
HAL Id: cea-03499614
https://cea.hal.science/cea-03499614

Submitted on 21 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Static Analysis and Dynamic Symbolic
Execution in a Toolchain to detect Fault Injection

Vulnerabilities
Guilhem Lacombe, David Feliot, Etienne Boespflug, Marie-Laure Potet

To cite this version:
Guilhem Lacombe, David Feliot, Etienne Boespflug, Marie-Laure Potet. Combining Static Analysis
and Dynamic Symbolic Execution in a Toolchain to detect Fault Injection Vulnerabilities. PROOFS
WORKSHOP (SECURITY PROOFS FOR EMBEDDED SYSTEMS), Sep 2021, Beijing, China. �cea-
03499614�

https://cea.hal.science/cea-03499614
https://hal.archives-ouvertes.fr

This space is reserved for the EPiC Series header, do not use it

Combining Static Analysis and Dynamic Symbolic

Execution in a Toolchain to detect Fault Injection

Vulnerabilities

Guilhem Lacombe12, David Féliot2, Etienne Boespflug13, and Marie-Laure
Potet13

1 Université Grenoble Alpes, Grenoble, France
prenom.nom@univ-grenoble-alpes.fr
2 CEA Leti CESTI, Grenoble, France

prenom.nom@cea.fr
3 Verimag, Grenoble, France

Abstract

Certification through auditing allows to ensure that critical embedded systems are
secure. This entails reviewing their cryptographic components and checking for dangerous
execution paths. This latter task requires the use of specialized tools which allow to explore
and replay executions but are also difficult to use effectively within the context of the audit,
where time and knowledge of the code are limited. Fault analysis is especially tricky as the
attacker may actively influence execution, rendering some common methods unusable and
increasing the number of possible execution paths exponentially. In this work, we present a
new method which mitigates these issues by reducing the number of fault injection points
considered to only the most relevant ones relatively to some security properties. We use
fast and robust static analysis to detect injection points and assert their impactfulness. A
more precise dynamic/symbolic method is then employed to validate attack paths. This
way the insight required to find attacks is reduced and dynamic methods can better scale
to realistically sized programs. Our method is implemented into a toolchain based on
Frama-C and KLEE and validated on WooKey, a case-study proposed by the National
Cybersecurity Agency of France.

Keywords: fault injection robustness evaluation, source code static analysis, symbolic exe-
cution, WooKey bootloader use-case

1 Introduction

From our credit cards to medical equipment and methods of transport, embedded systems are
relied upon in nearly all aspects of modern life, including critical and sensitive applications.
Trust in these devices and their protective mechanisms is therefore paramount to ensure the
viability of our professional endeavors and lifestyles.

This work is partially supported by ANR-15-IDEX-02.

FDEP2021 Lacombe et al.

One way the security of such devices can be ascertained is through certification, as Common
Criteria process[16]. This process allows to gauge the difficulty of finding and performing attacks
on the target system by measuring the time and level of expertise required to do this for a group
of approved auditors leveraging state-of-the-art equipment and techniques[9]. Included in their
arsenal are perturbation attacks, also known as fault injection attacks, which aim to cause
exploitable faulty behavior in a system by subjecting it to extreme operating conditions. Vectors
of fault injection include applying strong electromagnetic fields to some components using a
laser, causing power jolts or stressing DRAM memory via software to induce bitflips[22][11].
This can lead to secret information such as bits of cryptographic keys leaking through side
channels[26] or even to loading an outdated firmware[19, 29].

Some of the tasks auditors must fulfill include reviewing cryptographic components of the
target program and exploring execution paths looking for dangerous behaviors. This latter task
requires the use of tools which can have difficulties scaling to large programs due to path space
explosion and infinite loops. Moreover these issues only get worse when considering an active
attacker who may influence execution by injecting faults. Methods which could be used to
reduce the analysis perimeter such as slicing are inadequate in this context as well. Considering
that auditors have limited time and knowledge of the code, fault analysis tools tend to be
impractical on realistically sized programs.

To mitigate these issues, we propose an approach using static analysis to detect the most
relevant fault injection points in a program relatively to security properties which an oppo-
nent may want to attack. It involves finding faultable instructions in the dependencies of the
properties and formally checking that they may have an impact. This way the number of ex-
ecution paths to consider is reduced to only those which cannot be formally proven harmless.
As a result more precise tools such as fault simulators, which generate mutated programs with
simulated faults, and fault analysis tools based on dynamic symbolic execution [20, 15], which
only generate a single mutated program for analysis, can be used on realistically sized programs
more effectively.

In Section 2 of this paper we place our contributions within the current state of the art. We
then present our method in Section 3 and provide experimental validation in Section 4. Finally,
we discuss related works in Section 5.

