
HAL Id: cea-03483651
https://cea.hal.science/cea-03483651

Submitted on 16 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-scale modeling of the effects of temperature,
radiation flux and sink strength on point-defect and

solute redistribution in dilute Fe-based alloys
Liangzhao Huang, Maylise Nastar, Thomas Schuler, Luca Messina

To cite this version:
Liangzhao Huang, Maylise Nastar, Thomas Schuler, Luca Messina. Multi-scale modeling of the ef-
fects of temperature, radiation flux and sink strength on point-defect and solute redistribution in
dilute Fe-based alloys. Physical Review Materials, 2021, 5 (3), pp.033605. �10.1103/PhysRevMateri-
als.5.033605�. �cea-03483651�

https://cea.hal.science/cea-03483651
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW MATERIALS 5, 033605 (2021)

Multiscale modeling of the effects of temperature, radiation flux, and sink strength on point-defect
and solute redistribution in dilute Fe-based alloys

Liangzhao Huang ,* Maylise Nastar, and Thomas Schuler
Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette, France

Luca Messina
CEA, DEs, IRESNE, DEC-Service d’Études et de Simulation du Comportement des Combustibles,

Cadarache F-13108 Saint-Paul-Lez-Durance, France

(Received 7 August 2020; revised 20 December 2020; accepted 22 February 2021; published 15 March 2021)

In this work, we investigate the radiation-induced segregation (RIS) resulting from the coupling between
the atomic and point defect (PD) fluxes toward the structural defects of the microstructure. This flux coupling
depends on the migration mechanisms of PDs and atoms, including thermal diffusion mechanisms and forced
atomic relocations (FAR) occurring in displacement cascades. We derive an analytic model of the PD and solute
RIS profiles accounting for PD production and mutual recombination, the FAR mechanism, and the overall
sink strength of the microstructure controlling the elimination of PDs at structural defects. From this model, we
present a parametric investigation of diffusion and RIS properties in dilute Fe-B (B = P, Mn, Cr, Si, Ni, and Cu)
binary alloys, in the form of quantitative temperature/radiation flux/sink strength maps. As in previous works,
we distinguish three kinetic domains for the diffusion and RIS properties: the recombination domain, the sink
domain, and the thermal domain. Both our analytical approach and numerical applications demonstrate that the
diffusion and RIS behaviors of PDs and solute atoms largely differ from one kinetic domain to another. Moreover,
at high radiation flux, low temperature, and large sink strength, FARs tend to destroy the solute RIS profiles and
therefore reduce the overall amount of RIS by forcing the mixing of solute and host atoms, especially close to
PD sinks. Finally, we provide quantitative criteria to emulate in-reactor RIS behaviors by ion irradiation.

DOI: 10.1103/PhysRevMaterials.5.033605

I. INTRODUCTION

The radiation-induced redistribution of solute atoms in ma-
terials is largely controlled by the kinetic coupling between
fluxes of lattice point defects (PDs) and atomic fluxes [1].
PDs are created by irradiation in the form of Frenkel pairs
consisting of a vacancy and a self-interstitial atom (SIA). They
diffuse and interact with atoms and other PDs, as well as with
the microstructure of the material [2]. Irradiation therefore
enhances and induces redistribution of solute atoms, and af-
fects their interplay with the microstructure, leading to strong
modifications of the mechanical, corrosion, and dimensional
properties of materials [2]. Long-range diffusion of atoms un-
der irradiation is mediated by successive exchanges of atoms
with nearest-neighbor PDs as well as forced atomic relocation
(FAR) events taking place in a displacement cascade [2–6].
The relative importance of each diffusion mechanism depends
on the nature of the irradiation particles and on the rate of
particle irradiation. The number of Frenkel pairs created [or
displacement per atom per second (dpa/s)] and the number of
FAR events [or replacement per atom per second (rpa/s)] are
proportional to the radiation flux, which enables comparison
between various irradiation particles [7–9].

Under a sustained radiation flux, the steady-state creation
and elimination of PDs generates net fluxes of PDs toward
the extended structural defects acting as PD sinks such as
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grain boundaries (GBs), dislocation lines, dislocation loops
and voids. Net fluxes of PDs make solute atoms diffuse toward
or away from the PDs sinks. Since the PD-solute flux coupling
differs from one chemical species to another, a change of the
alloy composition occurs close to the PD sinks. This is the
so-called radiation-induced segregation (RIS) phenomenon
[10–13]. Recently, we have shown that when the FAR fre-
quency is close to the thermal PD jump frequency, FAR
may either enhance or reduce the PD-solute flux coupling
[6]. Note that both chemical species and PDs form a RIS
profile at sinks. The RIS of PDs is systematically negative,
with a concentration profile dropping to thermal equilibrium
concentration at sinks. RIS occurs at every PD sink even at
very small radiation doses [14]. Therefore, RIS is often a
precursor for heterogeneous precipitation of secondary phases
at PD sinks, as for example the precipitation of the ordered
phase Ni3-Si in austenitic steels [11,15], and the formation of
Mn-Ni-Si-rich clusters in reactor pressure vessel ferritic steels
[16–20]. RIS can induce failure of materials through various
mechanisms [2,21], for instance the lowering of corrosion
resistance due to depletion of chromium at GBs in austenitic
steels [22], material embrittlement resulting from phosphorus
enrichment at GBs [16], or the shift of the ductile-to-brittle
transition temperature in reactor pressure vessel steels due to
the formation of solute-rich clusters [19].

The sign of solute RIS, positive for solute enrichment
and negative for solute depletion, is directly related to
the relative magnitude of solute-vacancy and solute-SIA
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flux coupling [23]. Calculation methods of flux-coupling
coefficients rely on the Onsager formulation of solute and
PDs fluxes within the framework of the thermodynamics of
irreversible processes [24] where these fluxes are expressed
as linear combinations of chemical potential gradients. The
coefficient of proportionality between the flux of species i
and the gradient of the chemical potential of species j is the
so-called phenomenological transport coefficient denoted Li j .
These transport coefficients are material specific and depend
on the diffusion mechanism [12]. For a given system, the
experimental measurement of all the transport coefficients
is challenging and in most cases impossible. For instance,
one cannot measure equilibrium diffusion properties mediated
by SIA in metals because the equilibrium concentration of
SIAs is too small. Furthermore, it is almost impossible to
measure the off-diagonal phenomenological coefficients that
are responsible for positive vacancy-solute flux coupling be-
cause these coefficients control the solute flux only when the
alloying driving force is weak, which is not the case in stan-
dard thermal diffusion experiments [12]. The recent progress
of first-principles methods allows us to compute these phe-
nomenological transport coefficients from ab initio [23,25–
27] energetics combined with statistical models of diffusion
on a lattice. The Li j essentially depend on the PDs diffusion
mechanism and the variation of PD jump frequencies with
the local alloy composition. At steady state, the RIS factor
relating the solute local concentration gradients to the local
PD concentration gradient normalized by the local PD con-
centration is essentially a function of the phenomenological
coefficients Li j , the concentration derivatives of chemical po-
tentials, and the solute and PD local concentrations [12,13].
When the RIS factor is assumed to be a constant, the am-
plitude of the solute concentration gradient is proportional to
the normalized PD concentration gradients [28]. Therefore,
the amplitude and shape of the stationary RIS profile depends
not only on the RIS factor, but also on the local concentra-
tion of PDs [12,28]. The evolution of the PD concentration
fields depends on their mobility, the radiation flux, their mu-
tual interaction, and their interaction with the microstructure
and the solutes. Among PD reactions, let us mention the
mutual recombination of vacancy and SIA, the clustering of
PDs leading to the formation of dislocation loops and voids,
and the elimination of PDs at sinks. The analysis of PD-
microstructure interactions may be simplified by introducing
an effective PD sink strength governing the average PD elim-
ination rate at all PD sinks. However, the microstructure is
in constant evolution due to PD clustering, production, elim-
ination at sinks, and their interplay with solute reactions. It
is therefore crucial to take the latter phenomena into account,
but up to now, there is no modeling method able to account for
the evolution of both the sink microstructure and the solute
redistribution. Most of the RIS models either work at fixed
concentrations of PDs [29–31], or for the most advanced ones
at a fixed value of the overall PD sink strength [28,32,33].

There are experimental studies investigating the depen-
dence of RIS on the microstructure of the irradiated sample
and the irradiation conditions, including the nature of the
irradiation particles [34,35], the radiation dose and dose rate
[36,37], and temperature [38,39]. However, it is still very
difficult to obtain an accurate estimation of the PD sink

strength from the observation of the microstructure due to
the limitations of resolution, even for nanoscale experimental
techniques. In order to obtain an accurate estimation of the
sink strength, experimental measurements need to be comple-
mented with modeling [40]. Predicting the evolution of RIS
in nuclear power plant materials from a direct observation
of neutron-irradiated materials is difficult, mainly because
neutron irradiation activates the sample and the radiation ex-
posure times of several years needed to reach a few dpa are
rarely available [2]. Radiation fluxes of electrons and heavy
ions can be high, which allows radiation doses to reach up
to hundreds of dpa in a much shorter time. However, most of
the phenomena occurring under irradiation are sensitive to the
radiation flux. According to simple mean-field rate theories,
the PD concentrations obtained at a low radiation flux and
a given temperature are identical to the ones obtained at a
higher flux provided the temperature is increased by a specific
amount, which suggests that a difference in radiation flux can
be compensated by a temperature shift [2,41,42]. This theory
has been first applied to investigate the swelling phenomena,
but it relies on the assumption that solute atoms do not inter-
fere with the kinetics of PDs and the overall PD sink strength
is fixed by the initial microstructure. According to this theory,
there are three kinetic domains: (i) at low temperature and
high radiation flux, the recombination domain in which the PD
concentration is controlled by the PD recombination reaction;
(ii) at intermediate temperature and low radiation flux, the sink
domain in which the PD concentration is controlled by the
elimination of PDs at sinks; and (iii) at high temperature and
low radiation flux, the thermal domain in which the PD con-
centration is close to thermal equilibrium concentration [41].
Estimations of the temperature shift required to compensate
for a large radiation flux depend on the kinetic domain of the
experiment and whether the system is at steady state or in a
transient state. These temperature shifts require the definition
of an invariant quantity, either the bulk concentration of PDs
at steady state [2] or the amount of PDs absorbed by sinks
[42]. Attempts have been made to apply Mansur’s invariant
PD-absorption relation to the study of solute RIS [2,34,35].
The estimation of the temperature shift was good enough to
yield similar RIS profiles of Cr and Ni in 304L stainless
steels, respectively irradiated with neutrons and self-ions [35].
Nevertheless, in the same publication, the authors observe that
the temperature shift predicted by Mansur’s invariant relation
is not accurate for alloys with a high dislocation density. Yet,
a material with an initial high dislocation density seems to be
more appropriate to test Mansur’s invariant relation, because
the high PD sink strength of a microstructure full of disloca-
tions is less sensitive to the radiation flux and dose, and can
be considered to be fixed as assumed in Mansur’s theory. A
recent analytical model of steady-state RIS in the sink domain
precisely predicts that solute RIS does not depend on the
radiation flux, whereas PD concentration does [28]. However,
as explained by the authors, we should not ignore that an
increase of the dislocation density may induce a transition
from the recombination domain to the sink domain, hence,
shift the system from a radiation-flux dependence to another.
Therefore, there is a need for a PD-RIS model accounting
for both the transitions between the various PD kinetic do-
mains, and the effect of the irradiation conditions and the
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microstructure on the RIS profile within each PD kinetic
domain.

As an important step toward a fully consistent model
of solute redistribution coupled with sink-strength evolution,
we derive an analytical RIS model, aimed at (i) taking into
account all PD reactions, solute-PD interactions, and FAR
mechanisms; (ii) quantitatively studying the effect of a vari-
ation of either the sink strength, the radiation flux, or the
temperature on the RIS properties; and (iii) understanding
and quantifying the flux-temperature effect in experiments for
each kinetic domain (recombination/sink/thermal).

