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Abstract We present the first systematic treatment of
the problems posed by the visualization and analysis of
large-scale, parallel tree-based adaptive mesh refinement
(AMR) simulations on an Eulerian grid.

When compared to those obtained by constructing an in-
termediate unstructured mesh with fully described con-
nectivity, our primary results indicate a gain of at least
80% in terms of memory footprint, with a better render-
ing while retaining similar execution speed.

We thus describe herein the key concepts that allowed
us to obtain these results, together with the method-
ology that facilitates the design, implementation, and
optimization of algorithms operating directly on such
refined meshes. In 2019, this native support for AMR
meshes has been contributed to the open source Visual-
ization Toolkit (VTK).

We note that this work pertains to a broader long-term
vision, with the dual goal to both improve interactivity
when exploring such data sets in 2 and 3 dimensions,
and optimize resource utilization.

Key words scientific visualization, meshing, AMR,
mesh refinement, tree-based, octree, VTK, parallel vi-
sualization, large scale visualization, HPC, isocoutour,
isosurface
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1 Introduction

1.1 Preamble

Massive numerical simulations are nowadays routinely
run on petascale supercomputers such as Tera100 and
the pre-exascale Tera1000 [1]. Among simulation codes,
those using adaptive mesh refinement (AMR) are espe-
cially efficient at tracking fine details within very large
domains of interest. AMR enables a trade-off between
numerical accuracy, memory footprint, and computa-
tional cost, by allowing for mesh refinement (and coars-
ening) in sub-regions of the simulation. Recent large
scale simulations have reached ten trillion cells on a reg-
ular Eulerian grid [26]. This pioneering work, representa-
tive of what will be “everyday” tomorrow exascale com-
puting, showed that it might however be either impos-
sible to store due to a too large number of elements, or
would be computationally too expensive to post-process.

Fig. 1.1 Simplified simulation of a Mandelbrot set based on
a tree-based AMR mesh, highlighting the underlying grid as
wireframe in the leftmost half of the image.

These difficulties can be alleviated by refining the origi-
nal mesh only where needed, while retaining coarser el-
ements wherever local feature scales permit. Of course,



this approach is limited to those specific physical prob-
lems where the meaningful phenomena are spatially lo-
calized and where appropriate refinement and/or coars-
ening criteria can be defined. This is the case e.g. in
shock wave computation [7,8] (illustrated in Figure 1.1),
astrophysics [25], or transient wave propagation [3].
Since the first description of an AMR methodology with
the Berger-Oliger [9] type, several implementations have
been proposed and developed. It is beyond the scope of
this article to provide an in-depth comparison of block
structured (also known as patch-based) versus tree-based
(also known as point-wise structured) AMR methodolo-
gies. Nonetheless, in order to fully understand the moti-
vations and constraints of the work presented hereafter,
one must be aware that the fundamental difference be-
tween the two approaches is, essentially, a trade-off be-
tween memory footprint, and complexity of processing
algorithms. Specifically, ceteris paribus, a typical tree-
based AMR grid will occupy much less memory estate
than its block structured equivalent, at the cost of higher
processing time as a result of more complicated algo-
rithms. In fact, this dichotomy between methods arises
from the more general opposition between implicit and
explicit representations, with the ensuing consequences
when storing, as opposed to processing, the resultant
data objects. It is worth noticing here that the FLASH
framework [17] offers both options, although this is actu-
ally done with two different underlying codes: Chombo
(block structured) and Paramesh (tree-based).
Block structured AMR will not be discussed in the rest of
this article; the interested reader can refer in particular
to the Chombo pages for more details [2]. Our interest
instead focused on the analysis of data sets produced
by tree-based AMR codes. Several codes pertain to this
group, for instance starting with successive refinement
in octants (therefore producing octrees) of an initial root
cell as done in RAMSES [25], or using a uniform, struc-
tured grid of root cells as done in RAGE/SAGE [18] or
HERA [20], the tree-based AMR hydrodynamics simu-
lation code developed at CEA.

1.2 Scope

We begin by providing in §2 [Context] the background
and context for this work, analyzing the challenges posed
by tree-based AMR simulations to scientific visualiza-
tion. As a result, we propose our global vision for ad-
dressing these challenges in an exascale perspective. How-
ever, the scope of this article is limited to the founda-
tional aspects of this vision, laying out the necessary
data structures as well as the methodology to optimally
process these.
The fundamentals of our novel data structures are pro-
vided in §3 [Foundations], and additional design choices
are proposed in §4 [Properties and Operations], which
we implemented in VTK [6]. Wherever necessary, based

in particular on acquired experience with large-scale data
sets, we mention changes to claims or hypotheses that
we had made in earlier work [12].
We then study in §5 [Method] the method we designed
to operate on these data objects, with a particular em-
phasis on execution speed, in order to maintain interac-
tivity even while processing the largest data sets that can
be stored on currently available hardware. We illustrate
this methodology in §5.7 with isocontour (resp. isosur-
face), which is arguably one of the most widely used vi-
sualization techniques albeit being difficult to implement
in a way that is both correct and efficient.
In §6 [Results], we examine the validity of our claims
relative to performance with a set of tests that are rep-
resentative of the scientific simulation data sets we wish
to address.
Finally, we conclude this article in §7 [Conclusion] by
examining to what extent the work presented in these
pages covers what we initially intended to do. We subse-
quently discuss how future work will be articulated with
what has been achieved so far, in order to achieve our
long-term vision.

2 Context

2.1 Problem Statement

In order to exploit the massive data sets produced by
the various numerical simulation codes of CEA, our vi-
sualization team developed the Large Object Visualiza-
tion Environment (LOVE) [4,5], a dedicated parallel vi-
sualization tool. It is based on VTK/ParaView, an open-
source, C++ set of libraries and an application for sci-
entific data visualization and analysis supporting many
data types and featuring hundreds of algorithms, with
thousands of users in the global scientific community.
One approach for the visualization and analysis of AMR
data sets with VTK is to use its native unstructured
grid data objects. One obvious advantage of this method
is to make available the wealth of existing filters al-
ready in VTK for such data sets (e.g., cutting, clipping,
isocontour, etc.). However, the additional memory re-
quirements that arise from converting a mostly implicit
data object into a fully explicit one rapidly become pro-
hibitive as the size of the grid grows. Furthermore, when
the cells of an AMR mesh are directly used as unstruc-
tured element inputs (quadrilaterals or hexahedra) of an
algorithm such as isocontour, topological irregularities
resulting in strong visual artifacts such as gaps may ap-
pear. These are caused by the topology of AMR meshes,
which have partly connected vertices (“T-junctions”) when
they contain neighboring cells at different refinement
levels. Linear interpolation, commonly used by visual-
ization algorithms, produces discontinuities across T-
junctions, ultimately resulting in incorrect visualizations.
The latter problem is further explicated in dimension 2
by Figure 2.1, where the top row represents an AMR grid
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Fig. 2.1 Top: AMR grid converted into: (left) a quadran-
gle mesh with a T-junction at point 5, which is shared by A
and B but not by C, and (right) a generic unstructured mesh
where vertex 5 is shared by pentagon C as well as quad-
rangles A and B. Middle: outside boundary (orange) com-
puted for both meshes; a topological artifact (veil) is caused
by the T-junction (left), but not in the conforming, generic
mesh (right). Bottom: linear isocontour (blue) computed for
both meshes, between vertex values above (+) or below (−)
a given value; dashed gray lines represent possible triangula-
tions used by the contouring algorithm.

with 5 cells. On the left, the cells are considered as the
elements of an unstructured quadrilateral mesh: by con-
struction, quadrangle C does not have any reference to
vertex 5, creating a T-junction along edge 2–7. On the
right, the cells are now viewed as arbitrary polygons,
with pentagon C sharing vertex 5 with quadrilaterals A
and B, hence eliminating the T-junction. Attempting to
extract the outside boundary of the quadrilateral mesh
results in a topological artifact, called a veil, whereas the
outside boundary is correctly extracted on the polygo-
nal mesh. Similarly, the effect of linear isocontour on
both constructions, when cell values are above or be-
low a given isovalue are shown in the bottom row. The
T-junction on the left causes a gap in the isocontour,
because the algorithm cannot detect a contour intercept
along edge 2–7 of cell C. Meanwhile, the same contouring
algorithm is able to correctly process the generic cells,
and produces a correct isocontour without false gaps.

The Hercule I/O library developed at CEA [11] supports
such conversion from AMR grids into unstructured, con-
forming meshes. Prior to 2012, this was the only option
available to visualize the tree-based AMR data sets pro-
duced at CEA. In addition to the already discussed per-
formance limitations, using this approach also comes at
the price of reduced interactivity because of I/O latency.

Furthermore, at the time of writing, VTK does not sup-
port well the mixing of hexahedral elements with generic

Fig. 2.2 Top row, left: one generic cell located between 2
hexahedra, resulting in the appearance of extraneous veils
being generated by the VTK geometry filter; right: all cells
are generic and the boundary is correctly extracted by the fil-
ter. Bottom row: outside boundary of a bi-material 3D AMR
simulation; left: extraneous veils appear when the filter is
applied to a mixed-cell conforming unstructured mesh; right,
the boundary is correctly extracted with all generic cells.

cells as illustrated in Figure 2.2, left. Specifically, when
attempting to extract the outside surface of the un-
structured mesh with mixed cells, the subdivision of the
generic cells by VTK results in incompatible tessella-
tions across neighboring element faces. Although it is
possible to resolve this problem by using only generic
cells, as shown in Figure 2.2, right, but the computa-
tional and memory costs quickly become prohibitive for
realistically-sized meshes.

Fig. 2.3 Two different representations of the same mesh:
explicit unstructured representation (left), versus AMR de-
scription (right). The red color coding indicates the root cell,
which is stored in the AMR representation, but not in the
unstructured mesh.

It is easy to illustrate, for instance with the simple ex-
ample depicted in Figure 2.3, the dramatic inefficiency
of using explicit unstructured meshes to represent AMR
grids. Considering a quadrilateral in dimension 2, de-
composed into four sub-elements, it is straightforward
to devise a corresponding tree-based AMR representa-
tion using four floats for the extremum coordinates of
the grid and a single Boolean value to indicate that the
quadrangle is subdivided.
Meanwhile, an explicit unstructured representation of
the same requires 9 × 2 = 18 floats for the vertex co-
ordinates, as well as 4× 4 = 16 integers to describe the
connectivity of the 4 cells. Therefore, the AMR descrip-
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tion reduces the memory footprint of almost a full order
of magnitude for this simple case alone.
VTK has long provided some support for block-structured
AMR data sets. Prior to 2012, it also offered very limited
support for a particular case of tree-based AMR with a
single-root octree object [27].

Fig. 2.4 The 3 allowed AMR subdivision patterns in dimen-
sion 2: without refinement (f = 1, left), binary subdivision
(f = 2, center), and ternary subdivision (f = 3, right), with
respective numbers of children equal to 1, 4, and 9. In dimen-
sion 3 these translate respectively into 1, 8, and 27 children.

Furthermore, simulation codes such as HERA use ei-
ther binary or ternary subdivision schemes when refining
meshes, i.e., with branching factor f ∈ {2; 3} along each
dimension of the grid. This is illustrated by Figure 2.4
in dimension 2. In general, in dimension d, refining a
cell results in obtaining fd subchildren (sub-cells). Any
post-processing methodology designed to handle the re-
sults of such simulations must therefore be able to ac-
commodate, not only the usual binary trees, quadtrees
and octrees, but also more exotic ternary trees. Finally,
we must also take into account the constraint that AMR
simulation codes used at CEA are run in parallel, with
the corresponding data sets being distributed over many
thousands of compute nodes. These codes balance com-
putational sub-domains by allocating the root cells in
the grid of trees, resulting in individual AMR trees that
are never shared between different compute processes.
Traversal objects for such grids of trees must therefore
be carefully designed in order to a priori allow for ex-
tremely unbalanced trees structures between various ar-
eas of the overall domain.