2 Context and Contributions

As part of the certification process, the auditors working for the Information Technology Se-
curity Evaluation Facilities (ITSEFs) must identify potential vulnerabilities to fault attacks in
their target. This fault analysis either helps to discover actual exploits or to assert that the
target is secure against some attacker models. It also allows to find theoretical exploits which
could not be performed within the limited time frame of the audit and would have been missed
otherwise. When sources are available, auditors start from the source code and a state-of-the
art in terms of attack scenarios, tracking logical vulnerabilities, that can generally be replayed
at the binary level [25].

2.1 Motivating Example

The following is a discussion of an example program which contains vulnerabilities to fault
injection despite the presence of countermeasures. We will also use this example to illustrate
our fault analysis method later.

2

FDEP2021 Lacombe et al.

1 typedef struct data{
2 s i z e t msg s i z e ; // input > 255
3 char msg [2 5 5] ; // input
4 u i n t 3 2 t key [8] ; // s e c r e t
5 } data t ;
6
7 void pr int message (data t *d) {
8 s i z e t s i z e = d−>msg s i ze & 0 x f f ; //countermeasure , f a u l t 0 x f f to 0 x f f f f f f f f
9 for (s i z e t i = 0 ; i < s i z e ; i++}{

10 i f (i >= s i z e) // bypassed countermeasure
11 e x i t (1) ;
12 //@ as s e r t \ v a l i d r e ad (&d−>msg [i]) ; <− expec ted s e c u r i t y proper ty
13 p r i n t f (”%c” , d−>msg [i]) ; // by t e s o f the key in the output !
14 }
15 p r i n t f (”\n”) ;
16 }

Figure 1: Example of a function vulnerable to fault injection

The function presented on Figure 1 prints a message based on its size, both of which are
controlled by the user. Under nominal circumstances this is not an issue since a mask is applied
to the size on line 8, limiting its maximum effective value to 255 and thus preventing buffer
overflows. The index is also checked to be within the expected bound of the buffer on line 10
in an attempt to thwart fault injection attacks.

However, attacking the countermeasure on line 8 by forcing the mask to 0xffffffff with a
fault, which is a commonly considered outcome, results in the exact user provided size being
used. This also bypasses the index check on line 10. In this example a secret cryptographic
key is conveniently stored near the message in memory. Inputting a greater than 255 value as
the message size will therefore result in bytes of the key leaking in a similar way as with the
Heartbleed OpenSSL vulnerability[1] and violating the property expressed on line 12.

Ignoring the fact that storing a secret key in such a fashion is unadvisable, detecting such
vulnerabilities to fault injection can be difficult when they are buried deep within an application.
In fact, our example was inspired by an attack that was found on the ANSSI’s WooKey project1

in a library comprised of roughly 2.5k lines of code[2]2, which violated a similar property to
the one on line 12, leading to a stack buffer overflow. Additionally, the presence of some
commonly used countermeasures may hide the issue to visual inspection. The use of automated
analysis tools is therefore required, not only in order to be able to reliably detect fault injection
vulnerabilities, but also to evaluate the effectiveness of countermeasures. Unfortunately such
tools tend to struggle with scaling to realistically sized programs because of path space explosion
and infinite loops occurring as a result of faults. Users must therefore reduce the size of their
target, which we refer to as the analysis perimeter, in order to use them.

2.2 Difficulties in defining an Analysis Perimeter for Fault Analysis

Extracting an analysis perimeter is usually done by expressing assertions related to security
properties and slicing[28][21] based on dependencies. This allows to produce a minimal program
corresponding only to relevant execution paths with regard to assertions. The issue with this

1See the 2020 Inter-CESTI challenge report[10], section 9.
2See the SC get ATR function.

3

FDEP2021 Lacombe et al.

1 void proce s s (int a , int b) { // func t ion to ana lyze
2 i f (a && b) { //nominal path
3 i f (! a | | ! b) e x i t (1) ; // countermeasure
4 a s s e r t (a && b) ;
5 . . .
6 return ;
7 }
8 i f (a) { // reachab l e by f a u l t i n g the prev ious t e s t
9 i f (! a) e x i t (1) ; // countermeasure

10 a s s e r t (a && ! b) ;
11 . . .
12 return ;
13 }
14 . . .
15 }
16
17 int ana ly s i s ma in () {
18 proce s s (1 , 1) ;
19 return 0 ;
20 }

Figure 2: Program with an unfeasible execution path becoming feasible with a fault

method is that faults may redirect control flow and induce paths which are normally unfeasible.
It could therefore result in the loss of attack paths.

The example from Figure 2 shows a program setup for the analysis of the process function.
In this case, both a and b are set to 1, which should result in the test on line 2 being always
positive under nominal condition. However a fault can be used to invert the result of this test,
which would result in the execution reaching the one on line 8. Since the countermeasure there
does not check that b is null, the assertion line 10 would be violated. However this execution
path would be lost after slicing since it would be detected as unfeasible by a precise dependency
analysis, resulting in a potential attack being missed and illustrating the fact that this approach
is not adapted for fault analysis. Note that slicing may also result in countermeasures being
removed.