To this end, we extend the analytical approach of Ref. [28]
to the whole temperature/radiation flux domain by including
the effect of FAR and PD recombination reactions. Further-
more, we account for the variation of the RIS factor with
PD and solute concentration along the segregation profiles.
Starting from the Onsager formulation [24,43], the effect of
radiation damage is taken into account at different scales.
At the cluster-dynamics scale, irradiation produces a super-
saturation of PDs, which affects the driving forces as well
as the transport coefficients. At the atomic scale, recent de-
velopments of the self-consistent mean-field theory [44,45]
provide a procedure to treat the interplay between thermal
PD diffusion mechanisms that satisfy the microscopic detailed
balance, and the FAR diffusion mechanism that satisfies the
global detailed balance only. The introduction of FAR in the
self-consistent mean-field theory explains how short-range or-
der (relative probabilities of atomic configurations) is affected
by ballistic mixing, and therefore how transport coefficients
are affected accordingly [6]. The resulting atomic fluxes under
a steady-state gradient of concentration are still linear combi-
nations of gradients of chemical potentials, even though the
transport coefficients no longer obey the Onsager reciprocal
relations, and the chemical potentials depend on FAR [6]. Re-
lying on the implementation of these theoretical developments
in the KineCluE code [46], and on the recently published DFT
database of vacancy and SIA hop frequencies, we present a
quantitative study of flux coupling in dilute Fe-B (B = P,
Mn, Cr, Si, Ni, and Cu) binary alloys [47] with respect to
radiation flux, temperature, and PD sink strength. Combining
flux-coupling factors with the analytical RIS model leads to
quantitative maps of RIS with respect to these parameters.
Based on the analytical PD-RIS model and its application to
the Fe alloys, we discuss the validity and relevance of the
temperature-shift criteria in the three PD kinetic domains.

This paper is organized as follows: Sec. II is devoted to
a short presentation of the methods used to compute flux-
coupling coefficients and bulk concentrations of PDs at steady
state, and to the derivation of our RIS analytical model. Re-
sults of diffusion and RIS properties of Fe alloys are found in
Sec. III. In the first part of Sec. IV, we discuss the limitations
of the model resulting from some of the assumptions, and in
the second part, we show how the present model can be used
to derive temperature-shift criteria. A summary, concluding
remarks, and perspectives are given in Sec. V.

II. MODELS

A solute RIS profile is a complex function of the local
concentrations of PDs and solute atoms, the local concentra-

tion dependent diffusion coefficients, the radiation flux, and
the PD sink strength. We will present the procedure that we
used to compute the diffusion coefficients, the flux-coupling
coefficients (also called flux-coupling ratios), and the RIS fac-
tor from the Onsager formulation of fluxes in a binary dilute
alloy A(B). The key variables that are used in the following
derivation are listed in Appendix A.

A. Diffusion properties

Following the Onsager formulation, we write the fluxes of
PDs and atoms as functions of the phenomenological trans-
port coefficients and the chemical potential gradients. Then,
we briefly introduce the cluster expansion of the transport
coefficients. This expansion provides an explicit variation of
the transport coefficients with respect to the local PD and
solute concentrations and their thermodynamic interactions.
From these fluxes, we introduce the flux-coupling coefficient
that relates the solute flux to the PD flux in the presence
of a PD chemical potential gradient. In the infinitely dilute
limit—when the interactions between solute atoms, PDs, and
solute-PD clusters larger than pairs are ignored—we express
the chemical potential gradients in terms of concentration
gradients and to obtain the expressions of partial, PD, and
solute diffusion coefficients.

1. Atomic fluxes and phenomenological coefficients

Following Onsager’s formalism [24,43], we express the
flux Jα of species α as a linear combination of chemical
potential gradients (e.g., ∇μβ for species β). We assume that
fluxes arising from the vacancy (V) diffusion mechanism and
from the self-interstitial atom (SIA or I) diffusion mechanism
are additive. In a binary alloy A(B), the flux of atomic species
α (α = A or B) reads

Jα = JV
α + JI

α, (1)

with

JV
α = − 1

kBT

∑
β=A,B,V

LV
αβ∇μβ, (2)

JI
α = − 1

kBT

∑
β=A,B,I

LI
αβ∇μβ. (3)

Similarly, the fluxes of vacancies and SIAs read

JV = − 1

kBT

∑
β=A,B,V

LV
Vβ∇μβ, (4)

JI = − 1

kBT

∑
β=A,B,I

LI
Iβ∇μβ. (5)

In Eqs. (2), (3), (4), and (5), the coefficients LV
αβ and LI

αβ are
the phenomenological transport coefficients that characterize
the diffusion mediated respectively by vacancies and SIAs.
For the sake of simplicity, LV

αV and LI
αI are respectively de-

noted LαV and LαI.
By using the self-consistent mean-field theory, we compute

the transport coefficients from the atomic jump frequencies
[44,45]. This theory has been applied to quantitative studies
of vacancy-mediated diffusion properties [23,26,27,48,49],
combined with the direct interstitial migration mechanism
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[49,50], and the SIA diffusion mechanism in dilute [47,51]
and concentrated alloys [52]. It has also been extended to
diffusion mechanisms that do not satisfy the microscopic
detailed balance such as the FAR mechanism [6]. The
recent development of a cluster formulation of the self-
consistent mean field theory and its implementation into the
KineCluE code [46] allows for systematic and sensitivity
studies of the solute concentration, strain, and temperature
effects on transport coefficients in multicomponent alloys
[26,47,49].

Now we introduce the vacancy and SIA diffusion mech-
anisms, as well as the FAR diffusion mechanism. The latter
models the effect of athermal ballistic mixing on atoms and
defects. According to the parametric study of the effect of
FAR on transport coefficients, at most irradiation conditions
in bcc iron alloys, varying the range of FAR does not fun-
damentally change the diffusion properties, in particular the
flux-coupling coefficients [6]. Therefore, for the sake of sim-
plicity, we restrict the FAR mechanism to forced exchanges
of atoms with their first nearest neighbors (1-NN) that can be
either an atom of a different chemical species or a vacancy.
Note that a purely random FAR mechanism is equivalent
to a ballistic mixing event. In the present study, we ignore
the FAR events with SIAs because FAR frequencies are al-
ways negligible compared to SIA thermal jump frequencies.
For each Frenkel pair created, the number of FAR events,
nFAR, ranges from a few units for electron irradiation to sev-
eral hundreds for neutron irradiation [3]. The contribution of
the FAR mechanism to the atomic transport increases with
nFAR. In the following, we set nFAR = 100 unless specified
otherwise.

In a dilute binary alloy A(B), we consider five different
cluster configurations. The B-d pair configurations corre-
spond to a single PD (d = V or I) bound to a single solute
atom B up to a distance lower than a kinetic radius Rk .
Whenever the distance between B and d is larger than Rk , we
consider B and d as isolated monomers. Therefore, the five
cluster contributions considered here are the three monomers
B, V, and I and the two pairs B-V and B-I. We use the
code KineCluE [46] to compute the transport coefficients
of each cluster from the ab initio atomic jump frequencies.
Following the kinetic cluster expansion formulation of the
transport coefficients in dilute alloys, we deduce the overall
transport coefficients from the cluster transport coefficients
[46]

Ld
BB = Ld,pair

BB Cpair
Bd + Lmono

BB Cmono
B ,

Ldd = Lpair
dd Cpair

Bd + Lmono
dd Cmono

d ,

LBd = Lpair
Bd Cpair

Bd ,

LdB = Lpair
dB Cpair

Bd . (6)

Note that the cluster transport coefficients (Lpair
αβ and Lmono

αβ )
are intrinsic cluster properties that do not depend on the local
atomic fraction Cα of species α = {A, B, d}, while the overall
transport coefficients do. The cluster atomic fractions Cpair

Bd ,
Cmono

d , and Cmono
B are deduced from Cα , and are computed

in the framework of low-temperature expansions [53–55]. In
most irradiation conditions of interest, Cd � CB. Therefore,

the cluster atomic fractions are given by [47]

Cpair
Bd = CBCd ZBd

Zd + CB(ZBd − Z0
Bd )

,

Cmono
d = Cd

[
1 − CBZBd

Zd + CB(ZBd − Z0
Bd )

]
,

Cmono
B = CB, (7)

where ZBd is the partition function of the pair B-d , Z0
Bd is

the number of pair configurations, ZV = 1 for vacancies, and
ZI = 6 for 〈110〉 dumbbells. In this case, Ldd , LBd , and LdB are
proportional to Cd whereas Ld

BB can be decomposed into two
parts, the first being proportional to Cd and the other one in-
dependent of Cd . Note that the coefficient Lmono

BB is zero unless
the FAR mechanism in included, because under equilibrium
conditions a substitutional solute requires the presence of PDs
to diffuse.

2. Flux-coupling coefficients

To investigate the flux coupling driven by an excess of
vacancy or SIA, we consider the ratio between fluxes of V
(respectively SIA) and solute atoms (B) in a binary alloy
A(B). Before irradiation, solute atoms are mostly at local
equilibrium in the vicinity of PD sinks; i.e., their gradient of
chemical potential is zero. From its very beginning, irradiation
produces an excess of PDs which increases as we move away
from PD sinks, leading to a gradient of PD chemical potential.
Therefore, ∇μV (respectively ∇μI) are the main diffusion
driving forces, at least at the beginning of irradiation. In order
to investigate the flux coupling induced by these PD driving
forces, we set to zero all the other gradients of chemical
potential. Hence, JV/JB and JI/JB are respectively given by
the flux-coupling coefficients [39,56,57]:

δV = LBV

LVV
(8)

for the B-V coupling and

δI = LBI

LII
(9)

for the B-SIA coupling.
These factors δV and δI give the average number of solute

atoms dragged by a vacancy and an SIA, respectively. Note
that LVV, LII, and LBI are systematically positive, while LBV

may be negative. The off-diagonal coefficient LBV determines
the sign of the B-V flux coupling. When δV < 0, the atom flux
is on average opposite to the vacancy flux. When δV > 0, va-
cancies drag solute atoms toward PD sinks through correlated
sequences of solute-vacancy exchanges. Note that when the
atomic relocation frequency of the FAR mechanism is close
to the thermal jump frequency, the flux coupling is reduced in
magnitude [6].

3. Partial and intrinsic diffusion coefficients

At most irradiation conditions in experiments (typically
at T > 300 K and a dose rate φ < 0.01 dpa/s), PDs can be
considered as dilute species due to their relatively low con-
centrations, even though these concentrations can be orders of
magnitude higher than equilibrium PD concentrations. Thus,
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we choose to ignore the effect of thermodynamic and kinetic
interactions between PDs on any diffusion properties. Fur-
thermore, we limit the study to infinitely dilute binary alloys
A(B), meaning that we ignore thermodynamic and kinetic
interactions between solute atoms B. Therefore, in the A(B)
binary alloy with a single type of PD (either V or SIA), the
transport coefficients are linear functions of the point defect
concentration. To highlight the dependency of the transport
coefficients upon the PD concentrations, normalized trans-
port coefficients are introduced, the so-called partial diffusion
coefficients [12,29,30,32], which are independent of PD con-
centration:

dAV = −LV
AA + LV

AB

CACV
, dBV = −LV

BB + LV
BA

CBCV
,

dAI = LI
AA + LI

AB

CACI
, dBI = LI

BB + LI
BA

CBCI
,

dc
AV = LV

AA

CACV
− LV

AB

CBCV
+ dAV

1

�
ξVA,

dc
BV = LV

BB

CBCV
− LV

BA

CACV
+ dBV

1

�
ξVB,

dc
AI = LI

AA

CACI
− LI

AB

CBCI
+ dAI

1

�
ξIA,

dc
BI = LI

BB

CBCI
− LI

BA

CACI
+ dBI

1

�
ξIB, (10)

where � is the thermodynamic factor [12], ξdα =
(∂ ln Ceq

d )/(∂ ln Cα ), and Ceq
d is the equilibrium PD

concentration. Since multiple-solute and multiple-defect
effects are neglected in the dilute-limit approximation, �

is equal to 1, and the factors ξdα are assumed to be zero.
Moreover, transport coefficients and intrinsic diffusion
coefficients are related by

Dβ = dc
βVCV + dc

βICI, β ∈ {A, B}. (11)

Combining Eqs. (6), (7), and (11), Dβ is rewritten as

Dβ = dc,0
βVCV + dc,0

βI CI + Lmono
BB , β ∈ {A, B}, (12)

where dc,0
βd is given by

dc,0
Ad =

(
Ld,pair

AA

CACd
− Ld,pair

AB

CBCd

)
Cpair

Bd , (13)

dc,0
Bd =

(
Ld,pair

BB

CBCd
− Ld,pair

BA

CACd

)
Cpair

Bd . (14)

Note that Lmono
BB is independent of PD concentrations.