2.2 Vision

Our global, long-term vision for tree-based AMR visual-
ization and analysis can be articulated as follows:

[a] Propose a novel VTK data object to support all re-
quested tree-based features, that is memory-efficient.

[b] To allow for the direct utilization of the wealth of
existing unstructured mesh algorithms, propose a fil-
ter to convert VTK data to conforming meshes (dual
mesh).

[c] Design and implement visualization and analysis al-
gorithms that are specific to the primary tree struc-
ture, with a strong emphasis on performance. In our

vision, this optimization of execution speed is best
achieved by using specialized constructs called cur-
sors and supercursors.

[d] Optimize rendering speed, in order to maintain in-
teractivity when visualizing the largest possible tree
grids that can be contained in memory. A possi-
ble approach could be to take advantage of the tree
structure of the grids, to allow for level-of-detail culling
relative to the size of the rendering window, screen
resolution, view and camera position, etc.

[e] Qualitatively improve the final rendering with, e.g.,
mapping, texture splatting or ray tracing techniques
specifically tailored for the tree-based AMR objects.

[f] Design and implement a way to pass object infor-
mation, so that a reader specific to tree-based AMR
grids will be able to limit actual reading and storing
of those parts of the entire grid that are explicitly
needed by filters and rendering (such as maximum
depth of refinement and bounding box).

[g] Define a serialization specification for these struc-
tures, and develop I/O classes implementing it. Such
a serialization protocol will also improve current par-
allel load balancing schemes by allowing for commu-
nication of large sub-grids in small messages.

[h] Expand the range of efficiently supported tree-based
AMR data sets; envisioned objects include grids that
have many root cells but a small number of refine-
ment levels or, conversely, that only have a very
small number of root cells with many refinement lev-
els. Such extensions would have to be achieved while
maintaining the same goal of memory footprint min-
imization and execution speed maximization.

[i] Expand the current post-processing paradigm to in-
clude concurrent approaches based on in situ and
in transit processing. Such a data-centric approach
would allow for increased spatial and temporal res-
olutions for post-processing purposes, reduced I/O
costs, and significant decrease of time from data to
insight. This would therefore alleviate increasing dif-
ficulties encountered by AMR simulation analysts
caused by the current need to save a sufficient amount
of raw solution data to persistent storage.

We acknowledge that some of these items are mutually
independent, and thus do not have to be executed in
the order of the list. However, [a] and [c] constitute the
necessary foundation of the whole; this article is there-
fore focused on these two steps. Furthermore, neither of
these features for tree-based AMR grids were supported
by VTK prior to 2012, when we briefly described some
governing principles of our preliminary work in [12]. In
addition, several years have passed since this first ap-
proach to the problem, and our ideas and implementa-
tions have since matured and solidified.
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Fig. 3.1 Three different types of graphs: tree (left); not con-
nected graph (center), not a tree; and a graph containing a
cycle (right), therefore not a tree. We decide to always show
the root at the top.

3 Foundations

As a result of the context described in § 2, we have de-
signed the first native support for such data sets, that is
also independent regardless of the choice of implemen-
tation. This includes both data and execution models,
whose foundations are now fully described in this sec-
tion.

3.1 Vertices, Graphs, and Trees

It is beyond the scope of this article to provide an exten-
sive picture of graph nomenclature and classification; the
interested reader can refer, to [10] for a systematic treat-
ment of the theory of graphs. The fundamental building
blocks of our trees are vertices, which can also be im-
plemented as data objects containing various quantities
of interest, such as simulation data, and mesh topology
or geometry attributes. Given a set of vertices V , we
then define an undirected edge as a set of pairs of ver-
tices, with the following requirements for the set of all
undirected edges:

(i) be connected, i.e., any two vertices are connected
by a path of adjacent edges, and

(ii) not contain any cycle, i.e., a set of edges forming a
closed polygon.

In addition, one (and only one) vertex is chosen in V
to be the root. In this setting, the directed edges are
immediately deduced from the undirected ones with the
unambiguous implicit ordering based on distance from
the root, in the sense of number of edges needed to tran-
sitively connect to it; one can then define a unique depth
as being the number of edges in this path. Finally, at
least one vertex does not have any directed edge leaving
it, and any vertex that has this property is called a leaf ;
all non-leaf vertices are called strict nodes.
For a good understanding of this article, it is important
to acknowledge that the typical usage of the term tree
in computer science refers to a directed, rooted, acyclical
graph, see for instance [21], whereas in mathematics it
is more broadly understood as an undirected, transitive,
acyclical graph. The double (V,E), where E is the set of
all directed edges, is the definition of a tree to be used
hereafter. A handful of examples and counter-examples
are provided in Figure 3.1; note that, for concision, we

never represent the directionality of the edges, for it is
implicit as we use the convention to always represent a
tree with its root at the top. We also decide to always
horizontally align vertices that have the same depth.

3.2 Hypertree Object

We now introduce the concepts specific to our work.

3.2.1 Fundamentals We define what a hypertree ob-
ject.

Definition 3.1 A Hypertree object (shorthand Hyper-
tree) in dimension d ∈ N∗ with branching factor f ∈ N∗,
is a type of data set that can be represented as a tree, and
where each strict node has exactly fd children. In addi-
tion, primary attributes of this data set are attached to
the vertices of the tree.

Remark 3.1 The types of AMR meshes required by our
target applications are limited to the possible combina-
tions of d ∈ {1; 2; 3} and f ∈ {2; 3}. The corresponding
objects are called quadtrees in (d = 2;f = 2) and octrees
in (d = 3;f = 2) .

Fig. 3.2 Left: a 2-dimensional AMR mesh obtained with 4
levels of successive binary refinements of one quadrilateral;
right: the corresponding hypertree representation. Here, dif-
ferent colors are used to represent the attribute values at-
tached to mesh cells. It is possible to assign attribute values
to strict nodes, here colored in gray.

There is a trivial bijection between hypertree objects and
tree-based AMR meshes descending from a unique root
cell: for instance, each leaf of a hypertree object H rep-
resents exactly one mesh cell that is not refined, whereas
strict nodes inH are bijectively associated with all coarse
cells (i.e., cells in the mesh that are subdivided). This
bijective construction is illustrated with the case of a
quadtree in Figure 3.2. Some CEA simulations codes
take advantage of this feature and compute coarse cells
attribute values. Last, as will be seen later, we exploit
this capability in the aim of optimizing tree traversals
for some classes of filters, e.g. for level-of-detail (LOD)
purposes.
We make the choice to embed any meshes in the 3-
dimensional Euclidean space R3 and to support only
axis-aligned tree-based AMR meshes. This allows us,
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when algorithms are applied, to have all input and out-
put meshes in the same dimensional Euclidean space,
even if the output has lower topological dimensionality.
On the other hand this conceptual choice does not allow
us to define meshes natively in 1D or 2D when needed;
rather, they are always viewed as a 3D object with one
or two fixed coordinates.
Because the considered AMR meshes are always recti-
linear, the geometry of a hypertree object is implicitly
given by (−→x ;−→s ):
1. the origin −→x = (x0;x1;x2) ∈ R3 of the root node;
2. the size −→s = (s0; s1; s2) ∈ R3 of the root node.

From the size can be deduced the actual axis used by the
hypertree. For instance, if s1 is equal to 0 then the nor-
mal of the plan including the hypertree will be (0, 1, 0).

3.2.2 Hypertree Child Implicit Index Map An hyper-
tree is constructed by successively refining cells when
needed, starting from its root cell. By definition, we con-
sider there are always fd children cells to any coarse cells.
By design choice, the traversal order of the children of
one coarse cell is imposed, thus unambiguously defin-
ing an implicit ordering. We decide to use the following
convention:

Definition 3.2 The Hypertree Child Index Map Φd,f ,
with (d, f) ∈ N∗2 is the lexicographic order over J0; fJd.

It is beyond the scope of this article to discuss the lexico-
graphic order over Cartesian products in a detailed way;
suffices to know that it is the analog to the lexicographic
order over finite words in a finite alphabet (the dictio-
nary order) and that it indeed provides a total order. In
addition, one has the following property, whose proof is
left to the interested reader by recurrence over d:

Proposition 3.1 Given child coordinates (c0, . . . , cd−1) ∈
Nd in dimension d:

Φd,f (c0, . . . , cd−1) =

d−1∑
k=0

ckf
k.

The index maps for d = 1 are simply the identities over
J0; fJ. For the values of d and f that are of practical
interest to us, the (c0, c1, c2) tables are given in Figures
3.3 and 3.4, which illustrate respectively the following
hypertree configurations: (d = 3, f = 2) and (d = 3,
f = 3). When considering only the 2 tables with c2 = 0
amongst the above, one obtains the corresponding maps
for d = 2, shown in Figure 2.4.

3.3 Hypertree Grid Object

In order to account for a broad category of tree-based
AMR grids, including those that do not have uniform ge-
ometry along each axis, or whose initial refinement pat-
tern is not that of hypertree, we introduced a broader-
scoped object.

c1 1 6 7

0 4 5

c2 = 1 0 1

c0

c1 1 2 3

0 0 1

c2 = 0 0 1

c0

Fig. 3.3 The hypertree child index map in the 3-dimensional
binary case (d = 3, f = 2).

c1 2 6 7 8

1 3 4 5

0 0 1 2

c2 = 0 0 1 2

c0

c1 2 15 16 17

1 12 13 14

0 9 10 11

c2 = 1 0 1 2

c0

c1 2 24 25 26

1 21 22 23

0 18 19 20

c2 = 2 0 1 2

c0

Fig. 3.4 The hypertree child index map in the 3-dimensional
ternary case (d = 3, f = 3).

Fig. 3.5 A 2-dimensional AMR mesh obtained with 5 levels
of successive binary refinements of 4× 2 rectilinearly aligned
hypertree objects with different sizes along each axis. Here,
different colors are used to represent the level of each cell, i.e.
red for unrefined hypertrees and blue for the finest meshes.

Definition 3.3 Let H and H′ be two hypertree objects,
with same dimension d ∈ {1; 2; 3} and same branching
factor f ∈ N∗, with respective 3-dimensional embeddings
(−→x ;−→s ) and (−→x ′;−→s ′). If

∃k ∈ {0; 1; 2}

{
x′
k = xk + sk

∀l ∈ {0; 1; 2} \ {k} (x′
l, s

′
l) = (xl, sl)

and, when d ̸= 3, we say that H′ is rectilinearly consec-
utive to H for component k, denoted H ≺

k
H′.

Intuitively, what this means is that the outside boundary
of H ∪ H′ is a line segment in dimension 1, a rectangle
in dimension 2, and a rectangular prism in dimension 3,
with origin and orientation equal to those of H, and
size vector as well, except for its k component which
is equal to −→sk + −→sk ′. For example, on Figure 3.5, are
shown eight binary hypertree objects in dimension 2,
arranged in order to have rectilinear consecutiveness for
components 0 and 1.
Given any triple t ∈ N3, we denote Πt the product of its
components, and JtJ the set of triples t′ ∈ N3 such that
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t′ < t in the lexicographic sense. For example,

J(3; 2; 2)J=
{
{0; 0; 0}; {0; 0; 1}; {0; 1; 0}; . . . ; {2; 1; 1}

}
.

We now introduce our main object:

Definition 3.4 A Hypertree Grid object (shorthand Hy-
pertree Grid) in dimension d ∈ {1; 2; 3} with branching
factor f ∈ N∗ and extent E ∈ N∗d × {1}3−d, denoted

Gd,f
E , is a type of data set comprising ΠE hypertree ob-

jects in dimension d and with branching factor f , de-
noted Hi,j,k where (i; j; k) ∈ JEJ, such that

∀(i; j; k) ∈ JEJ


i+ 1 < E0 ⇒ Hi,j,k ≺

0
Hi+1,j,k

j + 1 < E1 ⇒ Hi,j,k ≺
1
Hi,j+1,k

k + 1 < E2 ⇒ Hi,j,k ≺
2
Hi,j,k+1

In addition, primary attributes of this data set are at-
tached to the individual hypertrees.