The analysis perimeter for fault analysis should therefore contain all control-flow paths in
the control flow graph of the program, regardless of feasibility, in order to avoid loss of behavior.
By definition, this means that the usefulness of slicing would be severely limited.

The consequence of these difficulties is that reducing the size of the analyzed program is
often not possible in the context of fault analysis. There is however another way in which we
may effectively reduce the analysis perimeter, which is to reduce the number of fault injection
points considered.

2.3 Contributions

� We propose a method using static value analysis to find the injection points that a security
property depends on and formally check that they may have an impact. Relevant injection
points are then selected for further analysis with a dedicated fault analysis tool.

� We present an implementation of our method as a toolchain based on proven and widely
used tools which is suitable for both single- and multi-fault analysis. The static analysis
part is handled by Frama-C and some of its plugins. Our fault analysis tool of choice is
Lazart, which is itself based on dynamic symbolic execution by KLEE.

4

FDEP2021 Lacombe et al.

� We validate our method by using our implementation to find fault injection vulnerabilities
in the ANSSI’s WooKey secure USB storage device[3]. This results in weaknesses being
discovered in the countermeasures of the bootloader part. We also complements our
experiments with an analysis of the sudo unix command[4].

Our method allows to reduce the number of fault injection points considered in the fault
analysis of a program by removing those which can be formally proven to have no impact on
security properties. This is done using static analysis which can handle difficult execution paths
and should result in better scalability and performance with dynamic symbolic execution when
eliminating false positives, as illustrated in section 4.

3 Our Method

Our goal with this work is to design a method allowing to reduce the number of injection points
considered for fault analysis without risking to remove important parts of the target program
nor losing in precision in order to improve the scalability of other fault analysis methods. We
will focus on source code analysis to better assist with code comprehension and evaluation. We
will also implement our method as a tool-chain based on proven and widely used tools.

3.1 Tools

Frama-C: Frama-C[27] is a static analysis platform for the C language. It parses .c files into a
formal AST structure (based on CIL) which accommodates annotations detailing specifications
and properties using the ACSL specification language[5]. Frama-C supports plugins which
implement various kinds of analyses. We will be interested in the following ones:

� Eva[12, 6] computes abstract domains for variables in a program, including aliases. It
can then use this information to prove (green) or disprove (red) properties expressed in
ACSL. Note that proofs may be inconclusive (orange).

� Pdg[7] computes intra-procedural memory, data and control dependencies as dependency
graphs. It is based on abstract domains computed by Eva.

Lazart: Lazart[24, 13] is a multi-fault analysis tool based on the KLEE concolic engine[14]
which detects multi-fault injection attack paths. This is achieved by mutating the program to
simulate faulty behavior based on some fault models and performing a dynamic symbolic exe-
cution analysis to find execution paths violating a security property. Lazart currently supports
the following fault models:

� Test Inversion: Faults may result in the outcome of a conditional jump being inverted
(if instructions and loop conditions).

� Data Fault: Faults may result in the value returned when reading a variable being
altered. Users can specify which variables to fault in a strategy file. These will be
made symbolic, i.e. all possible values will be considered, with the possibility of adding
constraints.

These two models are very powerful as they can be used to implement other more complex mod-
els very effectively. The data fault model in particular is very generic and takes full advantage
of SMT solvers to find attack paths with complex path predicates.

5

FDEP2021 Lacombe et al.

Tool Results Approximation Precision Scalability
Eva abstract domains, proofs over-approximation low to high robust
Pdg intra-procedural dependency graphs over-approximation low to high robust

KLEE execution paths under-approximation high path space explosion, infinite loops

Table 1: Comparing static analysis and symbolic execution

As shown on Table 1, the static analysis tools are in general less precise but scale better
than symbolic execution. Additionally, since they compute over-approximations we can use
them to prepare analysis with symbolic execution without risking to lose attack paths, as long
as our implementation is correct. Finally, they will also terminate on any program. This is a
major advantage which may help us mitigate the issue of non-terminating analyses, which is
compounded by the injection of faults, compared to other approaches purely based on symbolic
execution[23]. We should therefore be able to use Frama-C to counter Lazart’s drawbacks.

3.2 Overview

Figure 3 gives an overview of our method which we detail afterwards.

Step 1: dependency analysis
on the properties

Step 2: code mutation for fault simulation

run Eva

property
holds?

select faulted dependencies

for each property

Step 3: discharging assertions

injection points Step 4: (optional) finer selection

Frama-C plugin

source files,
analysis main

specification,
properties
(ACSL)

fault models

lazart
strategy file

analysis
source file

Step 5: lazart analysis

attack paths

no / unknown

Figure 3: Overview of our method

The main argument in favor of using properties as a starting point for the analysis is that
the knowledge of the code required to express them cannot be greater than that required to find
attacks. This is true under the assumption that an attacker would look for the most relevant

6

FDEP2021 Lacombe et al.

security properties to violate when attempting to attack a system, making the definition of
properties a requirement for finding attacks.