Finally, we express the diffusion coefficients of vacancies
(DV) and SIAs (DI) in terms of transport coefficients

DV = LVV

CV
and DI = LII

CI
. (15)

B. Concentration profiles of point defects at sinks

The sustained creation of PDs under irradiation and their
elimination at sinks leads to a steady-state depleted concen-
tration profile of PDs at sinks. By analogy with the solute

RIS, we call it the RIS profile of PDs. We introduce an an-
alytical method to calculate this concentration profile. First,
we derive the bulk concentration of PDs at steady state from
standard mean-field rate theory [41]. Then, we calculate the
steady-state profile by splitting the PD concentration profile
into two parts and then integrating the flux of PDs.

1. Rate theory

The concentration of PDs varies under irradiation, mainly
due to the production of Frenkel pairs, the mutual recombina-
tion between SIA and vacancy, and the elimination of PDs at
sinks. We deduce the time derivative of the bulk concentration
of PDs d = {V, I} under irradiation Cb

d from a classic rate-
theory model [1,41,54]

dCb
d

dt
= φ − KR Cb

VCb
I − Kd

(
Cb

d − Ceq
d

)
, (16)

where KR = (4πrc/
)(DI + DV) stands for the SIA-V re-
combination rate whereas KV = k2

VDV and KI = k2
I DI corre-

spond respectively to the elimination rate of vacancies and
SIAs at PD sinks. At PD sinks, we assume that local equi-
librium is established and concentrations of PDs correspond
to the equilibrium ones. rc is the SIA-V recombination radius,
usually assumed to be in the same order of magnitude as the
lattice parameter a0. 
 is the atomic volume, φ the radiation
dose rate, i.e., the PD production rate, while k2

V and k2
I are the

sink strength respectively for vacancies and SIAs. We assume
that the PD sinks are neutral (i.e., any sink bias is neglected),
hence k2

V = k2
I = k2. Note that k2 = ∑

s k2
s is the total sink

strength, which is summed up over all contributions of the
various PD sinks (k2

s ). In steady state, we have

DV
(
Cb

V − Ceq
V

) = DI
(
Cb

I − Ceq
I

)
. (17)

Note that, in general, SIAs diffuse much faster than vacancies
(i.e., DI � DV) [2]. Furthermore, the equilibrium SIA con-
centration Ceq

I in metals is in general negligible with respect
to Cb

I [2]. Therefore, the steady-state solution of Eq. (16) for
Cb

V is given by

Cb
V = Ceq

V

2
− k2


8πrc
+

√(
Ceq

V

2
+ k2


8πrc

)2

+ 


4πrc

(
φ

DV

)
,

(18)
and the general solution for Cb

I is obtained from Eq. (17). By
applying the low-temperature expansion formalism [6,53–55]
to the infinitely dilute binary alloy A(B) at equilibrium, we
have

Ceq
V = Ceq,0

V

[
1 +

(
ZBV − Z0

BV

)
CB

1 + (
ZBV − Z0

BV

)
Ceq,0

V

]
, (19)

where CB is the nominal concentration of solute atoms B and
Ceq,0

V is the equilibrium concentration in pure metal obtained
from the vacancy formation enthalpy H f

V and entropy Sf
V by

Ceq,0
V = exp

(
−H f

V − T Sf
V

kB T

)
. (20)

Note that we may neglect Ceq
V with respect Cb

V in the re-
combination and sink domains of PDs [2]. We will take Ceq

V
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into account to define the transition between thermal and sink
domains.

In the sink domain, the elimination of PDs at sinks is
dominant versus the SIA-V recombination, i.e., K � R with

K = KV
(
Cb

V − Ceq
V

)
and R = KR Cb

VCb
I . (21)

Therefore, the bulk vacancy concentration Cb
V at steady state

is proportional to the ratio φ/DV and given by

Cb
V = 1

k2

(
φ

DV

)
. (22)

In the recombination domain, i.e., when K � R, the vacancy
concentration is proportional to

√
φ/DV, so that we have

Cb
V = Cb

I because Eq. (18) is not valid anymore. In this case,
the bulk concentration reads

Cb
V =

√



4πrc

(
φ

DV

)
. (23)

2. Steady-state RIS profile of point defects

Homogeneous mean-field rate theory does not provide the
concentration profiles of PDs at sinks that form under sus-
tained irradiation. From the continuity equation, we express
the elimination rate of PDs as a divergence of the vacancy
flux JV and the SIA flux JI:

∂CV

∂t
= φ − KRCVCI − ∇ · JV, (24)

∂CI

∂t
= φ − KRCVCI − ∇ · JI. (25)

To compute JV and JI, we assume ∇μV and ∇μI to be the
dominant driving forces compared to ∇μA and ∇μB. More-
over, we neglect the variation of the equilibrium point defect
concentration along the solute RIS profile (see Appendix B).
Thus, we have

JV = − LVV

kBT
∇μV = −DV∇CV, (26)

JI = − LII

kBT
∇μI = −DI∇CI. (27)

We present the calculation of the PD concentration profile in
a one-dimensional symmetric system delimited by two planar
sinks parallel to each other, as illustrated in Fig. 1. These
planar sinks may represent ideal surfaces, grain boundaries,
or interfaces. We define the PD concentration profile along
the coordinate axis (z) perpendicular to the planar sinks. We
assume that DV and DI do not depend on the spatial coordi-
nates; i.e., they do not vary along the solute RIS profile. At
steady state and along the z axis, the diffusion equations of
SIAs and vacancies lead to the partial differential equations:

0 = φ − KRCVCI + DV
∂2CV

∂z2
, (28)

0 = φ − KRCVCI + DI
∂2CI

∂z2
, (29)

where CV(z) and CI(z) are respectively the local concentra-
tions of vacancies and SIAs at coordinate z. At any position
z, these local concentrations are related to each other by the

FIG. 1. Schema of vacancy concentration profile divided into
two regions. In the first region (0 < z < l), the vacancy concentration
is assumed to be uniform in space and given by a mean-field kinetic
approach. In the second region (l < z < h/2), the PD recombination
reactions are neglected and the vacancy concentration is given by
∇ · JV = φ.

steady-state relation DV[CV(z) − Ceq
V ] = DICI(z), as demon-

strated in Appendix D 1. Since CV and CI are related, in
the following we consider only the spatial variation of CV.
Assuming that DI � DV, Eq. (28) is rewritten as follows:

∂2CV(z)

∂z2
= − φ

DV
+ 4πrc



CV(z)

[
CV(z) − Ceq

V

]
. (30)

This equation can be solved numerically, though it is CPU-
time consuming and convergence might be difficult to reach
when the nonlinear recombination reaction dominates. Find-
ing an analytical solution would solve these issues. Besides,
it would be a powerful tool for understanding how RIS
varies with irradiation conditions and the microstructure (sink
strength). However, for the time being, a general analytical
solution of Eq. (30) does not exist [58–60]. Close to a planar
sink and if we neglect the mutual recombination reactions
between PDs (i.e., rc = 0), there is a simple analytical solution
of the PD concentration profile [28]. As explained in Ref. [28],
the solution of Eq. (30) with rc = 0 reads

CV(z) = −a

(
z2 − h2

4

)
+ Ceq

V , (31)

where

a = φ

2DV
, (32)

h is the average spacing between planar sinks, and the position
of the origin of axis (z = 0) is chosen to be at the midpoint
between two planar sinks (see Fig. 1).

Close to a PD sink, ignoring the recombination reactions
should be a reasonable hypothesis, because locally concen-
trations of PDs are very low. Hence their probability of
recombination, that is proportional to the square of the PD
concentrations, should be very low as well. Therefore, we split
the PD concentration profiles in two regions: a bulk region
far from sinks in which concentrations are uniform, and a
sink region in which we account for the z variation of the PD
concentration profile (cf. Fig. 1). The z coordinate of the bulk
region ranges between 0 and l, whereas the z coordinate of the
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sink region ranges from l to h/2, h being the distance between
the planar sinks. In the bulk region, CV(z) is constant and
equal to the steady-state bulk concentration Cb

V [see Eq. (16)].
From Eq. (31), we deduce the vacancy concentration profile
CV(z), with l � z � h/2. In order to ensure the continuity of
the vacancy concentration and its spatial derivative (i.e., the
vacancy flux), we apply the boundary conditions

CV(l−) = CV(l+),
∂CV

∂z
(l−) = ∂CV

∂z
(l+) = 0. (33)

We assume that PD sinks are perfect sinks, meaning that
the PD concentration at sinks is the equilibrium one (which
depends on the local solute concentration at sinks):

CV

(
h

2

)
= Ceq

V . (34)

The solution is then given by

CV(z) =
{

Cb
V, 0 � z < l,

−a(z − l )2 + Cb
V, l � z � h/2,

(35)

where the characteristic distance l is defined as

l = h

2
−

√
Cexc

V

a
, (36)

where Cexc
V = Cb

V − Ceq
V corresponds to the vacancy excess

concentration with respect to the equilibrium one. Note
that the characteristic distance l depends on the interplanar
distance h and Cexc

V . Both quantities are related to the mi-
crostructure. The interplanar distance h determines the sink
strength of the parallel planar sinks [61]:

k2
planar = 8

h2
. (37)

Under the assumption that the sink strength of the system
is determined by interfaces only, the overall sink strength
k2 = k2

planar, and the planar sink strength fully determines Cb
V.

Otherwise, if the microstructure contains several PD sinks,
the bulk concentration of vacancies Cb

V should depend on the
overall sink strength k2, with k2 > k2

planar. In this case, k2 and
h would be independent variables.

If l < 0, Eq. (35) is no longer appropriate, because the PD
planar sinks are so close that it is not possible to introduce a
bulk region with uniform concentrations. In this case, we set
l = 0, and the obtained PD concentration profile is given by
Eq. (31).

Using the Gibbs formalism of interface excess quantities,
we define the vacancy concentration excess at sinks by the
following integral:

SV =
∫ h/2

0
[CV(z) − CV(0)]dz. (38)

We obtain from Eq. (35) and Eq. (38) that

SV = −
(
Cb

V − Ceq
V

) 3
2

3
√

a
. (39)

As expected, SV is always negative. Note that the latter
depends on the PD recombination reactions through the varia-
tion of Cb

V with R. Therefore, as stated in Sec. II B 1, we cannot
ignore the recombination reactions, unless the recombination

rate (R) is negligible with respect to the PD elimination rate at
sinks (K).

In the sink domain, i.e., K � R, we have

SV = −
√

2

3(k2)3/2

(
φ

DV

)
. (40)

Therefore, SV is proportional to the ratio φ/DV, and it de-
creases with the sink strength k2.

In the recombination domain, i.e., R � K , we have

SV = −1

6

(



πrc

)3/4(
φ

DV

)1/4

. (41)

Thus, SV is proportional to (φ/DV)
1
4 , and it is independent

of k2.

C. Radiation-induced segregation of solute atoms

From the vacancy RIS profile and the RIS factor expressed
as functions of the local PD and solute concentrations, we
derive an analytical expression of the solute RIS profile.

1. Local concentration-dependent RIS factor α

According to Wiedersich [12,13,30], at steady state, the
concentration gradients of solutes and vacancies near an ideal
sink are related by

∇CB = −α(z)∇CV, (42)

with the RIS factor

α(z) = dAIdAVCACB

dAIDBCA + dBIDACB
αs (43)

and

αs = dBI

dAI
− dBV

dAV
. (44)

αs determines the sign of the RIS factor α, which in turn
determines the sign of RIS. In a dilute binary alloy A(B), the
partial diffusion coefficients dBI, dAI are systematically posi-
tive, while dAV is systematically negative. On the other hand,
dBV is either positive or negative. The off-diagonal coefficient
LBV determines the sign of dBV. Concerning the sign of αs, we
consider two cases. When dBV is positive, i.e., vacancies drag
solute atoms, αs is positive and RIS leads to solute enrichment
around sinks. When dBV is negative, the sign of αs depends
on the relative amplitude of the partial diffusion coefficient
ratios dBI/dAI and dBV/dAV. Note that a steady-state gradient
of solute concentration can only be established if a backward
diffusion opposes the solute gradient resulting from flux cou-
pling. The rate of this backward reaction is governed by the
intrinsic diffusion coefficients DA and DB that appear in the
denominator of α(z).