Given an arbitrary hypertree grid object Gd,f
E , we de-

note Hd,f
i,j,k the hypertree object with discrete coordi-

nates (i; j; k) ∈ JEJ and call it the constituting hypertree

of Hd,f
E at position (i; j; k). Under the assumptions of

Definition 3.4 regarding d, f , and E, we have:

Proposition 3.2 The outside boundary of a hypertree
grid object Gd,f

E is a d-dimensional rectangular prism,
uniquely determined by the 3-dimensional embeddings of
its constituting hypertree objects.

Remark 3.2 Applying the same argument to the origin
vectors of the constituting hypertrees shows that these
are exactly the vertex coordinates of a rectilinear grid,
whose elements are exactly the bounding boxes of said
hypertrees. Because of this structure, it is sufficient to
describe it implicitly by storing one coordinate array per
dimension and a single orientation for the entire grid, at
a much smaller total cost between d( d

√
ΠE + 1), where

ΠE is the number needed for a full explicit store, (best

case: G3,f
(a,a,a)) and ΠE + 5 (worst case: Gd,f

(a,1,1)) all hy-

pertrees consecutive along a single direction) floats, plus
a single integer.
From Hypertree Grid, one can derive a more constrained
and specialized structure called the Uniform Hypertree
Grid based on a regular rectilinear grid. This allows us
to describe the vertex coordinates in an even more im-
plicitly and compact manner based on coordinates of
bounding box for a constant cost of 2 ∗ d floats plus d
integers.

4 Properties and Operations

This design includes choices like defining optional prop-
erties, hypertree grid operation for the traversals, con-
nection with existing non-AMR algorithms and finally,
we introduce a hypertree grid-aware algorithm.

4.1 Properties

We made the choice to store some optional properties at
the hypertree grid.

4.1.1 Property: Depth-limiter Filters might want to ap-
ply depth-limiting strategy to reduce execution times at
the expense of mesh resolution. To do so, we introduce
a logical depth-limiter value at the hypertree grid level.

4.1.2 Property: Global Index Maps In scientific compu-
tations, multiple properties are generally defined, all of
equal length and allow for random access per cell index.
For AMR meshes, each cell has an associated indexed
value in each of these properties and is also mapped to
an hypertree node. To achieve this, a first index map
identifies each hypertree (Definition 4.1) and a second
index map associate a tag for each node in a chosen hy-
pertree (Definition 4.2).

Definition 4.1 The Hypertree Global Index Map nHT ∈
N of a hypertree (i, j, k) ∈ N3 is an injective function re-
turning values in [O,ΠE].

Definition 4.2 The Global Index Map ng ∈ N of one

vertex in a hypertree grid Gd,f
E , locally identified by nl ∈

N inside the constituting hypertree nHT ∈ N, is an in-
jective function:

Γd,f,E : N2 −→ N
(nHT ;nl) 7−→ ng

with nl ∈ [0 ;CnHT
[ where CnHT

is the number of cells
of a hypertree identified by nHT , and
ng ∈ [0 ;C[ where C is the number of nodes (strict or
not) in the whole hypertree grid.

One might want to define the Global Index Map implic-
itly. For instance, an implicit ordering of the cells might
be defined as ng = nl+

∑nHT−1
i=0 Ci, with the requirement

of the simulation properties following the same index-
ing. In practice, simulation properties are not ordered
the same way as the visualization needs, and so creating
an explicit Global Index Map will be mandatory. In any
case the indexing scheme will be applied for all proper-
ties and consequently all properties must be ordered the
same way.

4.1.3 Property: Bitmask As stated in Definition 3.1, a
non-strict node has always fd children. The notion of
bitmask is introduced to allow the masking of each hy-
pertree grid node. It is a bit array, sized equal to the
number of vertices (both non-strict and strict nodes).
It follows the global indexing scheme of the hypertree
grid. This bitmask is an attribute with negligible rela-
tive memory footprint, for it only consumes one bit per
tree vertex.
AMR simulations results we wish to support can dis-
tinguish between different materials participating in the
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simulation. A first visualization approach is to create a
single hypertree grid and define a simulation field value
on a per-cell basis for the whole mesh. This means that
for instance if one material with an associated simulation
property is present in a small portion of the whole simu-
lation domain, then a value must be defined for all nodes
of the AMR mesh, even those not participating in this
material. This can introduce unnecessary higher mem-
ory usage. Also with such approach, it is not possible to
visualize a single material directly without some filtering
process such as Threshold. The bitmask will be required
to virtually prune the trees for proper visualization of
the filtered hypertree grid. A second approach to handle
materials is to create one hypertree grid per material.
Depending on the materials presence in the simulation
results, such approach can greatly reduce the memory
footprint. The bitmask will still be of use to stick to the
actual material presence in the trees. Thanks to this sec-
ond approach, the associated simulation properties size
will be reduced depending on materials definition.
Furthermore, the bitmask offer opportunities to optimize
filters outputting hypertree grid memory-wise, when cou-
pled with some shallow copy operations. When doing so,
simulation properties size are kept identical, and so any
new added property array will be as large as the origi-
nal mesh. When the filtering produces small meshes, it
is better for filters to generate a new hypertree grid of
smaller size, with smaller attached property arrays.

4.2 Hypertree Grid Operation

We are now at a point where we can represent and store
all tree-based, rectilinear axis-aligned AMR meshes we
want to support. The question that immediately follows
is that of operating efficiently on these. Hypertree grids
have properties that must be respected during traversal:
depth-limiter 4.1.1 and bitmask 4.1.3. Because a hyper-
tree grid is inherently a collection of hypertrees, it is only
natural to iterate over these as a way to traverse it in
its entirety. To traverse a hypertree grid, it is more than
encouraged to use the following abstractions: hypertree
accessor and iterator, cursor and supercursor.

4.2.1 Hypertree accessor and iterator To allow direct
access or iteration through the hypertrees we introduce
the hypertree accessor and the hypertree iterator, which
are illustrated in Figure 4.1:

GetTree(nHT ): From a defined hypertree grid, one can
access directly the nHT hypertree.

GetNextTree(): An hypertree iterator can be created
from a hypertree grid, and GetNextTree() is then
called to iterate through all the defined hypertrees,
thus avoiding undefined hypertrees.

4.2.2 Cursors Thanks to the hypertree obtained from
either hypertree accessor or iterator, it is possible to ask

the hypertree grid object to create what we call a cursor.
This cursor will only operate the hypertree it has been
created on.
We thus introduce the following object:

Definition 4.3 A cursor is a structure pointing to a ver-
tex of a hypertree of a hypertree grid, that can both access
its vertex attributes and move from its current vertex to
another connected vertex.

Any cursor will hold at least the following information: a
reference to the hypertree it is traversing and the identi-
fier of the vertex it is pointing to. From this information
it is possible to retrieve the associated Global Index ng

(cf. Definition 4.2). Also it is to be noted that by design
cursors are richer than iterators in the common sense as
they do not impose a predetermined traversal scheme.
Displacement operators might be available in each cur-
sor, illustrated in Figure 4.1, such as:

ToChild(ichild): descend into the vertex with child in-
dex ichild (cf. 3.2), respecting depth-limiter (cf. 4.1.1)
and bitmask 4.1.3, relative to the vertex currently
pointed at, except if already at a leaf.

ToParent(): move one vertex up in the tree, except if
already at the root.

ToRoot(): move to the root of the tree.

Fig. 4.1 Illustrating the different ways of operating on a
hypertree grid. GetTree(nHT ) or GetNextTree() operations
allow to get a tree from the hypertree grid, and ToRoot(),
ToParent() or ToChild(ichild) operates on a single hyper-
tree.

We subsequently define several frgrances to meet differ-
ent needs and allow for efficient implementations. Like
perfumes, concrete cursors types are created from a mix-
ture of fragrances. For instance, the Orientation fra-
grance, i.e. the Oriented or NonOriented values, expose
the following displacement operators:

Oriented: ToChild(ichild).
NonOriented: ToChild(ichild), ToParent() and ToRoot().

Other fragrance might be introduced when needed to
provide the set of operations to implement algorithms.
One might want to take into account the geometry, i.e.
coordinates of cell center and size, as well as orientation
or other fragrances. From the displacement operations
described previously, one can easily implement usual tree
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traversal such as Depth-First-Search (DFS) or Breadth
First Search (BFS).

Remark 4.1 Due to the different displacement operations
they will implement, the Oriented cursor will be more
efficient than Non Oriented version for simple traver-
sal since it naturally makes fewer operations. Thus one
should really pay attention to choose the appropriate
cursor answering needs. Picking a more complex cursor
than needed will lead to inefficiency.

Remark 4.2 The AMR mesh and hypertree grid object
do not provide mechanisms to directly access a cell. Cells
are identified by the Global Index ng, and we could get
a direct access by building a costly mapping between
ng and (nHT , nl), hypertree identifier and local identi-
fier within the hypertree. From this mapping a Oriented
cursor might be created, allowing one to get local in-
formation on the cell, such as the simulation property
value, and also descend in the desired children of this
cell. However it would not allow to retrieve more com-
plex information such as ascendance to get the parent or
the neighborhood.

4.2.3 Supercursors Many visualization algorithms re-
quire neighborhood information to perform their com-
putations. For instance the outside boundary extraction
algorithm generates a boundary face if and only if it is
not shared by two cells. In order to provide neighborhood
information we devised and implemented the following
compound structures:

Definition 4.4 A supercursor is a cursor (cf. Defini-
tion 4.3) that keeps track of a neighborhood information
based on the hypertree grid.

Implementing a supercursor thus entails providing the
logic necessary when operating on the hypertree to up-
date the neighborhood information which might be spread
across several hypertrees of the hypertree grid. When a
supercursor is created, its central cursor references the
cell root of the considered hypertree and neighborhood
information corresponds to the different root cells of the
neighbor hypertrees.
When a supercursor descends into a tree, the neighbors
of a cell can be a mix of cells on the same level (coarse or
leaf cells) or from previous levels because consequently
being solely leaf cells. This is illustrated in the upper part
of Figure 4.2: the yellow cell marked by the cross-shaped
structure has four neighbor across its edges. The top
and left neighbors of the cell are cells of lower level and
consequently are leaves. The right and bottom neighbor
are on the same level, and are respectively coarse and
leaf cells. We note in particular that a neighbor might
be referenced several times by the same supercursor. In
this case, this neighbor is necessarily a leaf cell at the
level above that of the supercursor. This is shown in the
lower part of Figure 4.2, where the supercursor references
the smaller yellow cell, while both top center and right

Fig. 4.2 Von Neumann (top) and Moore (bottom) neigh-
borhood of a cell; to the left, in a 2-dimensional binary
AMR mesh; to the right, corresponding neighborhood on the
mapped hypertree object.

neighbors are indeed the same referenced top right yellow
leaf cell from the level above.

4.3 Connection with existing non-AMR algorithms

Filters have been developed to exploit optimally hyper-
tree grid capabilities, and at the time of writing hyper-
tree grid-aware filters coverage is not as wide as filters
coverage for unstructured meshes which can be seen as
the historical reference.
Therefore, to help make hypertree grid exploitable for
the wealth of visualization scenarios, one should be ca-
pable of producing an unstructured view of the hypertree
grid. Depending on the targeted algorithms, different un-
structured views can be generated from the strict nodes,
see in Figure 4.3, and such views can be a complete rep-
resentation of the mesh or a partial one.

4.3.1 Non-conforming unstructured primal view This view
is trivially constructed by iterating with a cursor, thus
generating quad cells in 2D or hexahedral cells in 3D.
A cursor with the Geometry fragrance must be used,
providing access to origin coordinates and size of each
node. As stated in 2.1, AMR has T-Junctions and so the
resulting view will be non-conforming.