Note that we place ourselves in the context of our implementation as a Frama-C plugin, but
the concepts of our method can be used with any other tools.

3.3 Step One: Dependency Analysis

Once security properties have been defined, we select instructions which have an impact on
them and we build a dependency graph. The program inputs should be left uninitialized to
maximize coverage. We obtain a procedural dependency graph for each function using Frama-
C’s Pdg plugin. For inter-procedural dependencies, we can simply connect the input and output
nodes of these procedural graphs to the corresponding nodes in all calls to the same function,
which is an over-approximation of the actual inter-procedural dependencies.

Knowing that faults may cause control flow violations (test inversion, data fault on test
condition...), we must make sure that every path is explored. Control-flow instructions should
therefore be treated as if their outcome is undetermined. However Pdg is too precise and does
not take into account paths shown to be unfeasible by Eva when computing control depen-
dencies. We solve this issue by making the value of test conditions arbitrary i.e. preventing
Eva from being able to determine their value. This way all paths appear feasible during the
dependency analysis. As shown on Figure 4, this is done by xoring an undefined extern variable
(a), which Eva treats as potentially having any value (top element in the underlying lattice).

1 extern int a ;
2 . . .
3 i f (cond ˆ a) // a r b i t r a r y t e s t

Figure 4: Example of a test condition made arbitrary

The soundness of Eva’s abstract domains computation and the full exploration of execution
paths regardless of feasibility under nominal conditions ensure that we do not lose attack paths.
The solution that we presented is not enough to always ensure this property for any fault model
however, as it does not tackle control flow graph violations such as a then and an else block
being chained after an if instruction. This can happen with an instruction skip model which
would allow to skip branching jump instructions for example. As a result our analysis in its
current implementation is only suitable for fault models preserving the control flow graph of
the target program.

3.4 Step Two: Simulating Faults with Eva

Being able to simulate fault with Eva is crucial as it will allow us to add faulty behavior to the
target program and attempt proofs in presence of faults.

As mentioned previously, we are only considering Lazart’s fault models. We combined
both into a single, more powerful model which allows the value returned when computing any
expression to be faulted. This is more practical in regard of simulating faults on program ASTs
generated by Frama-C as we can use the same principle we used to make tests arbitrary (see
Figure 4). This is also compatible with Lazart as our model is equivalent to injecting symbolic
data faults on the xored variables, which we initialize to zero.

Since all instructions which contribute to a property are present in its dependency graph,
we can find all the injection points relevant to that property by exploring its dependencies and

7

FDEP2021 Lacombe et al.

selecting those which may be affected according to our fault model. We can then simulate faults
on them as shown on Figure 5 (lines 9, 11, 12 and 17).

1 extern unsigned int f a u l t 3 ;
2 extern int f a u l t 2 ;
3 extern s i z e t f a u l t 1 ;
4 extern unsigned int f a u l t 0 ;
5
6 void pr int message (data t *d 0)
7 {
8 /*@ as s e r t r t e : mem access : \ v a l i d r e ad (&d 0−>msg s i ze) ; */
9 s i z e t s i z e = (d 0−>msg s i ze & (unsigned int) 0 x f f) ˆ f a u l t 3 ;

10 {
11 s i z e t i = (unsigned int) 0 ˆ f a u l t 0 ;
12 while ((i < s i z e) ˆ f a u l t 2) {
13 i f (i >= s i z e) e x i t (1) ;
14 /*@ as s e r t r t e : index bound : i < 255; */
15 /*@ as s e r t r t e : mem access : \ v a l i d r e ad (&d 0−>msg [i]) ; */
16 p r i n t f (”%c” , (int) d 0−>msg [i]) ; /* p r i n t f v a 1 */
17 i = (i + (s i z e t) 1) ˆ f a u l t 1 ;
18 }
19 }
20 p r i n t f (”\n”) ; /* p r i n t f v a 2 */
21 return ;
22 }

Figure 5: Example program with simulated faults

3.5 Step Three: Discharging Assertions

In order to reduce the number of injection points to ease further analysis, we can attempt to
formally prove that a property is unaffected by faults. To do this, we simulate faulty behavior
on all its dependencies and then attempt to prove it using Eva. Figure 6 shows an example of
proven and unproven properties on a program. If the property holds there is no need to test the
associated injection points, otherwise they are selected. Note that an inconclusive proof will
result in the injection points being selected to avoid losing attack paths and that Eva assumes
that a property is true after its annotation (see the second valid read assertion on Figure 6),
which is not an issue for us.