The local RIS factor α depends on the z coordinate through
the variation of the local concentration CB and CV with z [see
Eq. (43)]. In order to analyze the variation of α with the local
concentrations of vacancies and solute atoms, we rewrite α

by making explicit its variation with CB and CV. Note that
we neglect PD concentration with respect to the solute and
solvent concentration, i.e., CA = 1 − CB. We deduce from
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Eqs. (12), (17), and (43) that

α(z) = α1CB(z)

CV(z) + α2
, (45)

where

α1 = α0

αV + αI
, (46)

α2 = αmono − αIC
eq
V

αV + αI
, (47)

with

α0 = αs CAdAIdAV,

αV = CAdAId
c
BV + CBdBId

c
AV,

αI = (
CAdAId

c
BI + CBdBId

c
AI

)
DV/DI,

αmono = (
CAdAI + CBdBI

)
Lmono

BB .

Therefore, α decreases with CV. The RIS factors α1 and α2

are independent of the PD concentrations. Instead, they vary
with CB because the partial diffusion coefficients di j depend
on CB. However, along a RIS profile, the relative variation of
the solute concentration is a lot smaller than that of the PD
concentration. Hence, we assume that α1 and α2 do not vary
along the RIS profile, and we compute these coefficients at CB

equal to the nominal solute concentration. This assumption
is later justified by a comparison between the solute RIS
profile obtained from our analytical approximation and the
exact solution (cf. Fig. 18).

2. Steady-state RIS profile of solute atoms

Following Eq. (35), we deduce the vacancy concentration
gradient ∇CV. Then, from Eqs. (42) and (45), we obtain the
solute concentration gradient

∇CB

CB
(z) =

{
0, 0 � z < l,
− 2 α1(z−l )

(z−l )2−b2 , l � z � h/2,
(48)

with b2 = (Cb
V + α2)/a.

We determine α1 and α2 from the nominal solute concen-
tration, CB. We derive the concentration profile of the solute
atoms by integrating Eq. (48) with respect to z. We deduce the
constants of integration from the following boundary condi-
tions:

CB(l−) = CB(l+), (49)∫ h/2

0
CB(z)dz = h

2
CB. (50)

These conditions ensure the continuity of the solute concen-
tration profile CB at z = l and the mass conservation of the
solute atoms along the RIS profile.

Note that in this study we neglect the equilibrium segrega-
tion of solutes resulting from the interaction of solutes with
the sink [62–64]. This thermodynamic property may strongly
modify the solute concentration over the first two or three
atomic planes of the sink [62,63]. Its amplitude and width
(generally less than 1 nm) vary with the temperature, the
chemical nature of solute atoms, and the nature of the sink. A
quantitative investigation of this phenomenon would require

a detailed knowledge of the structure of the sink as well as
the solute segregation energies at different atomic sites near
the sink. Even in the case of a positive and high equilibrium
solute segregation, the volume fraction of segregated lattice
sites is so small that it should not much affect the bulk solute
concentration, unless this concentration is very small. If the
equilibrium segregation is so strong that a large number of
solute atoms are found at interfaces, there would be fewer so-
lute atoms left in the bulk to interact with PDs and participate
in RIS. This could be reproduced effectively by lowering the
value of the nominal solute concentration parameter used in
our model. Note that equilibrium segregation as well as RIS
is diminished by a FAR mechanism. Therefore, in the case of
a relatively weak equilibrium segregation, the kinetics of the
solute RIS, as well as the average width of the RIS profiles
(spreading over a few tens of nanometers [2]), should not be
much affected.

According to the boundary conditions, i.e., Eqs. (49) and
(50), we obtain

CB(z) =
{

K1 b−2α1 , 0 � z < l,
K1[b2 − (z − l )2]

−α1
, l � z � h/2,

(51)

with

K1 = h

2

CB

lb−2α1 + ∫ (h/2)−l
0 (b2 − z2)−α1 dz

. (52)

Note that there is no simple analytical expression of the
integral I = ∫ (h/2)−l

0 (b2 − z2)−α1 dz. Nevertheless, we can cal-
culate it from the hypergeometric function 2F1 [65] (presented
in Appendix D 2).

Similarly to Eq. (39), we define the total amount of solute
atoms segregated at sinks as the solute concentration excess
SB = (h/2)[CB − CB(0)]. This is written

SB = h

2

(
CB − K1 b−2α1

)
. (53)

In cases where we cannot ignore the FAR mechanism, the
diffusion of isolated solute atoms (Lmono

BB ) and thus α2 are not
negligible. α2 increases with the FAR frequency, which in turn
decreases the RIS of solute atoms. In the extreme case where
α2 � Cb

V, we obtain, for 0 < z < (h/2) − l ,

z2 <

(
h

2
− l

)2

< Cb
V/a � b2. (54)

In this case, I � [(h/2) − l]b−2α1 , K1 = CB b2α1 , and the
amount of segregated solute is zero (SB = 0).

On the contrary, if we ignore FAR, α2 � Cb
V. If we also

neglect Ceq
V , b = (h/2) − l and we obtain

I =
∫ b

0
(b2 − z2)−α1 dz

= b−2α1+1Iα1 , (55)

with

Iα1 =
∫ 1

0
(1 − z2)−α1 dz. (56)

Note that Iα1 is positive and only depends on the RIS factor α1.
Moreover, it is larger than 1 if the solute RIS is positive (i.e.,
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α1 > 0), and smaller than 1 in the opposite case. Then, after
Eqs. (52), (53), and (55), we may approximate SB as follows:

SB = h

2
CB

Iα1 − 1

Iα1 + l
(h/2)−l

(57)

= h

2
CB

Iα1 − 1

Iα1 − 1 + h
2

√
a

Cb
V

. (58)

According to Eq. (57), SB is positive if the solute RIS factor is
positive, and negative otherwise.

Besides, following Eqs. (39) and (58), we obtain a direct
relationship between SB and SV:

SB = h

2
CB

Iα1 − 1

Iα1 − 1 − h
2

Cb
V

SV

. (59)

We observe that the amount of solute RIS, SB, is directly
related to α1 and SV/Cb

V. In the denominator, Cb
V is the sig-

nature of the backward diffusion opposing the RIS solute
concentration gradient. This backward diffusion is the reason
why solute RIS (SB), unlike PD RIS (SV), is not systematically
governed by the ratio φ/DV.

In the sink domain (K � R), we obtain from Eq. (22) and
Eq. (58) that

SB = h

2
CB

Iα1 − 1

Iα1 − 1 + h
2

√
k2

2

. (60)

In this case, SB is independent of the ratio φ/DV, whereas
it decreases with k2, as already shown in Ref. [28]. Thus,
at fixed k2, if we neglect the small variation of α1 with the
dose rate φ, the solute RIS amount is independent of φ [28].
Besides, SB varies with temperature through the variation of
α1 with temperature. Note that the present expression of SB is
not exactly the same as the one published in Ref. [28], because
here we do not assume that the RIS factor is independent of
solute and PD concentrations.

In the recombination domain (K � R), we obtain from
Eq. (23) and Eq. (58) that

SB = h

2
CB

Iα1 − 1

Iα1 − 1 + h
2

(



πrc

)−1/4( φ

DV

)1/4 . (61)

SB is then governed by the ratio φ/DV as well as by the RIS
factor α1. Moreover, it decreases with the dose rate φ.

D. Interplay between RIS and the microstructure

According to the analytical derivation, the RIS segregation
profiles between parallel planar sinks depend upon the spacing
h between the parallel planar sinks, and the total sink strength
k2 = ∑

s k2
s of the overall microstructure including the local

parallel planar sink strength [Eq. (37)]. Such a modeling of
the PD sink population allows for the investigation of the RIS
profile of a local sink interacting with the overall microstruc-
ture. Note that our analytical model of RIS could be easily
extended to other local sinks, such as dislocation lines k2

line
and dislocation loops k2

loop.
In the following, for the sake of simplicity, we consider

parallel sink planes as the major PD sinks. This means that
we ignore the contributions of other types of sinks, and relate
the interplanar distance to the total sink strength: h =

√
8/k2.

TABLE I. Ab initio solute-PD binding energies (in eV) of Fe
alloys obtained in Ref. [27] for mixed B-I dumbbell configuration,
and Ref. [47] for 1-NN and 2-NN B-V pair configurations. Negative
energies stand for attractive interactions.

Configuration Fe-P Fe-Mn Fe-Cr Fe-Si Fe-Ni Fe-Cu

Mixed B-I −1.03 −0.56 −0.05 +0.00 +0.19 +0.38
1-NN B-V −0.38 −0.17 −0.06 −0.30 −0.10 −0.26
2-NN B-V −0.27 −0.11 −0.01 −0.11 −0.21 −0.17

III. RESULTS

We apply the above RIS models to the specific case of
Fe-based dilute alloys. We start this section with a brief pre-
sentation of these alloys from a perspective of their PD energy
properties. Then we present a parametric study of the varia-
tion of steady-state vacancy concentration with temperature,
radiation flux, and sink strength, with the aid of 2-D maps.
We extend this parametric approach to the solute diffusion co-
efficients, the flux-coupling and RIS factors, and the vacancy
and solute RIS profiles. Note that in the temperature–radiation
flux maps, the recombination radius rc is set to

√
3 a0, and the

sink strength is set to k2 = 5 × 1014 m−2 (i.e., h = 126 nm),
unless otherwise specified.

A. DFT energy database of dilute Fe-based alloys

The vacancy formation enthalpy H f
V and entropy Sf

V in pure
iron are respectively set to 2.18 eV and 4.1kB, and the lattice
parameter a0 to 2.831 Å according to previous DFT calcula-
tions [27]. The ab initio solute-PD binding energies, migration
energies, and jump frequency prefactors are found in Ref. [27]
for the vacancy diffusion mechanism, and in Ref. [47] for the
dumbbell diffusion mechanism.

The computation of the RIS factors in these alloys has
shown that the general flux-coupling behavior is largely gov-
erned by the short-range thermodynamic interaction between
PDs and solute atoms [27]. The range of vacancy-solute pair
interactions is considered up to 6-NN, while the range of
SIA-solute pair interactions is up to 5-NN. We list in Table I
the binding energy values of the mixed dumbbell and the 1-
and 2-NN solute-vacancy pairs. In the six binary alloys, the 1-
and 2-NN solute-vacancy binding energies are negative; i.e.,
the solute atoms are attracted by the vacancy. Moreover, Cr
has a very weak interaction with vacancies compared with the
other solute atoms. Concerning the SIAs, the most stable con-
figuration is the dumbbell one. Based on the binding energies
of the solute-Fe mixed dumbbells, we can divide the Fe-based
dilute alloys into two groups: those with stable (P, Mn, Cr) and
nonstable (Si, Ni, Cu) mixed dumbbells.

Note that the kinetic behaviors of the solute atoms forming
nonstable mixed dumbbells (Si, Ni, Cu) should be predomi-
nantly controlled by the vacancy mechanism [47]. In addition,
the values of the 1-NN and 2-NN solute-vacancy binding
energies in Fe-Si, Fe-Ni, and Fe-Cu alloys are close. There-
fore, the kinetic properties of the solute atoms are expected
to be similar in these alloys. On the other hand, for the group
of solutes forming stable mixed dumbbells (P, Mn, Cr), the
values of solute-PD binding energies cover a wider range,
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FIG. 2. Bulk vacancy concentration Cb
V as a function of dose rate

(in dpa) and inverse temperature (in K−1) for the dilute Fe-Mn alloy.
The nominal solute concentration CMn is set to 1 at. % and the sink
strength k2 is set to 5 × 1014 m−2. The main trends of Cb

V with T and
φ are similar for the other investigated Fe alloys.

suggesting that the kinetic properties can be very different in
Fe-P, Fe-Mn, and Fe-Cr alloys.