4.3.2 Conforming unstructured primal view
In order to resolve the difficulties posed by AMR T-
junctions it is possible to generate a conforming pri-
mal view by involving polygonal or polyhedral cells (i.e.
generic), based on quad or hexahedron surface with added
points on edges or faces for each AMR T-Junction. To
be noted, it is not trivial to identify which points to add.
The more differences in level there are between cells, the
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Fig. 4.3 Four representations of the same AMR mesh (d =
2,f = 2): top-left: a tree view describing all AMR cells, both
coarse and leaf ones; top-right: a non-conforming unstruc-
tured primal view using either quadrilaterals or hexahedra
(in green) to describe leaf cells; bottom-right: a conforming
unstructured primal view using generic cells (in red) for de-
scribing leaves with the red dots that indicate the additional
nodes; bottom-left: a conforming unstructured dual view (in
yellow) with red arrows indicate how the dual vertices may
be moved to produce an adjusted dual. Nodes having a blue
line from then to a mesh all participates in the description of
this cell. The non conformity of a mesh is seen as soon as a
cell is not described by all the nodes lying on its circumfer-
ence.

more T-Junctions are to be encountered. Moreover, ma-
nipulation and treatment of generic-cell based meshes
are more costly than their non-generic counterpart.

4.3.3 Conforming unstructured dual view Another way
to manage T-junctions is to generate a conforming un-
structured dual view, defined as follows.

Definition 4.5 Given d ∈ {1; 2; 3} and a d-dimensional
mesh M, referred to as the primary mesh, we define its
dual mesh M∗ as follows:

(i) to every d-dimensional cell e ∈ M is associated a
dual vertex v∗ ∈ M∗, located at the center of mass
of e;

(ii) to every vertex v ∈ M is associated a dual cell
e∗ ∈ M∗, whose vertices are exactly the dual ver-
tices v∗i ∈ M∗ such that v is a vertex of ei.

Depending on the value of d, dual edges and dual faces
are defined as the 1 and 2 dimensional elements of the
dual cells, respectively.

When replacing the primal AMR mesh with its dual or
its adjusted dual (which does not modify the topology),
then the problem of T-junction vanishes.
Original AMR mesh has its value cell-centered and dual
projection put the corresponding values on dual vertices.

Thus, filters designed for vertex-centered attributes (i.e.,
isocontour) can natively operate on the original simula-
tion values. Compared to primal approach, there is no
projection of the cell-centered attributes to vertices and
the visualization results are less smoothed.

4.4 Hypertree Grid-aware Algorithms

When designing hypertree grid-aware filters one should
pay attention to instantiate the proper (super)cursor(s)
to avoid the use of an unnecessary costly iterators. For
some filters it might even be very interesting to adopt
a multi-traversal strategy, where cursors of increased
complexity might be used, and maybe some pruning in-
volved in the preliminary traversals. To prune the trees
it is advised to use the bitmask. By relying on (su-
per)cursors, filters development is greatly simplified, and
hypertree grid properties such as dept-limiter are prop-
agated throughout the filters.
Filters should try to take advantage of the hierarchi-
cal properties of hypertree grid. For instance, non-strict
nodes have an associated value in the simulation proper-
ties, and so a filter could modify these values depending
on the goal to achieve.
Also, one should take advantage of the global index to
optimize filters memory-wise. This is especially useful
for sources and readers, where reordering the simulation
properties can be avoided, or strict nodes associated with
the same index in the simulation properties thus com-
pressing the data.
We note that some hypertree grid filters may rely on
already available algorithms taking non-AMR input. In
this case and for the sake of efficiency, instead of creating
the whole non-AMR input, i.e. an unstructured mesh,
these filters should stream [24] it, one unstructured cell
at a time, in order to lower memory consumption.

5 Method

After having established the necessary foundations for
our work, we now discuss the methodology that we used
to turn this theoretical framework into an actual imple-
mentation. While §3 can be understood as a frame of ref-
erence that shall not evolve much in the future, the con-
crete methods discussed below are, by nature, subject to
further improvements or revisions. In particular, we have
completely revised our approach to utilizing the dual, as
well as the design of supercursors, with respect to our
our earlier presentation [12]. We begin by describing our
methodological choices for efficient representation and
indexing of hypertrees and hypertree grids.

5.1 The Compact Representation

Using strict nodes entails a relative memory overhead
whose ratio is within [ 1

fd ;
1

fd−1
], tending towards the
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upper bound of this interval as the number of nodes
increases. It thus follows that the number of leaves dom-
inates that of strict nodes. Which is why we sought to
implicitly define the leaves, while explicitly storing in
memory only the strict nodes. Such a compact represen-
tation still allows for traversal, at the cost of minimal ad-
ditional processing when visiting the leaves due to their
implicitness compensated by fewer cache missing.

In order to fully describe a hypertree, it is therefore suf-
ficient that each strict node store one index to refer the
first amongst its children, called the eldest child node. It
is indeed sufficient to only store a reference to the eldest
when all children of a given cell are created as once as a
block of contiguous indices, at the end of the node array,
instead of allocating memory for each child which might
be non-leaf cell itself. Furthermore, the size of this block
is constant and equal to fd, by definition of a hypertree.
Using short integers with a size of four bytes (B), in or-

Fig. 5.1 Construction of a binary hypertree in dimension 1
with five leaves: the order in which it is performed impacts
the total memory footprint. At each step (#), the index in a
square is that of the nodes being refined; indices underlined
with a solid (resp. dashed) line represent allocated (resp. im-
plicit) nodes.

der to refine nodes, and denoting m ∈ N∗ the number of
its strict nodes, describing the topology of a hypertree
thus costs at a minimum 4m B for the indices of the
eldest children. The overall efficiency of this approach is
very sensitive to the topological structure of the tree and
the order in which it is traversed at construction time.
This is illustrated in Figure 5.1: when the topological
structure of the tree is created in DFS order, some un-
necessary allocations (namely, for nodes 4 and 5) occur;
in contrast, an optimal traversal only allocates space for
strict tree nodes. This worst case occurs when the last-
refined cell is also the last entry during the penultimate
refinement stage, and the cost for eldest children indices
can be as high as 4[1 + (m− 1)fd] B.

One thus obtains the following bounds for the memory
cost C(m):

4mB ≤ C(m) ≤ 4
[
1 + (m− 1)fd)B

]
.

Note that these theoretical values cost are rarely at-
tained. This lower bound is a theoretical memory foot-
print, with an ideal topology where all children, except
one, of a strict node have the same type (either all strict
nodes, or all leaves) and ideal implementation (the traver-
sal strategy refines last all strict nodes than only have
leaf children). Unfortunately, there is not a way to de-
vise a traversal strategy that is optimal for all possible
topological structure of trees.
When using n ∈ N∗ hypertrees embedded inside a hy-
pertree grid, we obtain this new for the memory cost
C(m,n)

4mB ≤ C(m,n) ≤ 4
[
n+ (m− 1)fd)B

]
.

On the other hand, the memory footprint relative to the
description of the spatial grid, using double precision
floats to store coordinates, is least equal to 8 (3 + d d

√
n) B

for a square or cubic grid, and at most 8(d + n + 2) B
for a linear grid.
However, all aforementioned theoretical lower bounds
are difficult to attain. But as the lowest possible bound
for a given topology may be attained with an optimal im-
plementation, it is thus the developer’s responsibility to
decide whether additional CPU processing is acceptable
in order to achieve a better memory footprint, with po-
tentially considerable gains. For instance, in the octree
case (d = 3, f = 2), the memory gain factor between
this AMR description and its explicit, unstructured all-
hexahedral equivalent ranges within [14; 112].

5.2 The Global Index Map

One possible choice to build a concrete Γd,f,E is to com-
bine a 0-level indexing of the constituting hypertree roots
with the child index maps in each of these hypertrees.
For instance, the 0-level indexing can be the lexicographic
order applied to JEJ. One can then set

Γd,f,E(nl; i; j; k) = nl + Si,j,k

where Si,j,k is the global index start of the hypertree
object at position i, j, k in the Cartesian grid of hypertree
objects. By construction, the restriction of Γd,f,E to any
particular hypertree, being piece-wise affine with unit
slope, is strictly increasing over N and therefore injective.
Therefore, if the Si,j,k are chosen so that there be no
overlap across the image spaces of these per-hypertree
restrictions, then Γd,f,E as a whole is injective and thus
satisfies the specification of Definition 4.2.
In this setting, the global index start of each constituting
hypertree only needs to be stored as an integer offset, at
the cost of 8 B per hypertree. In practice, this can be
achieved by constructing the hypertree grid one hyper-
tree object at a time, and incrementing the global index
start when moving to the next hypertree with the num-
ber of vertices in the last constructed hypertree.
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It is important to note, however, that this method to
build the global index map by means of assigning a
global index start per constituting hypertree is in no
way mandatory. Rather, our implementation provides
the ability to specify an arbitrary version of Γd,f,E ; it
is the responsibility of the developer to ensure that this
map complies with the requirements of Definition 4.2. In
addition, such an explicit definition increases the total
memory footprint by the cost of representing as many
integers as there are vertices in the hypertree grid.

5.3 A Hierarchical Approach to Cursors

We now justify why and how the concept of cursors, in-
troduced in §4.2, naturally lends itself to efficient tree
traversal. We propose to illustrate with following algo-
rithm: one may request cursor creation by using the in-
dex of a hypertree, indHT , as done, in Algorithm 5.1.
Subsequently, the created cursors may be used to per-
form a hypertree grid traversal such as DFS-type (Depth-
First-Search) as described in the Algorithm 5.2. In order

Algorithm 5.1 InitializeDFS(htg, indHT )

1: cursor ← NewNonOrientedCursor(htg, indHT )
2: ToProcessDFS(cursor)

Algorithm 5.2 ToProcessDFS(cursor)

1: if ¬IsLeaf(cursor) then
2: for all iChild ∈ JfdJ do
3: ToChild(cursor, iChild)
4: ToProcessDFS(cursor)
5: ToParent(cursor)
6: end for
7: end if

to meet different needs and to allow effective implemen-
tations, several fragrances, introduced in §4.2.2, are al-
ready defined with the methods necessary for accessing
to this enriched information built on the fly:

1. Movement (no default)
Oriented: ToChild(ichild).
Non Oriented: ToChild(ichild), ToParent() and To-

Root().
2. Geometric (default not explicit expressed)

Geometric: GetOrigin(),GetSize(),GetBounds() (bounds
box including cell), GetPoint() (center cell).

3. Topological (non default)
Cursor: No neighbors descriptions.
VonNeumannSuperCursor: Neighbors in 1−d by points,

2− d by edges, in 3− d by faces
MooreSuperCursor: Neighbors by points, edges and

faces

4. Neighbors (default not explicit expressed with all cur-
sors contain a Geometric fragrance)
Light: Only the center cursor contains a Geometric

fragrance

Fig. 5.2 This figure describes the subsets, where the hor-
izontal axis distinguishes, left to right, between 3 increasing
levels of complex topological information (single, Von Neu-
mann and Moore); meanwhile, the vertical axis separates,
from bottom to top, between the 4 different levels of geomet-
ric information (without, just center cursor, Von Neumann
neighbors cursor and, for finish, Moore neighbors cursor) that
could conceivably be needed by hypertree grid filters.

Apart from the specifics of the cursors linked to their fra-
grances, the latter have some interesting common abili-
ties:

(i) To suggest to create a new hypertree from an index
when creating or initializing a cursor;

(ii) To choose to refine anytime, just the center cursor
for supercursors.

Like perfumes, each proposed concrete cursor type is cre-
ated from a mixture of fragrances and named by con-
catening the fragrances’ name used. Only the types of
cursors that are required for our needs are currently im-
plemented, as follows:

OrientedCursor

NonOrientedCursor

OrientedGeometricCursor

NonOrientedGeometricCursor

NonOrientedVonNeumannSuperCursorLight

NonOrientedMooreSuperCursorLight

NonOrientedVonNeumannSuperCursor

NonOrientedMooreSuperCursor

The geometric and topological properties of these con-
crete cursor types are summarized from a qualitative
vantage point in Figure 5.2.
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It is of course permissible to define new fragrances. Sim-
ilarly, should other types of connectivities arise in the
future, these would readily find their place along the
topological complexity scale. This ability to extend the
functionality of the cursors allows us to refine the algo-
rithms to optimize the execution speed.