3.6 Step Four: Finer Selection

Additional selection heuristics may be used to further reduce the number of selected injection
points. We used a brute force approach which consists in checking if individual injection points
have an impact on the properties by setting all other fault variables to zero and running Eva,
with a timeout mechanism to avoid wasting time when it struggles. This is effective as only
considering one fault introduces less imprecision (see Section 4), however it is only valid in a
single fault context.

On our example program, Figure 7a shows that the fault 0 injection point has no effect on
the index bound property from line 14 on Figure 5 (the same is true for fault 1 and fault 2)
while Figure 7b shows that fault 3 may have a negative impact. This is because single faults
targeting the index are caught by countermeasures or restricted by the loop condition while
altering the loop bound itself allows for out of bound indexes.

8

FDEP2021 Lacombe et al.

Figure 6: Example program with proven and unproven assertions in presence of faults

1 extern unsigned int f a u l t 3 = 0 ;
2 extern int f a u l t 2 = 0 ;
3 extern s i z e t f a u l t 1 = 0 ;
4 extern unsigned int f a u l t 0 ;

(a) fault 0 has no effect

1 extern unsigned int f a u l t 3 ;
2 extern int f a u l t 2 = 0 ;
3 extern s i z e t f a u l t 1 = 0 ;
4 extern unsigned int f a u l t 0 = 0 ;

(b) fault 3 cannot be proven to have no effect

Figure 7: Example of an injection point with no effect and another which may impact properties

3.7 Step Five: Finding Attack Paths

Once we have selected injection points, we generate a strategy file for Lazart containing the
corresponding fault variables. In the case of our example program, only fault 3 is left as shown
on Figure 8 since we showed it is the only injection point which may impact properties. We
also output a source file containing the simulated faults.

1 Parent=pr int message
2 Fault=f a u l t 3 : symbol ic

Figure 8: Strategy file generated for the previous example program

We finally run Lazart on these to find attack paths. We made the input message size
symbolic in order to have full path coverage. Figure 9 shows the results of the analysis of our
example program. As expected, we find the attack on the mask. One way this attack could be
fixed would be to check that the index is smaller than 255 since the size of the buffer is fixed.

9

FDEP2021 Lacombe et al.

Fault Count 0− f a u l t 1− f a u l t
I n j e c t i o n Point
−−−−−−−−−−−−−−−−− −−−−−−−−− −−−−−−−−−
f a u l t 3 0 1

Figure 9: Attacks found by Lazart on our example program

3.8 Our Experimental Implementation

Our Frama-C plugin fully automates all these steps. However, we also had to automate the
removal of injection points causing issues during symbolic execution. As non-terminating anal-
yses can be difficult to recognize as such with dynamic symbolic execution, the usual method to
deal with this issue is to use a timeout mechanism[23]. In the case of KLEE, information about
partially explored paths is available in traces and can be used to determine which injection
points should be removed. We wrote a script to automatize this process and allow us to have
consistent analysis times for comparisons.

In the next section we will validate our method by testing our implementation in some
realistic use-cases. In particular, we will verify that we do not lose attack paths compared to
selecting all injection points in the target program while exploring less executions paths and
observing better performance as a result.

4 Experiments

We tested our method by analyzing several real world programs. The first one we present is the
password verification part of the sudo unix command from Linux-PAM[4]. Our results for this
program illustrate the performance benefits of our method. Then we present our analysis of the
iso7816 library[2] from the ANSSI’s WooKey project[3], which shows that static analysis alone
can be very precise in some instances. Finally, we discuss how our method helped to discover
fault attack paths bypassing countermeasures in WooKey’s bootloader[8].

4.1 Sudo

We analyzed the pam sm authenticate function from Linux-PAM, which implements password
verification in sudo, looking for paths violating the property that one cannot authenticate with
a wrong password. Our goal was to show the performance benefits of our method on a fairly
large program (3.6k lines of analyzed code) rather than finding attacks, which was expected
given the lack of countermeasures against fault injection. This target was the best for this
purpose out of all the programs we analyzed as we did not need to remove injection points
causing issues with symbolic execution, meaning that the number of explored paths remained
a relevant metric.

As shown on Table 2a, our plugin allowed to reduce the number of injection points to
consider almost tenfold, which in turn allowed symbolic execution to terminate correctly instead
of aborting due to it running out of available memory. We did not include the results using the
brute force selection heuristic as it did not make any difference on this example.

Running these analyses on a cluster5 allowed the one with no selection step to terminate
correctly. Table 2b shows that in this case we were able to reduce the number of explored paths
by about 60% while finding one more attack path. This path could be lost during the control

10

FDEP2021 Lacombe et al.

(a) On a regular computer4.

method
injection
points

analysis time explored
paths

attack paths
Frama-C Lazart3

no selection 924 - out of RAM - -
dependencies 106 10s 30s 7k 11

(b) On a cluster5.

method
injection
points

analysis time explored
paths

attack paths
Frama-C Lazart3

no selection 924 - 1.5min 17k 10
dependencies 106 - 50s 7k 11

Table 2: Results of the analysis of sudo (data faults + test inversion)

analysis due to concretization in symbolic execution.