B. Bulk vacancy concentration at steady state

As shown in Sec. II C, the RIS of solute atoms is related to
the bulk vacancy concentration. Thus, the kinetic domains of
solute RIS are similar to the PD kinetic domains. Therefore,

we compute the steady-state bulk concentration of vacancies
with respect to temperature, radiation flux, and sink strength.

First, we compute the variation of the bulk vacancy con-
centration, Cb

V, with temperature (T ) and dose rate (φ). In
Fig. 2, the result for the Fe-Mn system is represented in the
form of a φ-T map, in which the colors indicate the amplitude
of Cb

V. This map can be divided into three domains: thermal
domain when the bulk vacancy concentration is lower than
twice the equilibrium vacancy concentration, i.e., the effect of
irradiation is negligible; sink domain for K > R; recombina-
tion domain for R > K .

According to Eqs. (22) and (23), Cb
V decreases with T ,

whereas it increases with φ. In the recombination domain, Cb
V

increases linearly with φ. In both the recombination and sink
domains, each level line corresponds to a fixed value of φ/DV.
In the thermal domain, the level lines are horizontal because
Cb

V is close to the equilibrium vacancy concentration Ceq
V , and

independent of φ.
We find that the main trends of Cb

V with T and φ are
similar for the other investigated Fe alloys (not presented),
with only slight variations of the extent of the kinetic domains.
Therefore, we conclude that the solute effect on the bulk
concentration of vacancies is negligible.

C. Solute diffusion

We compute the intrinsic solute diffusion coefficient, DB,
which is equivalent in a dilute alloy to the solute tracer diffu-
sion coefficient. The φ-T maps of DB are presented in Fig. 3.
For the six alloys, we recover the three kinetic domains of Cb

V.
Over most irradiation conditions of interest, CB � Cb

V (see
Fig. 2). In this case, the solute diffusion coefficient varies

FIG. 3. Solute diffusion coefficient DB as a function of dose rate (in dpa) and inverse temperature (in K−1) for several dilute binary Fe-based
alloys. The nominal solute concentration CB is set to 1 at. % and the sink strength k2 is set to 5 × 1014 m−2.
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FIG. 4. Flux-coupling coefficients for Fe-Mn, Fe-Cr, and Fe-Cu
alloys, mediated by vacancies (solid lines) and SIAs (dashed line),
as functions of dose rate. The results are obtained for three differ-
ent temperatures: 350 K, 450 K, and 800 K. The nominal solute
concentration CB is set to 1 at. % and the sink strength k2 is set to
5 × 1014 m−2.

linearly with the bulk vacancy concentration [cf. Eq. (11)],
provided the effect of FAR is negligible. Therefore, we expect
the same kinetic domains, except in the low-temperature and
high-flux domain where FAR may affect the solute diffusion
properties and CB has the same order of magnitude as Cb

V.
DB increases with temperature in the recombination and

thermal domains, though the increasing rate is different in the
two domains. In the sink domain, DB is nearly T -independent.
As for the effect of the radiation flux, DB increases with φ

except in the thermal domain. Similarly to Cb
V, the solute effect

on the main trends is weak.

D. Flux coupling

1. Flux-coupling coefficients

As expected from the solute-PD binding energy database
(Table I), the overall RIS of solute atoms in Fe-Si, Fe-Ni,
and Fe-Cu alloys is mainly due to flux coupling mediated by
the vacancy diffusion mechanism, whereas in Fe-P, Fe-Mn,
and Fe-Cr alloys both the dumbbell and vacancy mechanisms
contribute to the solute RIS [47]. In addition, in Fe-Cr alloy,
flux couplings mediated by vacancies and SIAs have opposite
sign, and the subsequent sign and amplitude of Cr RIS results
from a temperature-dependent balance between the vacancy-
induced depletion and the dumbbell-induced enrichment.

In Fig. 4, we plot the variation of the flux-coupling coef-
ficients with dose rate in Fe-Mn, Fe-Cr, and Fe-Cu alloys at
different temperatures. For φ < 10−2 dpa/s, we observe that

in the Fe-Cu alloy, δI is much smaller than δV because of
the instability of the mixed solute-dumbbell configuration. We
observe similar trends in Fe-Si and Fe-Ni alloys. For Fe-Mn,
Fe-P, and Fe-Cr alloys, both δI and δV have a non-negligible
contribution. The above results are consistent with the
flux-coupling behaviors presented in Ref. [47], even though
the FAR mechanism was therein not included. In Ref. [6], we
have shown that there is an effect of FAR whenever the jump
frequencies of PDs at equilibrium are comparable with FAR
frequencies within 1 to 2 orders of magnitude. Therefore, as
expected, we observe an effect of FAR on δV at significant
dose rates (>10−2 dpa/s) and low temperatures (<400 K),
a flux-temperature domain in which the FAR frequency is
close to or higher than thermal jump frequencies. Note that
at temperatures above 350 K, the flux-coupling coefficient
δI is nearly independent of dose rate below 1 dpa. This is
because the dumbbell-mediated jump frequencies are much
higher than the FAR frequency.

2. RIS factor α1

The RIS factor results from the balance between flux cou-
pling and backward diffusion opposing the segregation of
solute atoms at sinks. Here, we consider the RIS factor α1,
which, in the absence of FAR, corresponds to the overall RIS
factor [cf. Eq. (46)]. In Fig. 5, we show the temperature-
radiation flux maps of α1. As expected from the solute-PD
binding energies (Eb), α1 has the same behavior in Fe-Si,
Fe-Ni, and Fe-Cu alloys. When φ < 10−2 dpa/s, the abso-
lute value of α1 decreases with temperature because of the
drop of the vacancy-solute pair probability proportional to
exp(−Eb/kBT ) [27]. In the Fe-P, Fe-Mn, and Fe-Cr systems,
the variation of α1 with temperature is quite different. In Fe-P,
the absolute value of α1 increases with temperature. As for the
Fe-Mn alloy, |α1| increases up to around 650 K. The binding
energy of the Fe-Mn dumbbell is lower than that of the Fe-P
dumbbell. As a consequence, above 650 K, |α1| decreases
with temperature. Regarding the Fe-Cr alloy, we observe a
change of sign of α1 around 530 K.

At low temperatures, roughly below 600 K, α1 decreases
with radiation flux. At temperatures below 300 K and under
very high radiation fluxes (above φ = 1 dpa/s), α1 is close to
0 because flux coupling is totally destroyed by FAR. Above
600 K and/or below 10−2 dpa/s, there is no effect of FAR
on α1. Note that even though FAR may reduce the magnitude
of α1, it does not qualitatively change the extent of the three
kinetic domains, or the sign of the RIS factor.

3. RIS factor α2

In addition to α1, the RIS magnitude depends also on
the RIS factor α2, which is directly related to the FAR
mechanism (i.e., Lmono

BB ). As stated in Sec. II C 1, the
ratio

γ = α2/Cb
V (62)

indicates the extent of the FAR effect on the solute RIS. If
γ � 1, SB is equal to 0. In Fig. 6, we plot the φ-T maps
of |γ | = |α2|/Cb

V. Dashed lines represent level lines of γ .
We observe that over most flux-temperature conditions, γ is
smaller than 0.1. It is close to or larger than 1 at high φ and low
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FIG. 5. RIS factor α1 normalized by its maximum value αmax
1 as a function of dose rate (in dpa) and inverse temperature (in K−1) in several

dilute binary Fe-based alloys. The solid line in Fe-Cr system corresponds to α1 = 0. The nominal solute concentration CB is set to 1 at. % and
the sink strength k2 is set to 5 × 1014 m−2.

T , and increases with dose rate. Furthermore, it decreases with
temperature, and becomes negative above a threshold tem-

perature linearly increasing with radiation flux. The domain
where γ < 0 coincides with the thermal domain of Fig. 2. At

FIG. 6. |γ | = |α2|/Cb
V as a function of dose rate (in dpa) and inverse temperature (in K−1) in several dilute binary Fe-based alloys. The

nominal solute concentration CB is set to 1 at. % and the sink strength k2 is set to 5 × 1014 m−2.
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FIG. 7. |γ | = |α2|/Cb
V as a function of sink strength (in m−2) and inverse temperature (in K−1) in several dilute binary Fe-based alloys.

The nominal solute concentration CB is set to 1 at. % and φ is set to 2 × 10−4 dpa/s.

the limit of this domain, Cb
V is close to the equilibrium vacancy

concentration Ceq
V .

In order to highlight the effect of sink strength on γ , we
plot the k2-T maps of |γ | in Fig. 7. Since γ increases with k2,
the FAR effect on RIS should be significant at large values of
k2.

Note that the variation of γ with T , φ, and k2 is alloy-
specific. For a given set of parameters, the value of γ is
relatively high in Fe-Ni and Fe-Cr, small in Fe-P and Fe-Mn,
and in an intermediate range in Fe-Si and Fe-Cu alloys.

E. Radiation-induced segregation of PDs

In order to investigate the effect of PD recombination on
the RIS profiles, we compare the profiles given by two dif-
ferent methods: (i) the analytical approximation proposed in
this work [Eq. (35) for CV(z)], and (ii) the one proposed in
Ref. [28] where the recombination rate is set to zero.

The concentration profiles of vacancies at different tem-
peratures and sink strengths are plotted in Fig. 8. In order
to assess the accuracy of the analytical approximations, we
plot as well the reference profile obtained from the exact
solution of Eq. (30) computed by a finite-difference method.
We observe that the concentration profiles obtained from the
present analytical approach are in good agreement with the
reference profiles.

When recombination reactions are neglected, the vacancy
concentration along the RIS profile is overestimated, espe-
cially at low temperatures (e.g., 600 K) and small sink strength
(e.g., 5 × 1013 m−2), because the ratio K/R is relatively large.
Therefore, the recombination effect is not negligible (see
Sec. II B 2). In order to investigate the shape of the vacancy

RIS profile at different irradiation conditions, we define an
effective width le

V of the vacancy concentration profile as

FIG. 8. Concentration profiles of vacancies under irradiation.
The solid lines are the exact solutions of Eq. (30). The dashed
and dash-dotted lines are the analytical approximations of Eq. (30),
obtained from Eq. (35) (this work) and Eq. (31) (cf. Ref. [28]),
respectively. The shaded area indicates the sink. The results for
(a) and (b) are respectively given for T = 600 K and 750 K, with
φ = 10−4 dpa/s and k2 = 5 × 1013 m−2 (i.e., h = 400 nm). The re-
sults for (c) and (d) are respectively given for k2 = 5 × 1014 m−2 and
5 × 1015 m−2, with φ = 10−6 dpa/s and T = 500 K.
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FIG. 9. The effective width of RIS profiles of vacancies as a function of dose rate (in dpa) and inverse temperature (in K−1) for several
dilute binary Fe-based alloys. The nominal solute concentration CB is set to 1 at. % and the sink strength k2 is set to 5 × 1014 m−2. The
corresponding distance between planar sinks is h = 126 nm.

follows:

le
V =

√√√√∫ h/2
0 [(h/2) − z]2[CV(z) − CV(0)]dz∫ h/2

0 [CV(z) − CV(0)]dz
(63)

= 1√
10

(
h

2
− l

)
. (64)

This parameter represents the average distance between a
vacancy and a PD sink. It is also related to the width of the
vacancy-depleted zone near sinks [66]. In Fig. 9, we plot
the maps of le

V as a function of the inverse temperature and
dose rate. In the sink domain, l → 0 and therefore the width
of the vacancy profile equals h/

√
40, whatever the irradia-

tion conditions. According to Eq. (64), le
V increases with h.

Therefore, the smaller the sink density, the larger the distance
between sinks, and the wider the vacancy-depleted zone. In
the recombination domain, le

V decreases with dose rate, while
it increases with temperature.