5.4 Supercursor Traversals

In the case of cursors that are not supercursors, both
methods are relatively easy to design, and are therefore
not discussed in detail here. Furthermore, the ToRoot()
method for Movement fragrance is also rather simple to
implement for supercursors, given the Cartesian layout
of a hypertree grid at the root level.
The matter is more complicated for ToChild(ichild).
However, because all neighborhood cursors must be up-
dated upon descent of the supercursor into a child node.
This descent on each of these cursors must take into
account the depth-limiter and bitmask properties of hy-
pertree grid that could have been positioned. This up-
date cannot be done a priori, because neighborhoods no
longer have a Cartesian grid structure as soon as depth is
non-zero. Instead, the neighborhood of a child must be
explicitly computed from that of its parent. This task
may seem daunting at first glance, but we devised an
approach based on pre-computed traversal tables that
greatly facilitates these updates.
Given a supercursor s pointing at a cell C, each of the
children of this cell are uniquely identified by their re-
spective child index i ∈ JfdJ, as explained in Defini-
tion 3.2. Now, given f and d, there exists a unique map-
ping from the entries of the supercursor of child Ci into
those of its parent C.

Fig. 5.3 Supercursor transformation through to child when
d = 1 and f = 3: parent cursor indices (black), child indices
(green), the three result for each transformation through to
child for a child index 0, 1 and 2 with child cursor indices
(blue). s is a supercursor pointing at a cell C, si is a super-
cursor pointing at a cell Ci, child i of C.

5.4.1 One-Dimensional Case Consider for instance the
1-dimensional case, where the Von Neumann and Moore
supercursors are identical, with both having 3 cursors.
Figure 5.3 illustrates this case, with a solid black line

representing a coarse cell C divided with 3 children cells
(C0, C1, C2); child indices are indicated in green. Poten-
tial neighbor cells are shown on both sides with dashed
lines; child indices adjacent to the cell of interest are la-
beled as well. In the same figure are also pictured the
supercursors centered at C (above the line) and those
centered at each of its children (below).
Child Cursor to Parent Cursor Table: In this case, the
cursor with index 0 (i.e., pointing to the left) of the su-
percursor s0 centered at child C0 will point towards to
either the same cell as cursor with index 0 of the super-
cursor s centered at parent cell C, or to one of its chil-
dren. Meanwhile, the two other cursors of s0 will point
to either the same cell as cursor with index 1 of s, or
to one of its children. This logic thus yields the follow-
ing map, between child and parent cursors, for child 0:
0 7→ 0, 1 7→ 1, and 2 7→ 1, denoted (0; 1; 1) in compact
form. One can easily deduce the corresponding maps for
the children of C with indices 1 and 2, by reading the
blue indices of Figure 5.3 from left to right, mapping
them to the cursor indices in black for the corresponding
parent supercursor. When concatenated in child index
order, these 3 maps provide the child cursor to parent
cursor table for the case where d = 1 and f = 3, i.e.
(0; 1; 1; 1; 1; 1; 1; 1; 2). Note that the or to one of its chil-
dren clause above may occur only when the cell towards
which a cursor c of the supercursor is pointing is not a
leaf.
Child Cursor to Child Index Table: As explained in §4.2.3,
c cannot point to a cell of depth greater than that of C,
but a supercursor centered at child of C can point to
cell exactly at most one level deeper. When this situa-
tion occurs, c must be descended into the adequate child
of the parent cell neighbor in order to retrieve the cor-
responding vicinity cursor of the child supercursor. For
example, in Figure 5.3, if cell Ci, with i ∈ 1, 2, 3, towards
which the cursor with index 0 in the supercursor of C is
pointing is not a leaf, then the cursor with index 0 in the
supercursor of child cell C0 must point towards the child
with index 2 of Ci. Another type of map is therefore re-
quired to perform the descent into the relevant children
of coarse cells whenever necessary. In the current exam-
ple, C is coarse, hence cursor with index 1 in s0, (i.e.,
the center cursor) will point to C0 itself, i.e. to the child
cell with index 0. Similarly, C being coarse, cursor 2 of
s0 will point at child with index 1 of C. We hence ob-
tain the following map in compact form: (2; 0; 1). The
corresponding maps for children C1 and C2 are obtained
accordingly, reading the green indices of Figure 5.3 from
left to right, mapping them to the child cursor indices
in blue for the corresponding child supercursor. When
concatenated in child index order, these maps yield the
child cursor to child index table for the case where d = 1
and f = 3, i.e. (2; 0; 1; 0; 1; 2; 1; 2; 0).

5.4.2 Two-Dimensional Case For the sake of additional
illustration, we provide the corresponding diagrams for
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Fig. 5.4 Von Neumann supercursor d = 2 and f = 2: par-
ent/child and child/child relationships (left), corresponding
traversal table (right) with vicinity cursor indices in blue,
child indices in green, and parent cursor indices in red.

the Von Neumann supercursor when d = 2 and f = 2 in
Figure 5.4.

5.4.3 General Case Such schematics can be used to de-
rive all traversal tables, for all types of supercursors and
all possible values of d and f . Drawing on all possible
cases would however be a tedious as well as error-prone
task, so we implemented a Python script in order to
generate the 2804 entries filling the 24 (2 × 2 × 2 × 3)
possible tables. Traversal table initialization can thus be
performed only once at supercursor construction time,
based on template parameter value and type of super-
cursor. This methodology thus ensures code correctness,
as well as optimal execution speed for table entry re-
trieval is only a matter of random access in a small static
arrays.

When endowed with these pre-computed tables, updat-
ing supercursors when performing a traversal becomes
easy: given a supercursor s centered at a given coarse
cell, all of its cursors are copied in temporary storage to
avoid memory stomping as cross-permutations will oc-
cur. Then, given a child index i, for each cursor index j
the corresponding cursor index k in the parent super-
cursor is retrieved from the child cursor to parent cursor
table. The cursor with index k of the parent supercursor,
previously copied as c[k], is assigned to the child cursor
and if c[k] points at a leaf, then the update is complete.
However, if c[k] points to a coarse cell, it must be de-
scended into, using the appropriate child index retrieved
from the child cursor to child index table.

This scheme is summarized in Algorithm 5.3. We explic-
itly distinguish between the SuperCursorToChild(c, i)
and CursorToChild(s, i) methods in order to empha-
size that this method is not recursive: when descent into
a child is required, it is only performed on a cursor of
the supercursor, not on the supercursor itself. Note that
this formulation of the algorithm ignores, for the sake of
legibility, everything that regards the geometric updates
that must also be performed.

Algorithm 5.3 SuperCursorToChild(s, i)

1: n← GetNumberOfCursors(s)
2: for all j ∈ JnJ do
3: c[j]← GetCursor(s, j)
4: end for
5: C ← GetChildCursorToChildTable(s, i)
6: P ← GetChildCursorToParentCursorTable(s, i)
7: for all j ∈ JnJ do
8: k ← P [j]
9: GetCursor(s, j)← c[k]
10: if ¬IsLeaf(c[k]) then
11: CursorToChild(GetCursor(s, j), C[j])
12: end if
13: end for

5.5 The Virtual Dual

Our approach is to use duality as a natural means to pro-
cess conforming cells when necessary for the considered
visualization technique, while adding the two following
design requirements:

(i) ready access to individual dual cells when required,
(ii) storage of the entire dual mesh is prohibited.

Fig. 5.5 Left: a 2-dimensional tree-based AMR mesh M
(gray), overlaid withM∗ (blue), showing dual cell ownership
by primal vertices with orange arrows; right: cursor indices
in a 2-dimensional Moore supercursor, used as tie-breakers
for dual cell ownership amongst the deepest primal cells.

In order to avoid cell replication in the dual grid, our
method assigns ownership of dual vertices to a single
leaf, amongst the 2d that may be neighbors of a primal
vertex in dimension d: specifically, ownership of the dual
cell is assigned to the deepest of these leaves, breaking
ties in favor of the one that has the greatest cursor index
relative to the others. Specifically, the function that de-
termines ownership of the dual cell at any corner i ∈ J2dJ
of an arbitrary leaf cell, at which a Moore supercursor s
is centered, is explained in Algorithm 5.4 and illustrated
in Figure 5.5, left. The 3-dimensional integer array called
CornerNeighborsCursorTable is a table that provides,
given a d-dimension Moore supercursor and a corner in-
dex, the indices of the cursors that surround said corner.
that surround centered at a cell is a corner-to-leaf traver-
sal table to retrieve the 2d indices of all the cell cleaves
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Algorithm 5.4 IsOwner(s, i)

1: δ ← GetDepth(s)

2: ω ← 3d−1
2

3: for all j ∈ J2dJ do
4: k ← CornerNeighborCursorsTable[d][i][j]
5: c← GetNeighbor(s, k)
6: if Masked(c)∨¬IsLeaf(c)∨ (k > ω∧GetLevel(c) = δ)

then
7: return False

8: end if
9: end for
10: return True

touching a given corner of a given cell. For example in
dimension 2, as illustrated in Figure 5.5, right, we have:

CornerNeighborCursorsTable[2][0] = {0; 1; 3; 4},
CornerNeighborCursorsTable[2][1] = {1; 2; 4; 5},
CornerNeighborCursorsTable[2][2] = {3; 4; 6; 7},
CornerNeighborCursorsTable[2][3] = {4; 5; 7; 8}.

Although this method keeps the additional memory foot-
print at the strict minimum, by avoiding dual cell dupli-
cation. Our methodology consists of utilizing a virtual
dual, of which only one cell can be stored at any point
in time. Provided an efficient way to generate, on de-
mand, such individual cells from the virtual dual can be
devised, then all memory footprint problems will van-
ish. Meanwhile, and by the same token, it will remain
possible to apply visualization techniques that must, by
design, operate on the cells of a conforming mesh. In this
goal, we retained from our earlier approach the notion of
dual item ownership, with the subtle yet important dif-
ference that it is expressed in terms of primal cell (and
hence dual vertex) ownership of dual cells. This trade-
off comes obviously at the price of added computational
cost for the benefit of memory footprint, as the dual is
not computed and stored once and for all.

5.6 Filters

We now discuss our methodology to filtering, i.e. apply-
ing visualization and data analysis algorithms, to hyper-
tree grid objects. We begin with the case of geometric
transformations, which can be especially efficiently ad-
dressed thanks to the notion of geometric embedding.
We then explain our two-pass approach, based on a pre-
selection stage, used to improve execution speed for those
algorithms that rely on heavyweight supercursors. This
section closes with a high-level description of the cur-
rently implemented filters, whose choice was dictated by
actual analysis needs rather than for the sake of aca-
demic interest, and how they relate to the previously
discussed cursors and supercursors.

5.6.1 Geometric Transformations We recall that, as de-
fined in §3.2, we can represent the geometry of any ar-
bitrary rectilinear, tree-based AMR by means of the 3-
dimensional embedding (−→x ;−→s ) ∈ (R3)2 of its hypertree
grid equivalent. Because we restricted ourselves to the
case of axis-aligned geometries, not all geometric trans-
formations can be represented with this model: for ex-
ample, a projective transformation will not transform,
in general, a rectilinear hypertree grid into another. In
fact, not even all affine transformations are suitable: as
a result of our choice to only support axis-aligned grids,
arbitrary rotations cannot be supported within our cur-
rent framework either. Nonetheless, restricting possible
transformations to that preserve alignment with the co-
ordinate axes entails no loss of generality because, the
AMR grids we aim to support are assumed to be axis-
aligned by design (cf. §3.2).
For example, it is easy to see that all axis-aligned reflec-
tions, i.e., symmetries across a hyperplane that is normal
to one coordinate axis, comply with the requirements
above, being affine and preserving parallelism with all
coordinate axes. We call AxisReflection such a trans-
formation filter in our nomenclature. Furthermore, the
reflection across a hyperplane in dimension d ≤ 3, that
is normal to axis i ∈ J0; dJ and has coordinate ω ∈ R
can be embedded in dimension 3 as follows:

ri,ω : R3 −→ R3

(x0;x1;x2) 7−→ (x′
0;x

′
1;x

′
2)

where

∀k ∈ {0; 1; 2}

{
k = i ⇒ x′

k = 2ω − xk,

k ̸= i ⇒ x′
k = xk.