4.2 Wookey

Both of our other targets are components of the ANSSI’s WooKey project[3], a secure encrypted
USB storage device requiring user authentication in order to access its content. After attacks
were found on it by ITSEFS[10], WooKey was hardened with countermeasures, some against
fault injection. However, the effectiveness of these had yet to be tested in the project’s current
version (0.9). We thus chose to analyze WooKey’s iso7816[2] and bootloader[8] (2.5k and 3.2k
lines of code respectively) in order to check that the attacks had indeed been fixed. Note that
while Lazart has been used during the evaluation of WooKey’s Bootloader[10], only the test
inversion fault model was considered and the analysis perimeter was set manually. In contrast,
we attempted to automate the discovery of complex fault attack paths with Lazart using our
method.

4.2.1 Iso7816

The attack on WooKey’s iso7816 library, which implements communication with a security
token (a smartcard) containing cryptographic secrets, consisted in faulting a loop bound in
order to cause repeated buffer overflows similarly to our motivating example. We thus chose to
use memory integrity properties generated by Frama-C’s RTE plugin6 as the starting point of
our analysis. However we were unable to find any attacks on the current version of this program,
which contains countermeasures in the form of index checks before any memory operation.

For testing purposes, we reverted the originally vulnerable part of the code, in the
SC get ATR function, back to its previous state. This allowed us to find the original attack
as shown on Table 3. While the dependency analysis alone allowed to reduce the number of
injection points considered by over 75%, the brute force selection heuristic managed to single
out the injection point responsible for the violation of the three remaining properties and the

3Includes time spent removing problematic injection points.
4Computer specs: i5-10500 CPU (6 core, 3.10GHz), 32GB RAM
5Cluster specs: 2 Intel® Xeon® Gold 6138 (2GHz, 20C/40T, cache 27Mo, 10,4GT/s, 125W, Turbo, HT),

192GB RAM
6The assertions on Figure 5 were generated using RTE as well.

11

FDEP2021 Lacombe et al.

method
properties injection points analysis time

attack paths
total unproven selected used7 Frama-C Lazart3

no selection - - 656 654 - 4min 1
dependencies 384 3 151 148 2s 4min 1
dependencies
+ brute force

384 3 1 1 1min 2s 1

Table 3: Results of the analysis of WooKey’s iso7816 (data faults, vulnerable version)4

attack as the relative simplicity of the properties allowed Eva to be very precise. This is illus-
trated by the fact that over 99% of the properties could be proven to hold even when every
injection point was faulted.

4.2.2 Bootloader

The attack that was found originally on WooKey’s bootloader used a fault to cause an outdated
version of the firmware to be booted. As WooKey uses a dual-bank system allowing to store
two firmwares so that the older one can be overwritten while the other one continues to operate
during updates, this attack was due to the firmware selection logic being unprotected against
fault injection.

method
injection points analysis time

attack paths
selected used7 Frama-C Lazart3

no selection 396 326 - 99min 12
dependencies 226 172 1.5min 76min 12

dependencies + brute force 45 34 5min 17min 12

Table 4: Results of the analysis of WooKey’s bootloader (data faults + test inversion)4

Despite countermeasures being added consisting in doubling all relevant tests, our analysis
shows that attack paths still exist as presented on Table 4. Using our results allowed us to
identify two attacks which look feasible in practice.

The first attack consists in inverting a test checking if both firmwares are bootable when
it should be true in the loader exec req selectbank function, which decides which firmware to
boot. This way execution carries on to the next test which only checks if the first one of the
firmwares is bootable, assuming that one at least is not. This leads to the first firmware being
selected regardless of its version. To fix this attack, we propose to also check that the other
firmware is not bootable in that last test8.

The second attack takes advantage of the lack of countermeasures in the loader exec req flashlock
function, which computes the pointer to the boot function of the chosen firmware and must
have been overlooked. Simply doubling all tests in this function should be enough to solve the
issue in a single fault context9.

As we were only interested in the “no firmware rollback” property10 there were no discharged

7Injection points kept after elimination of problematic ones.
8[8]: replace line 455 with if (flop shared vars .fw.bootable == FW BOOTABLE && flip shared vars.fw.

bootable != FW BOOTABLE).
9[8]: add if (ctx. boot flip != sectrue) goto err; after line 667.

10“the most recent firmware is booted or an error / security breach is detected”

12

FDEP2021 Lacombe et al.

assertions during this analysis. However the dependency analysis and especially the brute force
selection heuristic were able to eliminate many injection points, resulting in the total duration
of the analysis being reduced by as much as 75%.

4.3 Limits

Using our method can present some challenges to the user. In general, expressing properties
can be difficult with limited knowledge of the code, as well as determining which ones may
be relevant targets for an attacker. Parameterizing Eva in order to be able to prove these
properties is also tricky and increasing precision has a significant impact on the runtime of
analyses. However the dependency analysis works well regardless of precision and is already
helpful.