Furthermore, we investigate the effect of temperature, dose
rate, and sink strength on the segregation amount of vacancies.
Note that, using Eq. (40) and Eq. (41), log10 |SV| is given by

log10 |SV|

=
{

log10 φ − log10 DV − 3
2 log10 k2 + K2, K � R,

1
4 log10 φ − 1

4 log10 DV + K3, K � R,
(65)

with K2 = log10 (
√

2/3) and K3 = log10[(
/πrc)3/4/6].
Figure 10 shows the maps of log10 |SV| near the interface

[given by Eq. (39)] as a function of inverse temperature and
dose rate. The maps are divided into two domains correspond-

ing to the two limit cases of Eq. (65). The first kinetic domain
is the one dominated by recombination reactions (K < R), and
the second one is the sink domain (K > R). In both regimes,
log10 |SV| increases linearly with log10 φ and 1/T , but the
slopes are different.

Figure 11 shows the temperature-sink strength maps of
the same quantity, divided as well into recombination and
sink domains. log10 |SV| decreases linearly with log10 k2 in
the sink domain, whereas it is nearly k2-independent in the
recombination domain. The variations of SV with φ and k2 are
similar in all investigated Fe-based binary alloys, whereas the
variations with 1/T are a bit more varied because the average
vacancy diffusion coefficient DV is alloy-specific.

F. Radiation-induced segregation of solute atoms

As done for the vacancy concentration profile, we intro-
duce an effective width of the concentration profile of solute
atoms (le

B) to characterize the shape of the solute RIS profile.
Its definition is similar to that of the vacancies [Eq. (64)],
where subscript V is replaced by B. Figure 12 shows the φ-T
maps of le

B. This quantity is large and almost uniform in the
thermal domain. In the recombination domain, le

B decreases
with dose rate and increases with temperature. These trends
are very similar to the ones observed for le

V. As a result, we
expect the RIS profiles of vacancies and solute atoms to have
almost the same width in thermal and recombination domains.
In these domains, we could rely on the measured width of
the solute RIS profiles to obtain information on the vacancy
RIS profile, and subsequently on the PDs sink strength. On
the other hand, in the sink domain, the larger the solute RIS
amount, SB, the smaller the width of the RIS profile, le

B.
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FIG. 10. Total amount of segregated vacancies SV as a function of dose rate (in dpa) and inverse temperature (in K−1) for several dilute
binary Fe-based alloys. The nominal solute concentration CB is set to 1 at. % and the sink strength k2 is set to 5 × 1014 m−2.

Moreover, le
B is smaller than le

V in this domain, especially in
Fe-P and Fe-Mn alloys where the tendency to positive RIS is
significant.

Furthermore, Figs. 13 and 14 show the temperature-
radiation flux-sink strength maps of the solute RIS amount
given by Eq. (53). As shown in Fig. 3, the flux-temperature

FIG. 11. Total amount of segregated vacancies SV as a function of sink strength (in m−2) and inverse temperature (in K−1) for several dilute
binary Fe-based alloys. The nominal solute concentration CB is set to 1 at. % and the dose rate φ is set to 2 × 10−4 dpa/s.
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FIG. 12. The effective width of RIS profiles of solute atoms as a function of dose rate (in dpa) and inverse temperature (in K−1) for several
dilute binary Fe-based alloys. The nominal solute concentration CB is set to 1 at. % and the sink strength k2 is set to 5 × 1014 m−2. The
corresponding distance between planar sinks is h = 126 nm.

FIG. 13. Total amount of segregated solute atoms SB normalized by its maximum over all considered irradiation conditions Smax
B as a

function of dose rate (in dpa) and inverse temperature (in K−1) for several dilute binary Fe-based alloys. The nominal solute concentration CB

is set to 1 at. % and the sink strength k2 is set to 5 × 1014 m−2.
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FIG. 14. Total amount of segregated solute atoms SB as a function of sink strength (in m−2) and inverse temperature (in K−1) for several
dilute binary Fe-based alloys. The nominal solute concentration CB is set to 1 at. % and the dose rate φ = 2 × 10−4 dpa/s.

(φ-T ) domains of SB are mainly determined by PD kinetics.
SB is significant in the sink domain, whereas it is relatively
small in the recombination domain because, after the SIA-V
recombination, only a few PDs are left for the long-distance
solute diffusion toward the sinks. In the thermal domain,
since the amount of excess PDs is very small, so is the
net flux of PDs toward sinks, which leads to small SV and
SB.

In Fig. 13, we show the maps of the solute RIS amount
SB as a function of T and φ at fixed sink strength k2 =
5 × 1014 m−2. As expected, SB does not depend on dose rate
in the sink domain [cf. Eq. (60)], and SB decreases with dose
rate in the recombination domain [cf. Eq. (61)]. In Fig. 14,
we show the maps of SB as a function of k2 and T at
fixed radiation flux φ = 2 × 10−4 dpa/s. In the domain of PD
elimination (K > R), SB decreases with k2, as expected from
Eq. (60).

We take the Fe-Cr alloy as an example to illustrate the
effect of sink strength on the extent of the kinetic domains
and the maximum of solute RIS. Figure 15 shows the Cr
RIS amount maps at different sink strength k2. Note that the
sink domain grows wider with increasing k2. However, the
maximum RIS amount, Smax

Cr , decreases with sink strength.
Therefore, an increase of sink concentration or strength de-
creases the solute RIS at each sink. We obtain the same trends
for the other Fe-based alloys (not represented).

The variation of SB with T , φ, and k2 strongly depends
on the chemical nature of solute atoms because α1 and α2

are alloy-specific (see Fig. 5 and Fig. 6). As expected from
the DFT-based data of the solute-PD binding energies (I), the
main trends are similar in Fe-Si, Fe-Ni, and Fe-Cu alloys,

but very different in Fe-P, Fe-Mn, and Fe-Cr alloys. In Fe-
Si, Fi-Ni, and Fe-Cu alloys, the highest solute enrichment
tendency is at low temperatures (about 400 K) and dose rate
(about 10−12 dpa/s), whereas the highest solute enrichment
tendency in Fe-P is at high temperatures (>1000 K) and dose
rates (around 10−3 dpa/s). As for Mn solutes, the peak of RIS
occurs at intermediate temperatures (about 650 K) and dose
rate (from 10−10 to 10−6 dpa/s). For Cr solutes, the peak of
positive RIS occurs at low temperatures (about 300 K) and
dose rates (about 10−11 dpa/s), whereas the peak of negative
RIS occurs at high temperatures (>800 K) and dose rates
(>10−6 dpa/s).

As stated in Sec. III D 3, the FAR effect on the solute
RIS should be significant at large k2 because, in this case,
γ is close to or larger than 1. We take the Fe-Ni alloy as
an example to investigate the FAR effect on the solute RIS
profile. In order to identify the FAR effect, we calculate and
compare the CNi profiles and segregation amounts SNi at dif-
ferent FAR intensities, which are characterized by the values
of nFAR (i.e., the number of FAR per dpa). Note that nFAR = 0
indicates that there is no FAR in the displacement cascade.
The concentration profiles are plotted in Figs. 16(a) and 16(b)
with two different sink strengths and nFAR equal to 0, 50, 100,
and 500. At k2 = 5 × 1014 m−2, the segregation profiles are
practically insensitive to FAR effects, because γ < 0.01 and
FAR can be neglected. However, at k2 = 1016 m−2, the RIS
profiles strongly depend on the FAR intensity nFAR. The con-
centration of solute atoms at the interface decreases with nFAR.
Moreover, the amount of segregated Ni atoms also decreases
with nFAR [Fig. 16(c)]. At k2 = 1016 m−2 and nFAR = 500, SNi

is less than about half the one without FAR (i.e., nFAR = 0) at
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FIG. 15. Total amount of segregated Cr atoms SCr as a function of dose rate (in dpa) and inverse temperature (in K−1) computed for different
sink strengths: 1013 m−2, 1014 m−2, and 1015 m−2. The results are normalized by the maximum segregation amount Smax

Cr . The nominal solute
concentration CB is set to 1 at. %.

both investigated temperatures (600 and 750 K). We observe
similar tendencies in the other five Fe-based dilute alloys.
This FAR effect is significant close to the interface. In this
region, the vacancy concentration is low, and the thermally
activated backward diffusion of solutes is limited. In this
case, FAR is the major mechanism for backward diffusion.
Therefore, RIS models ignoring FAR events overestimate the
RIS tendencies in Fe-based alloys, especially at large sink
strengths. In order to help identify at which dose rate the effect
of FAR on RIS is non-negligible, we define a critical dose rate
beyond which the relative difference between the segregation
amounts obtained with and without FAR effect is larger than
25%. In Table II, we provide the orders of magnitude of
the critical dose rates at different sink strengths, tempera-
tures, and irradiation particles. Around reactor temperature
(500–600 K), heavy ions are much more likely to induce
FAR effects than electrons and protons at a realistic dose
rate.

IV. DISCUSSION

A. Dose rate compensation by a temperature shift

One objective of this work is to provide quantita-
tive temperature-shift criteria for ion-irradiation experiments
aimed at emulating RIS generated by neutron irradiation. We
ascribe the difference of structural evolution between neutron
and ion irradiations to a difference of radiation flux. A change
of temperature may compensate the effect of a change of the
radiation flux on the vacancy profile or on the solute RIS. With
this work, we can suggest temperature shifts that should be ap-
plied depending on the (evolving) microstructure and the RIS
quantity that one wants to reproduce (SV or SB). Even though
SB and SV are interdependent quantities [cf. Eq. (59)], the be-
havior of solute RIS is very different from that of PDs, mainly
because solute RIS results from a balance between the solute
flux triggered by a PD driving force and the backward solute
flux triggered by a solute concentration gradient, whereas such

FIG. 16. Ni segregation profile CNi(z) near an interface (indicated by the shaded area) computed for (a) k2 = 5 × 1014 m−2 and T = 750 K;
(b) k2 = 1016 m−2 and T = 750 K; and (c) Ni segregation amount with different FAR intensities at T = 600 and 700 K. S0

Ni is the segregation
amount obtained with nFAR = 0. The nominal solute concentration CNi is set to 1 at. % and the dose rate φ is set to 10−4 dpa/s.
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TABLE II. Critical dose rates beyond which the relative difference between the segregation amounts obtained with and without FAR effect
is larger than 25%, estimated at various temperatures, sink strengths, and incident particles.

Critical dose rate (dpa/s)

T (K) k2 (m−2) Electrons (nFAR � 1) Protons (nFAR � 10) Heavy ions (nFAR � 100)

500 1014, 1015 ∼1 ∼10−2 ∼10−3

1016 ∼1 ∼10−2 ∼10−9

600 1014, 1015 >1 ∼1 ∼10−2

1016 >1 ∼1 ∼10−8

backward flux does not occur for PDs. Another difficulty is
that the behavior of both PDs and solutes depends not only
on the radiation flux and temperature, but also on the evolving
microstructure sink strength. The latter is a complex function
of temperature, radiation dose rate, and radiation dose (i.e.,
dose rate × time), as shown in Fig. 17. Besides, the evolution
of SV and SB as a function of sink strength, radiation flux,
and temperature differs from one kinetic domain to another,
and the extent of each kinetic domain in terms of temperature
and radiation flux depends itself on the sink strength which
evolves over time. Note that if the kinetic domains differ
between neutron and ion irradiations, it is almost impossible
to provide a temperature shift procedure. Nevertheless, there
are a few limiting cases (defined in Table III) which provide
some insights in this rather complex interplay and from which
some quantitative temperature-shift criteria can be proposed.

In case (i), the sink strength is assumed to be constant
during irradiation. A typical example is a material with an

FIG. 17. The evolution of (a) the sink strength k2, (b) the amount
of vacancy RIS SV, and (c) the amount of solute RIS SB in the
Fe-Cr alloy irradiated by neutrons and ions. The evolution of the
temperature shift for ion irradiation that is required to emulate the
neutron RIS is plotted in (d). The plots of k2 are reproduced from the
results in Ref. [68]. The dotted guiding lines obtained from K/R = 1
are plotted in (a) to help identify the kinetic domain.

initial metallurgical state including a high dislocation density,
for instance a cold-worked material. In such material, stable
dislocation networks are formed and the microstructure does
not evolve under irradiation. The corresponding sink strength
should be high, such that the system is in the sink domain. At
fixed sink strength, the amount of vacancy RIS, SV, increases
linearly with the ratio φ/DV in the sink domain. On the other
hand, SB is independent of φ in the sink domain. Thus, if the
vacancy RIS is to be conserved from a neutron to a higher
flux ion irradiation, we prescribe a shift of temperature such
as to keep the ratio φ/DV constant. Concerning the RIS of
PDs, we recover the Mansur’s invariant relation, which has
been established in the recombination domain for swelling
phenomena [42]. However, for the solute RIS in the sink
domain, there is no need for a change of temperature to keep
the amount of solute RIS constant.