It thus follows that the image by ri,ω of the 3-dimension
geometric embedding of an hypertree object is

ri,ω(
−→x ;−→s ) = (ri,ω(

−→x );−→s −i),

where −→s −i denotes the vector equal to −→s , save for its
i-th coordinate which is opposed to that of −→s . There-
fore, the geometric embedding of the image by ri,ω of an
hypertree grid is exactly the collection of all image geo-
metric embeddings of its constituting hypertrees. Axis-
aligned reflection of hypertree grid objects can thus be
implemented in a way that only operates upon the geo-
metric embeddings using the very simple formula above.
As a result, such an implementation is both extremely
fast and memory efficient, for all it needs to do is create
a new array of transformed coordinates along a single
axis for the geometric embeddings of its constituting hy-
pertrees. Meanwhile, the topological structures of said
hypertrees only have to be shallowly copied.

5.6.2 Dual-Based Filters As explained in 5.5, we de-
vised the concept of virtual dual, in order to extend the
range of applicability of our original dual-based approach
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to include large-scale meshes. The elements of this vir-
tual dual are thus to be generated, processed and dis-
carded at once as the filter traverses the input grid. In
order to generate the dual cell associated with an arbi-
trary primal vertex (corner) as illustrated in Figure 5.5,
left, a filter must be able to iterate over all primal cells
sharing that corner.
Traversal of the input AMR mesh is performed over
the vertices of the corresponding hypertree grid using
cursor objects discussed in 4.2.2. Therefore, on-the-fly
dual cell creation occurs by iterating over all corners
of all input primal cells and, for each such corner, it-
erating over all primal cells having it as a corner. In
dimension 2 for instance, there can be 2 across-edge
neighbors and 1 across-corner neighbor to a primal cell
that shares a given corner thereof. In dimension 3, three
across-face neighbors can also exist, as well as an one
additional across-edge neighbor. The cursor must thus
provide Moore neighborhoods so that all those types of
neighbors of a cell are made available when iterating
around one of its corners.
In addition, when a dual cell must actually be gener-
ated, based on the ownership rules introduced in 5.5, its
vertices are, by definition, located at primal cell cen-
ters (and possibly moved the primal boundary when
dual adjustment is be performed). As a result, the cur-
sor must also provide access to the geometric informa-
tion of all neighbors. Both features, topological and geo-
metric, are provided by the Moore supercursor which is
thus required by all dual-based filters. This super-cursor
is the most complex in our hierarchy of cursors, and
every traversal operation onto it requires many opera-
tions, with a computational cost that becomes quickly
prohibitive as input mesh size increases. This can result
in losses in interactivity detrimental to the analysis pro-
cess, or even in unacceptable execution times.

Fig. 5.6 Stages of a two-stage filter applied to one con-
stituting hypertree within a binary hypertree grid. Left:
pre-processing stage with post-order DFS traversal, using a
lightweight cursor, selecting vertices check-marked in green.
Right: main stage with pre-order DFS traversal with a heav-
ier cursor, only across pre-selected vertices. The indices re-
flect the order in which vertices are processed by each stage.

In order to circumvent this difficulty, we devised a two-
pass approach where a more lightweight cursor is used to
traverse the entire mesh in a pre-processing stage, select-
ing only those cells that are concerned by the algorithm.
The dual-based computation is thus only performed in
the subsequent processing stage, where only those pre-
selected parts of the grid are actually traversed by the

most expensive Moore supercursor. Specifically and as il-
lustrated in Figure 5.6, the pre-selection stage uses post-
order DFS traversal, in order to propagate upwards per-
branch selection (and possibly aggregated attribute in-
formation as well), whereas the main stage is performed
with pre-order DFS fashion, immediately processing the
pre-selected cells in the order in which they are reached
when skipping non-selected branches. Albeit more com-
plex in appearance, this two-stage approach can in fact
be dramatically more efficient than a direct traversal of
the input grid with the most complex cursor, provided
a clever pre-selection criterion not requiring neighbor-
hood information be contrived. The key success factor
to this approach thus rests on devising a criterion that
is easy to compute with minimal information and yet is
discriminatory enough so as to avoid as many false pos-
itives as possible (while false negatives will result in an
incomplete output).

5.6.3 Concrete Filters We now provide a brief overview
of the filters we have developed so far, as concrete in-
stances of our cursor-based general methodology. This
list can, and most likely will, be extended as dictated by
tree-based AMR post-processing needs.

AxisClip: clip, i.e., mask out all input cells that do
not fulfill a geometric condition that can take three
forms: hyperplane, rectangular prism (shorthand box ),
or quadratic function. In hyperplane mode, only those
leaf cells that are either intersected by said hyper-
plane or wholly within a prescribed half-space that
it defines are retained. A similar selection process oc-
curs in box mode, based on whether cells are inter-
sected by said box or located entirely in its interior.
In quadratic mode, a leaf cell is retained if and only
if said function takes on positive values at all corners
of this cell. The hypertree grid output always has a
bitmask even when the input does not.

AxisCut: produces a 2-dimensional hypertree grid out-
put from a 3-dimensional input, comprising the inter-
section of all cells in the latter that are intercepted by
an axis-aligned plane. The output has an associated
bitmask only when the input has one.

AxisReflection: already presented as a geometric trans-
formation filter exemplar in §5.6.1.

CellCenters: generates the set of points consisting of
the centers of the leaf cells in a hypertree grid, with
the option to make it also a polygonal data set con-
taining only vertex elements.

Contour: computes polygonal data sets representing iso-
contours corresponding to a set of given values for the
cell-wise attribute, using a dual-based approach with
a pre-selection criterion discussed in detail in §5.7.

DepthLimiter: stops the descent into each of the con-
stituting hypertrees whenever either a leaf or the re-
quested maximum depth are reached; in the latter
case, a leaf is issued to replace the reached node, and
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Table 5.1 Cursors vs. filters: unless otherwise mentioned, check-marks correspond to the cursors used to iterate over the
input grid, when needed (which is not always the case). d denotes the dimensionality of the input grid. Cursors are arranged
left to right in increasing order of complexity. Here, they are all NonOriented.

Cursor GeometricCursor VonNeumannSuperCursorLight MooreSuperCursor

AxisClip ✓(output) ✓

AxisCut ✓(output) ✓

AxisReflection

CellCenters ✓

Contour ✓(pre-processing) ✓

DepthLimiter

EvaluateCoarse ✓

Geometry ✓(d < 3) ✓(d = 3)

ImageDataToHyperTreeGrid ✓(output)

PlaneCutter
primal

dual ✓(pre-processing)

✓

✓

Threshold ✓

ToDual ✓

ToUnstructuredGrid ✓

therefore all its descendants too. The output is a hy-
pertree grid that has a bitmask only if the input does
as well. The aim of this filter is to reduce the restitu-
tion time by limiting the traversal depth and by this
way the number of treated cells. A counterpart is to
make some coarse cells visible.

EvaluateCoarse: produces a shallow copied hypertree
grid output with a new field obtained by copying
the values of a field input, each coarse value having
been calculated from children values by applying an
operator. e.g., first child, minimum, maximum, sum,
average.

Geometry: generates the outside surface of a hypertree
grid as a polygonal data set, in particular for ren-
dering purposes. Note that, already memory costly
in dimension 3, this conversion into an unstructured
mesh can, in dimension 2, create an output whose
footprint may be several orders of magnitude larger
than that of the hypertree grid input.

ImageDataToHyperTreeGrid: generates a hypertree grid
output with an associated bitmask from a 2−d PNG
image.

PlaneCutter: similar to the AxisCut, except that it can
take an arbitrary plane as cut function, to produce a
polygonal data set output. This filter has two modes
of operation: primal or dual. In primal mode, both
topology and geometry of the original leaf cells are
preserved, hereby ensuring that no interpolation er-
ror may occur and that the cut planes extend to the
primal boundary, at the topological cost of produc-
ing T-junctions wherever the cut plane intercepts an
interface between cells at different depths.

Threshold: produces a hypertree grid output with an
associated bitmask, even when the input does not

have any, in order to mark out all cells whose at-
tribute value is not within a specified range.

ToDual: generates the entire dual mesh, possibly ad-
justed. For the reasons developed in §5.5, this fil-
ter should never be used with sizable hypertree grid
inputs, but only for prototyping or illustration pur-
poses.

ToUnstructured: generates a fully explicit unstructured
grid data set whose elements are exactly the leaf cells
of the input hypertree grid, represented as rectangu-
lar prisms (i.e., lines, quads, or voxels depending on
the dimensionality of the input). The output thus
has exactly the same geometric support as the input;
it is not a conforming mesh due to the presence of
T-junctions. In addition, it is prohibitively expensive
for sizable AMR meshes and shall thus only be used
for prototyping or illustration purposes.

These filters are implemented using their respective min-
imal cursors within the set described in §4.2.2. The cor-
respondence between filters and cursors is provided in
Table 5.1; it is left to the reader to examine why these
relationships are indeed both correct and minimal.

5.7 Isocontour

We conclude this methodological discussion by empha-
sizing the case of isocontour, because it is arguably one of
the most widely used amongst all existing visualization
techniques, while being especially difficult to perform on
AMR grids – in practice, impossible when dealing with
large grids if they must be converted to an explicit grid
prior to isocontour. It is important to mention that we
isocontour hypertree grid attribute fields by consider-
ing only their values at leaf nodes. This design choice is
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made in order to simplify a complex problem. Note how-
ever that subsequent implementations could be allowed
to take into account field values at strict tree nodes as
well. That said, there is no known, efficient isocontour
algorithm for general polyhedral meshes.

Instead, the canonical approach is to subdivide polyhe-
dra into simplices which are subsequently isocontoured1.
As discussed in §3, this approach is prohibitive in terms
of memory footprint and execution time. It is there-
fore natural to consider a dual-based approach to tackle
isocontour of hypertree grids. Therefore, as explained
in §5.6.2, the computational efficiency of the algorithm
rests upon a pre-selection criterion, deciding whether a
cell may be intercepted by an isocontour without any
information retrieval concerning its neighbors.

Given a hypertree grid H with nv vertices and an array
C of isovalues, our selection criterion defines |C| Boolean
arrays with length nv called sign arrays. For every value
in C with index j ∈ J|C|J, the corresponding signed ar-
ray is denoted Sj . The goal of each Si is to capture the
relative position of the field of interest at all tree ver-
tices, with True (resp. False) when the cell-centered2

value is greater (resp. smaller) than C[j].

We also define another Boolean array, T , called the truth
array, with length nv as well. We note that T is global
to the entire set of isocontours and is used to pre-select
tree cells that will be immediately isocontoured by the
main processing phase. Only one such T is used across
all isocontours because a dual cell must be generated
when required by at least one isovalue. Algorithm 5.5
summarizes the pre-processing stage, for every cursor
position c inside the input hypertree grid H. The goal
of this function is two-fold: first, store the position of
the attribute value of c relative to each of the isovalues
in each of the Si arrays; second, store the truth value
at T [c] to indicate whether c is intercepted by at least
one isocontour. When c is coarse, T [c] can be True only
when c has in its descent at least two leaf cells with
opposed signs; in this case, the Si[c] values are irrelevant.
In contrast, when c is coarse and T [c] is False, then
its entire descent has the same sign, defining the value
stored in Si[c]; in this case, T [c] as well as the Si[c] values
are relevant. When c is a leaf, T [c] is not meaningful and
is assigned False by default; in this case, the Si[c] values
are relevant. As required, Algorithm 5.5 needs neither
geometric nor topological information, hereby allowing
for the use of the lightweight TreeGridCursor for the
pre-processing stage. We note that a single function T
is used for all isocontours because a dual cell must be
generated when required by at least one isovalue.