Multi-fault analysis also remains difficult as our brute force selection heuristic cannot be
used and many injection points must still be removed for symbolic execution to terminate, by
which point results tend to be irrelevant on large programs. This problem is not specific to our
approach however.

Finally we designed our method with only fault models which do not allow execution paths
outside of the program’s original control flow graph in mind. However simulating faults before
the dependency analysis would solve this issue.

5 Related Works

In Christofi et al.[18] the authors attempted to prove the robustness of a CRT-RSA implemen-
tation against fault attacks using formal methods. In particular, they used Frama-C’s Eva and
WP plugins to prove security properties on a mutated program with simulated faults. Since
their work was focused on their target specifically, they did not tackle issues that would arise
when generalizing their method, namely scalability when considering realistically sized pro-
grams. Additionally, as they were only interested in formal proofs, their approach lacks the
versatility required to be usable in other contexts, such as to aid with attack path detection via
symbolic execution.

Our approach is similar to that used in the SANTE plugin for Frama-C[17], which uses static
analysis to generate tests with alarms in order to detect runtime errors, but in the context of
fault injection. SANTE is not a dedicated fault analysis tool and uses regular slicing in order
to reduce the size of the tests, which makes it unfit for that particular purpose for the reasons
we discussed in Section 2.2. Fault analysis may also require the generation of impractically
large amounts of tests depending on the chosen fault models, which is not an issue when using
symbolic execution.

SymPLFIED[23] seems to be the closest to our approach. A single symbolic variable is used
to propagate the effects of fault injection using propagation rules and model checking to find
attacks. Contrary to our method, SymPLFIED’s approach introduces dangerous paths which
are false positives (i.e fault injection that do not produces crashes or violations of security
properties). Furthermore model checking is also sensitive to path space explosion and thus
suffers from scalability issues.

Despite the existence of many fault analysis tools, including a few using symbolic execution,
reducing the number of fault injection points to be considered in order to improve their scala-
bility and tackle large targets with many possible execution paths is to our knowledge a novel
approach.

13

FDEP2021 Lacombe et al.

6 Conclusion

As the need for security evaluation of not only cryptography but also critical algorithms such as
authentication, bootloader and firmware update logic in embedded systems grows, so does the
need for tools allowing auditors to verify their intuitions, experiment with various properties
of their targets and evaluate countermeasures. These tools allow to save significant amounts of
time when analyzing programs with limited insight on their inner workings. In this work we
showed some solutions allowing to approach large applications, where attack paths tend to be
non-trivial and can be obscured by incomplete countermeasures, using automated tools widely
considered impractical in this context.

Future works could improve the links between static analysis and dynamic execution. The
issue of non-terminating symbolic execution and the difficulty of multi-fault analysis should also
be addressed. Finally, our approach could be applied to other tools such as fault simulators.
It could also be applied at binary level by performing the static analysis part at that level or
using a hybrid approach using code analysis to reduce the complexity of binary analysis.

References

[1] https://heartbleed.com. accessed july 2021.

[2] https://github.com/wookey-project/libiso7816/blob/master/smartcard_iso7816.c.
patched version of iso7816, accessed july 2021.

[3] https://github.com/wookey-project. accessed july 2021.

[4] https://github.com/linux-pam/linux-pam. accessed july 2021.

[5] https://github.com/acsl-language/acsl/releases. accessed july 2021.

[6] https://frama-c.com/fc-plugins/eva.html. accessed july 2021.

[7] https://frama-c.com/download/frama-c-pdg-documentation-french.pdf. accessed july 2021,
in french.

[8] https://github.com/wookey-project/bootloader/blob/master/src/main.c. accessed july
2021.

[9] Application of Attack Potential to Smartcards and Similar Devices. Technical Report Version 3.0,
Joint Interpretation Library, April 2019.

[10] ANSSI, Amossys, EDSI, LETI, Lexfo, Oppida, Quarkslab, SERMA, Synacktiv, Thales, and
Trusted Labs. Inter-cesti: Methodological and technical feedbacks on hardware devices evalu-
ations. In SSTIC 2020, Symposium sur la sécurité des technologies de l’information et des com-
munications, 2020.

[11] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The sorcerer’s apprentice guide
to fault attacks. Proceedings of the IEEE, 94(2):370–382, 2006.

[12] S. Blazy, D. Bühler, and B. Yakobowski. Structuring abstract interpreters through state and
value abstractions. In 18th International Conference on Verification Model Checking and Abstract
Interpretation (VMCAI 2017), volume 10145 LNCS of Proceedings of the International Conference
on Verification Model Checking and Abstract Interpretation, pages 112–130, Paris, France, January
2017.