In case (ii), irradiation conditions are such that both the
neutron and ion irradiated alloys remain in the recombination
domain. This happens when the sink density is initially low
and the radiation dose rate is weak enough not to disturb the
microstructure too much. In this case, our results suggest that
SV and SB are nearly independent of k2 (cf. Figs. 11 and
14). SV increases with (φ/DV)1/4 in the recombination do-
main, while SB decreases with φ/DV. Note that a temperature
shift conserving the ratio φ/DV does not necessarily ensure a
correct emulation of a neutron radiation-induced solute RIS.
Therefore, one temperature shift only enables us to reproduce
one RIS quantity, either the PD segregation profile or the
solute RIS. Indeed, the solute-PDs flux couplings leading to
solute RIS are strongly nonlinear and alloy-specific functions
of temperature. Nevertheless, we may use our temperature-
flux maps to obtain an estimation of the temperature shift
leading to the same amount of solute RIS. According to the
maps of Fig. 10 and Fig. 13, an emulation of neutron irradia-
tion with a flux of 10−7 dpa/s at T = 360 K (i.e., 1000/T =
2.75) by means of an ion irradiation of 10−5 dpa/s would
require a shift of temperature �T � +90 K for the PDs, and
alloy-dependent �T for solute RIS as listed in Table IV. Note
that no temperature shift is proposed for Fe-Cr alloy because
SCr at φ = 10−5 dpa/s, at any temperature, is systematically
smaller than that at φ = 10−7 dpa/s and T = 360 K.

In case (iii), the alloys irradiated by neutrons and ions
remain in the sink domain. This is often the case with alloys
irradiated at high dose, in which a large number of sinks (e.g.,
dislocation loops, voids) are formed. We may assume that the
temperature shift is sufficiently small such that the variation of
α1 can be neglected. Thus, SB only depends on the microstruc-
ture [cf. Eq. (60)]. We assume that the timescale for the
establishment of solute RIS is shorter than the characteristic
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TABLE III. Definition of cases in which quantitative criteria of temperature shift �T can be proposed.

Cases Assumptions Criteria for SV Criteria for SB

(i) K � R and k2 independent of φ and T
(e.g., a cold-worked material with a

high sink density)

Invariant φ/DV No temperature shift is needed
(�T = 0)

(ii) K < Ra (e.g., a material with an initial
low sink density, irradiated at a low

dose such that the sink strength remains
small)

Invariant φ/DV Invariant
Iα1 −1

Iα1 −1+ h
2 ( 


πrc
)
−1/4

( φ
DV

)
1/4

(iii) K > Ra (e.g., a material subjected to a
high dose of irradiation leading to the
formation of a microstructure with a

high sink strength)

Invariant 1

(k2 )3/2 ( φ

DV
) (a) If �T is sufficiently small such that

the variation of α1 is negligible (e.g.,
within about ±50 K from Fig. 5):

invariant k2

(b) Else: invariant h
2

Iα1 −1

Iα1 −1+ h
2

√
k2
2

(iv) k2(φ, T ) is given We use our models to calculate SV and SB with k2 varying with φ and T . We search
for at which temperature (T2) the ion irradiation at φ = φ2 reproduces the same SV

or SB obtained from the neutron irradiation at T = T1 and φ = φ1 (e.g., Fig. 17).

aConditions for both neutron and ion irradiations. One can refer to Fig. 15 to help identify the kinetic domains at different irradiation conditions
and sink strengths.

time of the evolving microstructure, because as soon as there
is a flux of PDs toward sinks, a gradient of PD and solute con-
centrations is formed. The solute concentration profile reaches
its stationary shape during the time it takes for the solute
backward diffusion to reach its stationary regime, which is fast
since it requires diffusion over the nanoscale distance of a RIS
profile compared to the evolution of the microstructure which
requires long-range diffusion of PDs. Hence, we expect that
solute RIS adiabatically follows the microstructural evolution.
Based on this assumption, the temperature-shift criterion for
SB is the one ensuring an invariant sink strength. Therefore,
given the variations of k2 with temperature and dose rate,
the variations of SB should have the same trends. This is
consistent with the experimental observation in Ref. [35]. In
this experiment, the authors attempted to emulate the mi-
crostructure of a cold-worked 316-stainless steel produced
by a neutron irradiation at 320 ◦C by a self-ion irradiation at
higher temperatures. In such cold-worked material, the sink
density was relatively high; thereby the irradiation must take
place in the sink domain. The authors in this study observed
that self-ion irradiation at 380 ◦C produces dislocation loop
size and density which matched well with those obtained with
neutron irradiation. In the same study, they showed that the
RIS behaviors from these two irradiation conditions coincided
as well. Therefore, this experiment shows that a relatively
small temperature shift (+60 ◦C in this experiment) ensur-
ing an invariant microstructure (i.e., sink strength) is able to

TABLE IV. Temperature shift required to simulate the solute RIS
from the neutron irradiation with a flux of 10−7 dpa/s at 360 K by
means of an ion irradiation of 10−5 dpa/s. Both neutron and ion
irradiations are in the recombination domain, corresponding to case
(ii) of Table III.

Fe-P Fe-Mn Fe-Cr Fe-Si Fe-Ni Fe-Cu

�T (K) +95 +40 N/A +90 +105 +100

reproduce as well the RIS behaviors for materials irradiated in
the sink domain.

In case (iv), we assume that the evolution of the sink
strength is not affected by the RIS of solutes. In this case, there
are simulation methods and/or experimental studies yielding
the evolution of the PD microstructure with respect to the
irradiation conditions and the radiation dose [67,68]. The
authors in Ref. [68] simulated the microstructural evolution
of a Fe-Cr alloy irradiated by neutrons (3.4 × 10−7 dpa/s)
and ions (5.2 × 10−5 dpa/s) at similar temperatures using
cluster dynamics and atomic kinetic Monte Carlo simulations.
Relying on their results, we can predict the evolution of the
RIS behaviors. Note that their results indicate that the PD
clusters are the major sinks. Due to the lack of information
on cluster densities, we estimate the average distance between
sinks directly from the sink strength by Eq. (37). In Fig. 17,
we plot k2 (from Ref. [68]) and SV and SB (from our calcula-
tion) as a function of the radiation dose. The evolution of k2

indicates that, up to 0.01 dpa for neutron irradiation and 0.1
dpa for ion irradiation, the system is at the frontier between
the recombination and sink domains. After these doses, the
system is in the sink domain and the sink strengths of both
neutron and ion irradiation conditions are close to each other.
The calculated SB in the two irradiation conditions are as
well very similar after 0.1 dpa. This is because, in the sink
domain, SB depends only on α1 and k2 [as presented in case
(iii)]; since the temperatures are close in the two irradiation
conditions, the calculated SB is nearly the same whenever
the sink strengths are very close to each other. Below 0.01
dpa, both SV and SB in the two irradiation conditions are
different. Given the variation trends of the sink strength with
the irradiation conditions, we propose a temperature shift that
would reproduce either the same SV or the same SB as in
neutron irradiation from an ion irradiation experiment. As a
qualitative approach, we assume that the sink strength k2 is
proportional to SV. This approach should be reasonable be-
cause PD clusters are major sinks and their growth should be
proportional to the PD segregation amount. Thus, by assuming
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FIG. 18. Solute RIS profiles obtained by our analytical models in several dilute Fe-based alloys. The profiles obtained by the exact solution
of Eq. (42) are also plotted as references. The nominal solute concentration CB is set to 1 at. % and the sink strength k2 is set to 1015 m−2. The
corresponding distance between planar sinks is h = 86 nm.

that the ion irradiation is in the recombination domain, we
set k2 as a linear function of (φ/DV)0.25. Hence, from the
simulated k2(φ) resulting from an ion irradiation [68], we can
deduce the sink strength evolution at different temperatures.
Relying on our model, we calculate the evolution of SV and SB

from the ion irradiation at different temperatures. From these
results, we find out at which temperature the evolution of SV

or SB matches well with that obtained by neutron irradiation.
By this approach, we obtain the temperature shifts of an ion
irradiation (5.2 × 10−5 dpa/s) required to emulate the RIS
behaviors from neutron irradiation (3.4 × 10−7 dpa/s) [cf.
Fig. 17(d)]. For a dose below 0.01 dpa, the temperature shift
(�T ) required for an invariant SV is about +90 ◦C and the
one for an invariant SB is about +110 ◦C. After 0.01 dpa, �T
for SV increases up to +200 ◦C, whereas �T for SB notably
decreases.

Apart from the simulation methods, direct observations of
the microstructure may inform on the sink strength evolution.
However, a precise estimation of the latter is difficult because,
for example, small PD nanoclusters forming under irradiation
are not detectable by transmission electron microscopy tech-
niques, although complementary methods such as positron
annihilation spectroscopy can provide useful information on
small PD-solute clusters. Further, investigating the variation
of the solute RIS profiles with radiation flux and radiation
dose should give some insight on the sink strength, provided
the timescale of RIS is smaller than that of the microstruc-
ture evolution, so that we may assume steady-state solute
RIS. For instance, we have shown that the RIS amount of

solute atoms is directly related to the bulk concentration of
vacancies. Therefore, measuring the solute RIS provides a
way to estimate the bulk concentration of vacancies—thereby
the global sink strength of the microstructure—provided the
diffusion properties of PDs are known.

B. Major assumptions of the present RIS model
and their implications

In this section, we discuss the major assumptions made
in deriving the expressions of the vacancy and solute RIS
profiles, and their potential impacts on the results. This dis-
cussion should highlight the limitations and possible lines of
improvements of the present RIS model.

(1) To solve the PD diffusion equations, Eqs. (28) and
(29), we assume that the PD diffusion coefficients DV and
DI do not vary along the RIS profiles. This assumption is
reasonable when the solute-PD interaction is weak (e.g., in
Fe-Cr) or the variation of the solute concentration along the
profile is small (e.g., in thermal and recombination domains).
However, in the vicinity of sinks enriched in solutes, the local
solute concentration could be a lot higher than the nominal
one. In dilute alloys, a solute enrichment at sinks generally
results from a high solute-PD attraction. The latter implies a
decrease of DV and DI with the local solute concentration.
Thus, our approach may lead to an overestimation of the PD
fluxes and the RIS amount.

(2) To determine the boundary conditions, sinks are as-
sumed to be perfect (or ideal) sinks, meaning that PD
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concentration at sinks is set to its equilibrium value. However,
in some cases sinks do not instantaneously absorb PDs. Then,
the PD concentration at sinks may be higher than the equilib-
rium one, leading to smaller PD concentration gradients and
fluxes. The corresponding RIS amount could be reduced and
the thermal domain could be wider. Actually, the comparison
between the present segregation maps and experimental ob-
servation of RIS close to the thermal regime could be a way
to study the sink efficiency of structural defects.

(3) To derive the solute concentration profile from the
vacancy one, the RIS factors α1 and α2 are assumed to be
independent of the local atomic concentration CB, although it
is shown in Sec. II C 1 that this is not true in general. To check
the validity of this hypothesis, we compare the RIS profiles
given by the analytical model [Eq. (51)] and the corresponding
reference profiles obtained from a numerical integration of
Eq. (42). The numerical integration naturally accounts for the
variation of α1 and α2 with the local solute concentration CB.
Figure 18 shows that in Fe-Cr, Fe-Si, Fe-Ni, and Fe-Cu alloys,
the analytical profiles are in very good agreement with the
numerical results at every temperature. In Fe-P and Fe-Mn
alloys, there is a slight discrepancy between analytical and nu-
merical RIS profiles at 550 and 700 K. Yet, the corresponding
discrepancy on the solute bulk concentration and segregation
amount is very small. Therefore, this assumption seems to be
an appropriate one for dilute alloys.