Subsequently, the contouring stage executes the function
RecursivelyProcessTree(), described in Algorithm 5.6,

1 provided the interpolation scheme be linear, an axiom
which we make for the type of elements we want to support,
and which therefore we will not discuss further here.

2 or, for the sake of isocontour, considered as such.

Algorithm 5.5 RecursivelyPreProcessTree(c)

1: if IsLeaf(s) then
2: if ¬Masked(s) then
3: for all i ∈ J2dJ do
4: if IsOwner(s, i) then
5: D ← GenerateDualCell(s, i)
6: for all j ∈ J|C|J do

7: I +← MarchingCube(D, j)
8: end for
9: end if
10: end for
11: end if
12: else
13: i← GetGlobalIndex(s)
14: for all j ∈ J|C|J do
15: for all k ∈ J2dJ do
16: l← GetNeighborGlobalIndex(s, k)
17: if T [i] ∨ T [l] ∨ Sj [i] ̸= Sj [l] then
18: for all k ∈ JfdJ do
19: RecursivelyProcessTree(GetChild(s, k))
20: end for
21: return
22: end if
23: end for
24: end for
25: end if

upon every cell of H, using a Moore supercursor s. For
each generated dual cell D and each contour value C[j],
the call to MarchingCube(D, C[j]) returns set of poly-
gons (possibly empty) that is appended to the isocon-
tour mesh I. The MarchingCube [22] function is nothing
more than that which exists and can be used by vari-
ous contour filters for generate one or more isocontours
that produce a unstructured mesh. Here, cell by cell, this
function is applied after building an unstructured cell.

Fig. 5.7 Close-up view of an iso-surface generated by the
native isocontour filter with a large hypertree grid input.

Figure 5.7 illustrates the results of the main isocontour
phase, following the pre-processing stage, in the case of
a large AMR simulation.
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Algorithm 5.6 RecursivelyProcessTree(s)

1: if IsLeaf(s) then
2: if ¬Masked(s) then
3: for all i ∈ J2dJ do
4: if IsOwner(s, i) then
5: D ← GenerateDualCell(s, i)
6: for all j ∈ J|C|J do

7: I +← MarchingCube(D, j)
8: end for
9: end if
10: end for
11: end if
12: else
13: i← GetGlobalIndex(s)
14: for all j ∈ J|C|J do
15: for all k ∈ J2dJ do
16: l← GetNeighborGlobalIndex(s, k)
17: if T [i] ∨ T [l] ∨ Sj [i] ̸= Sj [l] then
18: for all k ∈ JfdJ do
19: RecursivelyProcessTree(GetChild(s, k))
20: end for
21: return
22: end if
23: end for
24: end for
25: end if

5.8 Parallel Implementation

Even with this memory and computation efficiency, vi-
sualization of data from HPC simulation may require
more than a compute node as large as it is, moving from
sequential execution to parallel execution. The parallel
word refers to autonomous processes that work on the
same physical computer and interact with each other
through message passing. The mesh is then distributed
over these autonomous processes. A priori, the use of
several processes must also improve the restitution time
for a given problem, this can also be a solution when
interactivity is not as smooth as desirable. However, ef-
ficiency being directly related to the quality of the mesh
distribution, or more broadly to the balancing of com-
putational loads. In fact, depending on the execution
parameters or simply the choice of the algorithm, the
cost per cell is very variable. The application of a filter
will likely cause and load imbalance that would impact
the following filters. Applying a rebalancing filter neces-
sarily causes a memory overhead since the input mesh
must be retained to potentially power other filters.
Some filters require information that goes beyond what
is available locally. Often it is because the processing
requires the data from neighboring meshes to the local
domain, as for isocontour or gradient computation. A
mechanism must be developed in order to locally copy
to a process this information that is available to oth-
ers. This approach, called the ghosts cells method is de-
scribed in [13]. For a given mesh, this has the effect of
growing the overall memory needed when increasing the

number of processes. Currently, the distribution is the
one given at the beginning and is not being challenged
while running the processing pipeline which can be com-
plex.

We acknowledge that other approaches to paralleliza-
tion exist, such as the use of multiple threads, but are
not discussed here because those can be considered as
implementation details.

6 Results

We now discuss the main results obtained with the hy-
pertree grid object, beginning with a study of its perfor-
mance in terms of memory footprint. We continue with
an overview of the filters that we have developed so far
for this object with a focus on the massive memory sav-
ings allowed for by our approach based on separating
geometry from topology through the analysis of axis-
aligned reflection filter. Finally, we expose performance
on various datasets of real-world data ranging from mod-
erate to large-scale. These results are those obtained
with our concrete implementation in VTK version 8.

6.1 Hypertree Grid Object

We begin with the case of a hypertree grid with 150 con-
stituting hypertrees, used to represent a variable number
of cells in an AMR mesh.
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Fig. 6.1 Execution time (red) and memory footprint (blue)
versus number of cells in a synthetic hypertree grid.

Figure 6.1 illustrates this case, when a varying number
of cells is obtained by increasing the tree depth δ ∈ [1; 6].
When δ = 1, only root-level cells are present in the con-
stituting hypertrees, resulting in relatively high memory
fixed costs per hypertree; as δ increase, these costs are
progressively diluted by the ensuing greater number of
hypertree cells. In addition, we observe a linear speedup
in terms of execution time, hereby demonstrating the
scalability of our approach.
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Fig. 6.2 Execution time (red) and memory footprint (blue)
versus number of processors used to represent a 2D AMR
mesh with O(108) leaves; solid (resp. dashed) lines corre-
spond to a hypertree (resp. unstructured) grid.

Figure 6.2 demonstrates the strong scalability (i.e, with
fixed total workload) of our approach, which scales al-
most optimally for memory footprint, and super-optimally
for execution time, until maximum speedup is achieved
for this problem size. Moreover, when comparing the per-
formance in terms of memory footprint of our hypertree
grid object with respect to that of using an unstructured
grid representation, we note almost a full order of mag-
nitude improvement (approximately a factor of 7). Fur-
thermore, we have observed that this massive decrease in
memory usage remains constant across a wide range of
workload distribution schemes for highly refined meshes.

6.2 Hypertree Grid Filters

We now illustrate some results of the native hypertree
grid filters presented in §5.6.3 and implemented in VTK,
exploring the 2 and 3-dimensional cases as well as the
two possible branch factor values, beginning with a 2-
dimensional binary hypertree grid input, with a 2 × 3
layout of root cells to which is attached a single attribute
field filled with the cell depths. Figure 6.3 applies the
native hypertree grid Geometry filter (note that shrink-
age of the output geometry is sometimes used in order
to facilitate the interpretation of the results) to render
hypertree grid outputs. In addition to it, these images
illustrate the following filters:

(a) Geometry.
(b&c) AxisReflection, where hyperplanes are lines, re-

spectively parallel to the vertical and horizontal axes,
passing through the center of the hypertree grid.

(d) DepthLimiter with depth limit is set to 2.
(e) CellCenters, hooked to a glyphing filter to produce

the black crosses shown at cell centers.
(f) Contour with attribute isovalues 1.25, 2.5, and 3.75.

Note that, as explained in §5.5, the isocontours are
topologically correct but do not intercept the primal
boundary, because a non-adjusted dual is used.

(a)

(d)

(g)

(j)

(b)

(e)

(h)

(k)

(c)

(f)

(i)

(l)

Fig. 6.3 Visualizations obtained by applying the
Geometry (a), AxisReflection (b&c), DepthLimiter

(d) CellCenters (e), Contour (f), Threshold (g),
ExtractSelected{Ids,Locations} (h&i), and AxisClip

(j–l) native filters to a 2-dimensional, binary hypertree grid.

(g) Threshold for attribute values within [1; 3].
(h&i) ExtractSelected{Ids,Locations}.
(j–l) AxisClip, illustrated for each of its three modes

of operation, respectively: hyperplane (here, with 2
consecutive appelications), box, and a quadratic cor-
responding to an axis-aligned ellipse; note that align-
ment with the grid axes is not required by the filter
as any arbitrary quadratic can be specified.

The results computed by the same filters, but when a
non-empty bitmask is attached to the hypertree grid in-
put, are shown in Figure 6.4. We are not showing here
the results obtained with the AxisClip filters in order to
save space, but suffices to say that corresponding images
are obtained as expected.

Of particular interest is the isocontour case (f): because
the current implementation of the filter uses a non-adjusted
dual, the computed isocontours exhibit additional geo-
metric oddities in the vicinity of the non-convexities re-
sulting from the presence of masked cells. In our typical,
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(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Fig. 6.4 Results of the same tests as in Figure 6.3 (a–i),
when the input grid has a non-empty bitmask.

large-scale applications, the phenomena of interest which
are searched for in the post-processing stage tend to be
removed from object boundaries (external or internal);
therefore, geometric error in computed isocontours are
generally not encountered. It however remains our goal
to provide the option to adjust the dual in future imple-
mentations.

The case of the DepthLimiter filter (d) also reveals an
interesting feature, that can only present itself when
non-convexities are present – and therefore, only when a
non-empty mask is attached to the input hypertree grid.
Specifically, the hypertree grid output by the filter can
have a larger geometric extent that the input. This re-
sults from the fact that an input coarse cell at the depth
limit is retained to create an output leaf as soon as at
least one of its descendants is not masked. Indeed, this
behavior can be observed in the figure, with the green
cell at depth 2 located at the middle-left of the grid.

A 3-dimensional, ternary set of test cases is now used,
with a 3 × 3 × 2 layout of roots to further illustrate
our point. In Figure 6.5, we show visualizations obtained
with the following filters (note that Geometry is used to
visualize all hypertree grid outputs):

(a) Geometry.
(b&c) AxisReflection, respectively with 1 and 2 suc-

cessive reflections about planes passing through the
center of the hypertree grid.

(d) AxisCut with two axis-aligned cut planes, whose 2-
dimensional AMR outputs are shrunk for legibility.

(a)

(d)

(g)

(j)

(m)

(b)

(e)

(h)

(k)

(n)

(c)

(f)

(i)

(l)

(o)

Fig. 6.5 Visualizations obtained by applying the Geometry

(a), AxisReflection (b&c), respectively across one and
two axis-aligned planes, AxisCut (d), PlaneCutter (e&f),
respectively in primal and dual mode, ToUnstructured

(g), CellCenters (h), Contour (i), Threshold (j),
ExtractSelected{Ids,Locations} (k&l), and AxisClip

(m–o) native filters to a 3-dimensional, ternary hypertree
grid.

(e&f) PlaneCutter which, in contrast, produces polyg-
onal data sets, respectively in primal and dual modes.
The main benefit of the latter is its conforming mesh
output suitable for subsequent post-processing re-
quiring perfect connectivity, at the cost of being con-
siderably slower than the former.

(g) ToUnstructured, whose all-hexahedral unstructured
grid output is connected downstream to a shrink fil-
ter. As discussed in §2.1, the resulting unstructured
mesh is not conforming.

(h) CellCenters, hooked to a glyphing filter to produce
the spheres shown at cell centers, colored by depth.

(i) Contour, again with three isovalues.
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(j) Threshold, for depth values within [1; 3].
(k&l) ExtractSelected{Ids,Locations}.
(m–o) AxisClip with its three modes of operation: re-

spectively, two successive clips with planes parallel to
the grid axes, an axis-aligned box, and a quadratic
associated with a cylinder.

(a)

(d)

(g)

(j)

(b)

(e)

(h)

(k)

(c)

(f)

(i)

(l)

Fig. 6.6 Results of the same tests as in Figure 6.5 (a–l)
when the input has a non-empty bitmask.

