range of temperature 100 K–300 K, XRD did not indicate a clear negative thermal expansion
in UB12−x as its counterpart LuB12. Although influenced by the boron content, the magnetic
properties agree to a certain extent with the literature data. The NMR analyses show the
influence of the hybridisation between U5f and B2p. The FTIR spectra confirm the local
composition effects and the disorder. We believe that our study will trigger the curiosity of
theoreticians to draw models with clear references.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12010029/s1, Figure S1: Full X-ray diffraction patterns and
corresponding fits for the uranium borides.
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de Haas Van Alphen effect in UB2. J. Phys. Soc. Jpn. 1999, 68, 3347–3351. [CrossRef]
9. Galatanu, A.; Yamamoto, E.; Hagab, Y.; Onuki, Y. Magnetic behaviour of UB4 at high temperatures. Phys. B Condens. Matter. 2006,

378, 999–1000. [CrossRef]
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