(4) The range of FAR is restricted to 1-NN (
√

3a0/2)
because it has basically no influence on the transport coef-
ficients and the short-range thermal interactions in Fe due
to the relatively high thermal jump frequencies of PDs [6].
However, increasing the range of FAR could increase the
backward diffusion of solute atoms close to sinks. This may
decrease the solute RIS (see Fig. 16). Close to sinks, the back-
ward diffusion is mainly determined by the FAR mechanisms.
As demonstrated in Appendix C, the backward diffusion co-
efficient due to FAR between 1-NN is equal to D1-NN

FAR =
a2

0 ωFAR = nFAR a2
0 φ, where ωFAR is the FAR frequency. Con-

sidering FAR of higher ranges, e.g., 5-NN (
√

3a0), the
corresponding diffusion coefficient is D5NN

FAR = 4 a2
0 ωFAR =

4 nFAR a2
0 φ. Thus, FAR between i-NN jumps would only

change the FAR intensity by a factor �i [cf. Eq. (C3)]. There-
fore, we may rely on Fig. 16 to evaluate the effects of the FAR
range on the solute RIS.

V. CONCLUSIONS

In this work, the cluster-expansion version of the self-
consistent mean-field theory is applied to calculate the
transport coefficients of dilute iron-base alloys Fe-B (B =
P, Mn, Cr, Si, Ni, and Cu) under irradiation. We add to the
recent calculation of the transport coefficients [27,47] the
contribution of forced atomic relocations (FARs) [6]. From
these transport coefficients, we compute the flux-coupling
coefficients, the solute and vacancy diffusion coefficients, and
the RIS factors with respect to temperature (T ), radiation flux
(φ), and point defect (PD) sink strength (k2). We highlight the
specificity of each alloy as well as the effect of FAR on these
parameters.

We provide a general PD-RIS model yielding the concen-
tration profile of vacancies in the vicinity of sinks in the three

kinetic domains. The profile is divided into two regions: a
region of uniform vacancy concentration far from the sinks
where we account for PD production, recombination, and
elimination at sinks, and a second region near the PD sinks
where we neglect recombination reactions because PD con-
centrations are lower. This approximation leads to first-order
differential equations that can be solved analytically.

From the RIS factor relating the solute concentration gradi-
ent to the vacancy one, we deduce an analytical expression of
the steady-state solute RIS profile. This analytical RIS model
includes the full set of PD reactions, solute-PD interactions,
and FAR mechanisms.

We summarize below the most relevant results obtained
from an application of the analytical results to the investigated
dilute Fe-based alloys.

(1) The consideration of the complete PD reactions en-
ables a consistent investigation of RIS behaviors in all PD
kinetic domains (recombination/sink/thermal). We show that
the RIS kinetic domains are directly related to the PD kinetic
domains, i.e., to the variation of PD concentration in the bulk.
RIS profiles of PDs do not vary much with the chemical nature
of the solute atom, whereas solute RIS profiles are very alloy-
specific. In general, the RIS of PDs and solutes is favored in
the sink domain because the rate of PD elimination at sinks is
significant. In the recombination domain, even though the PD
RIS amount is relatively small, the solute RIS amount can be
high in certain alloys, such as in Fe-Mn where the RIS factor
α1 is relatively large.

(2) The comparison between our results and a previous
study [28] highlights the sensitivity of RIS to recombination
reactions. Models that would neglect these reactions would
overestimate the vacancy concentration along the RIS profile,
especially at low temperatures and sink strengths (i.e., in the
recombination domain).

(3) Parametric T -φ-k2 studies show that the effect of FAR
on solute RIS is significant. At high sink strengths, FAR leads
to a sharp decrease of solute RIS. Moreover, our results show
that, among the investigated alloys, the effect of FAR is the
most important in Fe-Ni and Fe-Cr systems.

(4) T -φ-k2 maps of the RIS amount of PDs and so-
lute atoms can be used as a tool to provide quantitative
temperature-shift criteria for the comparison between neutron
and ion irradiation. We emphasize that these criteria are alloy
and kinetic-domain specific. In the case where we may ignore
the variation of sink strength with temperature and dose rate,
for instance in alloys with a high sink density, we show how to
rely on the maps to deduce the temperature shifts. Otherwise,
in most cases, an estimation of the temperature shift requires
the knowledge of the explicit relationship between the sink
strength, temperature, and dose rate.

Even though the present investigation is focused on dilute
Fe-base binary alloys, the present RIS model can be applied
to any alloys, provided that one is able to compute the RIS
factor and the solute and PD diffusion coefficients. This RIS
model can be extended to non-neutral PDs sinks by including
the elastic interactions between PDs, solute atoms, and sinks
into the calculation of the chemical potential gradients and the
transport coefficients [48].

Finally, radiation-induced solute enrichment at sinks can
exceed the alloy solubility limit and trigger the precipitation
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TABLE V. Notations of the important variable.

Notation Physical description Expression

Cα Local atomic composition of α

CB Nominal concentration of solute B
Cb

V Bulk concentration of vacancies (18)
Ceq

V Equilibrium concentration of vacancies (19)
dαβ , dc

αβ Partial diffusion coefficients (10)
Dα Diffusion coefficient of α (12), (15)
h Spacing between planar sinks
k2 Total sink strength
k2

s Sink strength of sink s
K PD elimination rate at sinks (21), (16)
l Distance of the bulk regime (36)
lα
e Effective width of the profile of α (63)

Lαβ Transport coefficients (6)
nFAR Number of FARs per dpa
rc SIA-V recombination radius
R SIA-V recombination rate (21), (16)
Sα Segregation amount of α (39), (53)
T Temperature
α1, α2 RIS factors (46), (47)
γ Extent of FAR effect on solute RIS (62)
φ Dose rate/damage production rate

 Atomic volume

of a secondary phase. Such a radiation-induced precipitation
phenomenon would require different boundary conditions on
the solute RIS profile, as for example a backward solute dif-
fusion set to zero. These points are left for future work.

APPENDIX A: NOMENCLATURE

In this Appendix, we list in Table V the notations of the
key variables introduced in the present work.

APPENDIX B: CALCULATION OF THE POINT DEFECT
CHEMICAL POTENTIAL GRADIENT

In this Appendix, we provide details for the calculation of
the point defect chemical potential gradient. For a PD (d =
V, I), the chemical potential is given by

μd = kBT ln

(
Cd

Ceq
d

)
. (B1)

Thus, we have

∇μd = kBT

(∇Cd

Cd
− ∇Ceq

d

Ceq
d

)
. (B2)

In the infinitely dilute limit, the equilibrium concentration of d
can be deduced from a low-temperature expansion formalism,
i.e., Eq. (19). In this case, Eq. (B2) can be rewritten as

∇μd = kBT

[
∇Cd

Cd
−

(
ZBd − Z0

Bd

)∇CB

1 + (
ZBd − Z0

Bd

)(
CB + Ceq,0

d

)
]
,

(B3)

where Ceq,0
d is the equilibrium concentration of d in pure bcc

iron. Note that Ceq,0
d � CB. Hence,

∇μd = kBT

[∇Cd

Cd
−

(
ZBd − Z0

Bd

)∇CB

1 + (
ZBd − Z0

Bd

)
CB

]
. (B4)

Along a RIS profile, the relative variation of Cd (up to several
orders of magnitude) should be much larger than that of CB

(mostly within one order of magnitude). Therefore,(
ZBd − Z0

Bd

)∇CB

1 + (
ZBd − Z0

Bd

)
CB

<
∇CB

CB
� ∇Cd

Cd
. (B5)

Hence, the point defect chemical potential gradient is approx-
imated by

∇μd � kBT
∇Cd

Cd
. (B6)

APPENDIX C: CALCULATION OF THE BACKWARD
DIFFUSION COEFFICIENT CLOSE TO SINKS

In this Appendix, we give details on the calculation of the
backward diffusion coefficient of solute atoms close to sinks.
At realistic damage rate under irradiation (typically smaller
than 1 dpa) in Fe, the FAR frequency is much smaller than
the thermal jump frequencies. Thus, we may approximate
the solute diffusion as the sum of the diffusion coefficients,
DFAR, resulting from FAR events and the thermal diffusion
coefficient, Dth, resulting from thermal jumps of vacancies
and SIAs [6]. Close to sinks, the PD concentration is very
small. Since Dth is proportional to the PD concentration, Dth

is small compared to DFAR. The solute backward diffusion
occurs close to sinks, where the solute concentration gradient
is significant. Hence, we may assume that the solute backward
diffusion of solute is equal to DFAR.

According to the Einstein-Smoluchowski formula applied
to the random walk diffusion [2], the solute backward dif-
fusion coefficient resulting from FAR events between i-NN
(i-NN FAR) is written

Di-NN
FAR = λ2

i zi ωFAR

6
= nFAR

λ2
i zi φ

6
, (C1)

where λi is the relocation distance between i-NN, zi is the
number of i-NN, and ωFAR is the FAR frequency. In the
present study, FAR was restricted to relocations between 1-
NN, leading to D1-NN

FAR = nFAR a2
0 φ. After Eq. (C1), the change

of DFAR due to an increase of the relocation distance is equal
to

Di-NN
FAR = �i D1-NN

FAR , (C2)

with

�i = λ2
i zi

λ2
1 z1

. (C3)

Therefore, i-NN FAR is equivalent to 1-NN FAR as long as the
FAR intensity (nFAR) entering the RIS factor α2 [cf. Eqs. (47)
and (62)] is multiplied by �i. In a more general situation,
the range of FAR is not unique. It may follow a probability

033605-23



HUANG, NASTAR, SCHULER, AND MESSINA PHYSICAL REVIEW MATERIALS 5, 033605 (2021)

distribution such as the following one,

DFAR =
Nm∑
i=1

wi Di-NN
FAR =

(
Nm∑
i=1

wi�i

)
D1NN

FAR , (C4)

where Nm-NN is the maximum relocation range and wi is
the probability weight of i-NN FAR events. Accordingly,
this complex FAR event with multiple relocation ranges is
equivalent to 1-NN FAR as long as the nFAR is multiplied by
(
∑Nm

i=1 wi�i ).

APPENDIX D: MATHEMATICAL DESCRIPTIONS

1. Relation between CV(z) and CI(z)

Following Eq. (28) and (29), we have

0 = DV
∂2CV

∂z2
− DI

∂2CI

∂z2

= ∂2

∂z2
(DVCV − DICI ). (D1)

Therefore, DVCV(z) − DICI(z) = K2z + K3, with K2 and
K3 two integration constants to be determined. By symmetry,
the PD flux at the midpoint (z = 0) is zero; hence we have

∂CV

∂z
(z = 0) = 0,

∂CI

∂z
(z = 0) = 0, (D2)

and therefore K2 = 0. Moreover, the PD concentrations at the
sink are equal to the equilibrium concentrations. Therefore,
we have

CV(z = h/2) = Ceq
V , CI(z = h/2) = Ceq

I . (D3)

Using Eq. (D3), K3 = DVCeq
V − DIC

eq
I . Assuming that

DIC
eq
I � DVCeq

V , we get K3 � DVCeq
V . Accordingly, CV(z) and

CI(z) are related by

DV
[
CV(z) − Ceq

V

] = DICI(z). (D4)

2. Introduction of the hypergeometric function 2F1

The hypergeometric function 2F1(a, b, c, x) is defined by
the series

2F1(a, b, c, x) =
∞∑

n=0

(a)n(b)n

(c)nn!
xn (D5)

for |x| � 1, where (a)n, (b)n, and (c)n are the Pochhammer
symbol [65] given by

(a)n =
{

a(a + 1)(a + n − 1), for n � 1,

1, for n = 0.
(D6)

For Re(c) > Re(b) > 0, we have

2F1(a, b, c, x) = �(c)

�(b)�(c − b)
f (a, b, c, x), (D7)

where � is the Gamma function [65], and

f (a, b, c, x) =
∫ 1

0
t b−1(1 − t )c−b−1(1 − xt )−adt . (D8)

We can deduce the integral [Eq. (55)], I , from the hypergeo-
metric function

I =
(

h

2
− l

)
b−2α1

∫ 1

0

[
1 −

(
h/2 − l

b

)2

t

]−α1
dt

2
√

t

=
(

h

2
− l

)
b−2α1

2F
1

(
α1,

1

2
;

3

2
;

(
h/2 − l

b

)2)
. (D9)
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