As previously done with the 2-dimensional cases, Fig-
ure 6.6 presents a subset of these cases, but obtained
with a non-empty mask attached to the input hyper-
tree grids. Comments similar to those made in the 2-
dimensional, binary case can be made and we will not
therefore repeat ourselves. The interested reader is in-
vited to draw parallels between corresponding 2 and 3
dimensional sub-figures, and to inspect the contents of
the test harness we implemented for all existing hyper-
tree grid filters, across different dimensions, branching
factors, and other modalities: to date, 58 individual tests
are available and can be either executed as they are, or
modified and experimented with at will.
We close this discussion with the particular case of the
AxisReflection filter. In Figure 6.7, we illustrate the
use of this filter by applying it to the case of a ternary
tree-based AMR grid with 5 × 5 × 6 root cells, where
a bitmask is defined using a quadratic function retain-
ing only those cells that are within or intersect a trun-

Fig. 6.7 Left: the first octant of a truncated unit ball, ap-
proximated with 5 levels of a ternary tree-based AMR grid
with 5 × 5 × 6 root cells. Right: a rendering showing the
same truncated octant (upper right corner), together with
its successive images (in solid colors) by axis-aligned reflec-
tions, yielding a truncated unit ball.

cated octant of the unit ball. The experiment thus con-
sisted in creating this object, hereafter referred to as the
octant, then performing seven reflections adequately.
Those were defined in order to produce outputs whose
union, together with the initial octant, produces the
unit ball truncated by the original plane and its symmet-
rical about the sphere center. This whose output is called
reflections. Octant creation, geometry extraction and
rendering times were excluded from this experiment in
order to assess the performance of the AxisReflection
filter in isolation.

Table 6.1 Main characteristics, and memory footprints in
terms of maximum resident set size, of a ternary hypertree
grid object (octant), its 8-time replication (octant*8) and
of its union (reflections) with seven images thereof by the
AxisReflection filter.

Number Number Number RSS

of cells of leaves of trees (kiB)

octant 128724 123962 150 44924

octant*8 1029792 991696 1200 359392

reflections 1029792 991696 1200 45172

The main results of this experiment performed on a sin-
gle core are summarized in Table 6.1; in particular, the
reflections represents an AMR mesh 8 times larger,
with over one million cells (96.3% of which are leaf cells),
than the original octant. Executing the 7 reflections
took a negligible time, compared to the octant creation
or its rendering, hereby confirming the theoretical pre-
diction that, if correctly implemented, the reflection fil-
ter should have negligible execution time. Another key
finding of this test was to measure a negligible increase
in memory readings3, as compared to the real replica-
tion of the object requiring a commensurate increase
in memory footprint (which might not be available to

3 We assess memory footprint in terms of maximum resi-
dent set size (RSS), indicating the amount of memory that
belongs to a process and resides in RAM.
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the target platform). These results demonstrate that our
implementation fully delivers the promises of the theo-
retical analysis, in terms of execution speed as well as
of memory footprint. As a result, all future hypertree
grid structure-preserving geometry transformation fil-
ters shall be implemented following the same paradigm.

6.3 Performance results

In previous subsections we presented synthetic results
and now we are expanding to real-world data from mod-
erate to large scale, 2D and 3D cases. We will first focus
on 2D use cases. First is a 100 million cells shock wave
simulation data, generated with internal CEA simula-
tion codes. Second is a 6 billion cells Mandelbrot cal-
culation [19], [14] generated using well-known formula,
and saved as an HyperTree Grid. Figures 6.8 and 6.9
illustrate the rendering of those. We have developed 2D
optimized rendering which offers a smoother experience
and also greatly reduced video memory usage compared
to naive, full scene rendering. Table 6.2 summarizes the
interactivity we get for this moderate to large scale 2D
data sets. For more details on the optimizations we in-
troduced thanks to the HyperTree Grid data structure,
we invite the reader to turn to [16]. We used either
the Tera-1000-1 CEA supercomputer nodes [1] or a 32
GB RAM workstation in order to render these images.
The limiting factor was generally memory, and so as the
shock wave data size is about 2 GB, rendering can be
done on the workstation or one 32 cores, 128 GB of
Ram Tera-1000-1 node. Regarding Mandelbrot calcula-
tions, it is a larger 200 Gbytes test case, and rendering
could be achieved using one to two Tera-1000-1 super-
computer nodes. We now discuss some 3-dimensional

Fig. 6.8 Rendering 100 million cells 2D hypertree grid
shockwave simulation data.

test cases results, for which we chose in particular the
3 × 108-cell “asteroid fall” simulation [23] provided by
Los Alamos National Laboratory/NASA, a 1 billion cell
structured “bubbles” simulation data set and a 72 billion
cells astrophysics simulation of the universe provided by
CEA-IRFU. Aside from the specifics of these cases, these
datasets substiantally differ from each other, because:

Fig. 6.9 Rendering 6 billion cells 2D hypertree grid Man-
delbrot calculation data.

Table 6.2 Frame rates and video memory usage of 2-
dimensional optimized vs. naive rendering. Screen resolution
is 3440x1440.

Optimized Rendering Standard Rendering

Shock100 8-20 fps 1 GB 2 fps 4 GB

Mandel6 1-5 fps 3 GB 0.05 fps 40 GB

– the “asteroid fall” simulation uses an unstructured
mesh;

– the “bubbles” case is structured data;
– the “universe” case is a native hypertree grid data

set.

Therefore, we had to convert offline the unstructured
asteroid fall to an hypertree grid for further exploita-
tion. In order to process the structured bubble expan-
sion data, we added a hypertree grid streaming capabil-
ity to our reader, as it is easy to add coarser cells on
top of the final leaves representing the actual Cartesian
grid. Some resulting visualizations are presented in Fig-
ures 6.10, 6.11 and 6.12.
In order to properly render the data sets, we respectively
used one, two and sixteen “thin” 128 GB nodes of Tera-
1000-1 supercomputer. We could also have used “fat”
one TB nodes, hereby reducing the required hardware
to respectively 1, 1 and 2 fat nodes. We noticed while
conducting these experiments that data exploration re-
mained interactive and smooth. Furthermore, converting
the “asteroid” data to a native hypertree grid dataset
lead to the following paper [15] where for the first time
this dataset was exploited on a 16 GB laptop instead
of several supercomputer nodes, at the full resolution of
the simulation.

7 Conclusion

There are many more details to this story than we could
possibly fit within the frame of a journal article. What
are we, then, to make of this already long exposé, which
encompassed general motivations, theoretical foundations,
application methods, and experimental results?
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Fig. 6.10 Rendering 300 million cells 3D unstructured mesh
asteroid fall simulation data, re-sampled to HyperTree Grid
offline. Multiple isocontours are applied for the center mainly
blue view, and outer views are generated using thresholding

Fig. 6.11 Rendering 1 billion cells 3D structured bubble ex-
pansion calculation data, dynamically re-sampled to hyper-
tree grid. No filtering applied, we simply select the ”bubble”
material to render it.

In the next few lines, we will first look back on what
has been achieved so far, as compared to what we were
initially envisioning. This will allow us to conclude with
a set of remarks as to our subsequent projects and goals,
articulating them within our general vision together with
what we have discovered and done during the course of
the work described in this article.

7.1 Main Findings

We set out in §2.2 ([a]) with the goal to propose a novel
VTK data object that would be able to support all con-
ceivable types of rectilinear, tree-based AMR data sets,
based not only on today’s software but also on what we
can foresee of tomorrow’s extreme-scale simulations. We
can confidently claim that we have accomplished this
first goal, based on the vtkHyperTreeGrid object and

Fig. 6.12 Rendering 72 billion cells 3D hypertree grid uni-
verse simulation data. Multiple isocontours are applied to get
the 3D shapes, and an AxisCut provides the reference plane.

its family of lesser objects presented throughout this ar-
ticle. In particular, the key design constraint to drasti-
cally reduce memory usage, as compared to either earlier
implementations of this object or to other existing VTK
data objects, was fully attained. This was amply demon-
strated by our numerical results in in §6, consistent with
what the theory laid out in §3 was allowing to hope
for. This achievement dramatically reduces hardware re-
quirements by several orders of magnitude, as compared
to the alternatives currently used in AMR visualization.

Moreover, we propounded in §2.2 ([b]) to design and im-
plement visualization filters that could natively operate
on this novel data object, with the added stated goal of
measurable performance in terms of execution speed. We
have also entirely fulfilled our objectives in this regard,
with demonstrated performance improvements with re-
spect to our earlier design and implementation (not to
mention the alternatives which are plainly useless for
large-scale meshes).

Meanwhile, in the process of designing such filters, we
entirely revised our earlier notion of tree cursors and,
more importantly, supercursors. This resulted, in par-
ticular, in the introduction of a hierarchy of such ob-
jects in order to allow for the selection of the cursor
that is the most tightly adapted to the particular al-
gorithm being considered. Thanks in particular to the
use of templates, and to the careful nesting of geometric
and topological cursor properties, we achive in the added
benefits of enhanced code maintainability and legibility.
This new incarnation of the hypertree grid object allows
us to confidently assert that it can be used even by an
application developer not intimately familiar with the
implementation details.

An other important aspect of this work is the availability
of a full set of visualization filters able to natively operate
over the novel data object. As explained in this article,
these filters have all been written with performance in
mind, in terms of both memory footprint and execution
speed. Furthermore, our design based on the hierarchy of
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templated cursors and supercursors, combined with the
pre-selection paradigm for enhanced performance, gives
developers the opportunity to easily create new filters
tailored to their particular needs.
After everything is said, both in terms of theoretical
soundness as of experimental results, what is ultimately
our main claim to success is that our HERA code users at
CEA have been able to begin routine post-processing of
their AMR simulations, within a setting similar to that
which already exists for the visualization of simulations
based on other types of meshes. We therefore decided to
contribute our development to the VTK code base so it
can benefit the tree-based AMR community at large.

7.2 Perspectives

As formulated in §2.2, we have considered many poten-
tial avenues for further advances in the field of tree-based
AMR visualization and analysis. These are not only of
academic interest; in fact, they appear as strictly neces-
sary when considering the post-processing options that
are commonly available for other types of simulations,
such as the finite element method using fully unstruc-
tured, conforming meshes.
First, we expect that our original goal [b] will be further
achieved, as the community of users of our contributed
code will increase and expand to connected yet different
application domains.
Meanwhile, 2-dimensional AMR visualization can be es-
pecially challenging, as it requires that all leaf cells be
rendered. In consequence, the interactivity of the visu-
alization process decreases as input data object size in-
creases. This problem is further compounded by the en-
hanced efficiency, in terms of memory footprint, of our
hypertree grid model which elicits a new situation where
rendering has become the bottleneck for our target plat-
forms. As a result, the next goal ([c]) is indeed an urgent
need, for which the lack of existing solution is currently
hindering the AMR visualization and analysis workflow.
Our preliminary developments in this regard should be
finalized, validated and contributed shortly. Those focus
on rendering speed, in particular in dimension 2, by ex-
ploiting level-of-detail properties, which we also plan to
carefully study and explain in a sequel to this article.
Besides, the 3-dimensional visualization technique known
as volume rendering, which has now been broadly used
for almost two decades, for different types of data ob-
jects, remains mostly unchartered territory when it comes
to tree-based AMR data and would come in direct sup-
port of our stated goal ([d]). Isocontour is often derided
as being the “poor man’s volume rendering”. Albeit ex-
cessive, as in many cases an iso-surface is exactly what is
required by the nature of the analysis being performed,
this statement nonetheless usefully conveys the general
idea that “true” 3-dimensional visualization is a capabil-
ity that most if not all users want to have in a visualiza-
tion tool set before they deem it sufficient. Considerable

theoretical and experimental effort will be required in
order to support this need, for almost no prior work ex-
ists in this area. However, such a major endeavor could
potentially be amortized by 2-dimension specializations
in addition to the overarching 3-dimensional goal.
The work done so far does not address per se any of
items [e]-[g] in our initial vision. However, we believe
that the theoretical groundwork which we have already
conducted will allow for an easier pursuit of these goals
in the future.
Last, we would like to close this panorama by mentioning
an ongoing reflection regarding in situ and in transit vi-
sualization and analysis. This contemplates the possibil-
ities that exist to directly couple an existing production-
level AMR simulation code with a visualization tool set
adapted to it, in a fashion that would entirely eliminate
intermediate storage to disk. We are confident that this
will allow us to address the last vision item ([h]) in the
near future, which will be discussed in subsequent work.
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