[13] Etienne Boespflug, Cristian Ene, Laurent Mounier, and Marie-Laure Potet. Countermeasures
Optimization in Multiple Fault-Injection Context. In ”Fault Diagnosis and Tolerance in Cryptog-
raphy” FDTC 2020, Milan (Virtual Workshop), Italy, September 2020.

[14] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and automatic gen-
eration of high-coverage tests for complex systems programs. In Richard Draves and Robbert
van Renesse, editors, 8th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2008, USA, Proceedings, pages 209–224. USENIX Association, 2008.

14

https://heartbleed.com
https://github.com/wookey-project/libiso7816/blob/master/smartcard_iso7816.c
https://github.com/wookey-project
https://github.com/linux-pam/linux-pam
https://github.com/acsl-language/acsl/releases
https://frama-c.com/fc-plugins/eva.html
https://frama-c.com/download/frama-c-pdg-documentation-french.pdf
https://github.com/wookey-project/bootloader/blob/master/src/main.c

FDEP2021 Lacombe et al.

[15] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: Three decades later.
Communications of the ACM, 56:82–90, 02 2013.

[16] The CCRA Management Committee. Common Criteria for Information Technology Security Eval-
uation, September 2012.

[17] Omar Chebaro, Nikolai Kosmatov, Alain Giorgetti, and Jacques Julliand. The SANTE Tool: Value
Analysis, Program Slicing and Test Generation for C Program Debugging. In Martin Gogolla and
Burkhart Wolff, editors, 5th International Conference on Tests & Proofs, volume 6706 of Lecture
Notes in Computer Science, pages 78–83, Zurich, Switzerland, June 2011. Springer Verlag. The
original publication is available at www.springerlink.com.

[18] Maria Christofi, Boutheina Chetali, Louis Goubin, and David Vigilant. Formal verification of a
CRT-RSA implementation against fault attacks. J. Cryptogr. Eng., 3(3):157–167, 2013.

[19] Ang Cui and Rick Housley. BADFET: Defeating modern secure boot using second-order pulsed
electromagnetic fault injection. In 11th USENIX Workshop on Offensive Technologies (WOOT
17), Vancouver, BC, August 2017. USENIX Association.

[20] Patrice Godefroid, Michael Levin, and David Molnar. Sage: Whitebox fuzzing for security testing.
ACM Queue, 10:20, 03 2012.

[21] Mark Harman and Robert Hierons. An overview of program slicing. Software Focus, 2(3):85–92,
2001.

[22] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson,
Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing them: An experimental
study of dram disturbance errors. In 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), pages 361–372, 2014.

[23] Karthik Pattabiraman, Nithin Nakka, Zbigniew Kalbarczyk, and Ravishankar Iyer. Symplfied:
Symbolic program-level fault injection and error detection framework. In 2008 IEEE International
Conference on Dependable Systems and Networks With FTCS and DCC (DSN), pages 472–481,
2008.

[24] Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil. Lazart: A Symbolic
Approach for Evaluation the Robustness of Secured Codes against Control Flow Injections. In
Seventh IEEE International Conference on Software Testing, Verification and Validation, Cleve-
land, United States, March 2014.

[25] Lionel Rivière, Marie-Laure Potet, Thanh-Ha Le, Julien Bringer, Hervé Chabanne, and Maxime
Puys. Combining high-level and low-level approaches to evaluate software implementations ro-
bustness against multiple fault injection attacks. In Foundations and Practice of Security - 7th
International Symposium, FPS 2014, Montreal, QC, Canada, November 3-5, 2014. Revised Se-
lected Papers, volume 8930 of Lecture Notes in Computer Science, pages 92–111. Springer, 2014.

[26] Thomas Roche, Victor Lomné, and Karim Khalfallah. Combined fault and side-channel attack on
protected implementations of aes. In Emmanuel Prouff, editor, Smart Card Research and Advanced
Applications, pages 65–83, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[27] Julien Signoles, Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, and Boris
Yakobowski. Frama-c: a software analysis perspective. Formal Aspects of Computing, 27:573–609,
10 2012.

[28] F. Tip. A survey of program slicing techniques. J. Program. Lang., 3, 1995.

[29] Aurélien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adèle Morisset, and Sébastien
Ermeneux. Laser-induced fault injection on smartphone bypassing the secure boot. In 2017 Work-
shop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2017, Taipei, Taiwan, September
25, 2017, pages 41–48. IEEE Computer Society, 2017.

15

	Introduction
	Context and Contributions
	Motivating Example
	Difficulties in defining an Analysis Perimeter for Fault Analysis
	Contributions

	Our Method
	Tools
	Overview
	Step One: Dependency Analysis
	Step Two: Simulating Faults with Eva
	Step Three: Discharging Assertions
	Step Four: Finer Selection
	Step Five: Finding Attack Paths
	Our Experimental Implementation

	Experiments
	Sudo
	Wookey
	Iso7816
	Bootloader

	Limits

	Related Works
	Conclusion

